diff options
author | Heiko Schocher <hs@denx.de> | 2014-06-24 10:10:04 +0200 |
---|---|---|
committer | Tom Rini <trini@ti.com> | 2014-08-25 19:25:55 -0400 |
commit | ff94bc40af3481d47546595ba73c136de6af6929 (patch) | |
tree | 858119077e2ca8a992589185c36bd431e4a8c80e /fs/ubifs | |
parent | 0c06db59836746c5caf397e642cd0f2bf1cc20a6 (diff) | |
download | u-boot-imx-ff94bc40af3481d47546595ba73c136de6af6929.zip u-boot-imx-ff94bc40af3481d47546595ba73c136de6af6929.tar.gz u-boot-imx-ff94bc40af3481d47546595ba73c136de6af6929.tar.bz2 |
mtd, ubi, ubifs: resync with Linux-3.14
resync ubi subsystem with linux:
commit 455c6fdbd219161bd09b1165f11699d6d73de11c
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Mar 30 20:40:15 2014 -0700
Linux 3.14
A nice side effect of this, is we introduce UBI Fastmap support
to U-Boot.
Signed-off-by: Heiko Schocher <hs@denx.de>
Signed-off-by: Tom Rini <trini@ti.com>
Cc: Marek Vasut <marex@denx.de>
Cc: Sergey Lapin <slapin@ossfans.org>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Joerg Krause <jkrause@posteo.de>
Diffstat (limited to 'fs/ubifs')
-rw-r--r-- | fs/ubifs/budget.c | 662 | ||||
-rw-r--r-- | fs/ubifs/debug.c | 3117 | ||||
-rw-r--r-- | fs/ubifs/debug.h | 578 | ||||
-rw-r--r-- | fs/ubifs/io.c | 897 | ||||
-rw-r--r-- | fs/ubifs/key.h | 68 | ||||
-rw-r--r-- | fs/ubifs/log.c | 663 | ||||
-rw-r--r-- | fs/ubifs/lprops.c | 538 | ||||
-rw-r--r-- | fs/ubifs/lpt.c | 1242 | ||||
-rw-r--r-- | fs/ubifs/lpt_commit.c | 1893 | ||||
-rw-r--r-- | fs/ubifs/master.c | 102 | ||||
-rw-r--r-- | fs/ubifs/misc.h | 159 | ||||
-rw-r--r-- | fs/ubifs/orphan.c | 671 | ||||
-rw-r--r-- | fs/ubifs/recovery.c | 738 | ||||
-rw-r--r-- | fs/ubifs/replay.c | 573 | ||||
-rw-r--r-- | fs/ubifs/sb.c | 547 | ||||
-rw-r--r-- | fs/ubifs/scan.c | 102 | ||||
-rw-r--r-- | fs/ubifs/super.c | 2089 | ||||
-rw-r--r-- | fs/ubifs/tnc.c | 742 | ||||
-rw-r--r-- | fs/ubifs/tnc_misc.c | 124 | ||||
-rw-r--r-- | fs/ubifs/ubifs-media.h | 62 | ||||
-rw-r--r-- | fs/ubifs/ubifs.c | 115 | ||||
-rw-r--r-- | fs/ubifs/ubifs.h | 708 |
22 files changed, 14456 insertions, 1934 deletions
diff --git a/fs/ubifs/budget.c b/fs/ubifs/budget.c index 85377ea..9ed4017 100644 --- a/fs/ubifs/budget.c +++ b/fs/ubifs/budget.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -31,32 +20,171 @@ */ #include "ubifs.h" +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/writeback.h> +#else +#include <linux/err.h> +#endif #include <linux/math64.h> +/* + * When pessimistic budget calculations say that there is no enough space, + * UBIFS starts writing back dirty inodes and pages, doing garbage collection, + * or committing. The below constant defines maximum number of times UBIFS + * repeats the operations. + */ +#define MAX_MKSPC_RETRIES 3 + +/* + * The below constant defines amount of dirty pages which should be written + * back at when trying to shrink the liability. + */ +#define NR_TO_WRITE 16 + +#ifndef __UBOOT__ +/** + * shrink_liability - write-back some dirty pages/inodes. + * @c: UBIFS file-system description object + * @nr_to_write: how many dirty pages to write-back + * + * This function shrinks UBIFS liability by means of writing back some amount + * of dirty inodes and their pages. + * + * Note, this function synchronizes even VFS inodes which are locked + * (@i_mutex) by the caller of the budgeting function, because write-back does + * not touch @i_mutex. + */ +static void shrink_liability(struct ubifs_info *c, int nr_to_write) +{ + down_read(&c->vfs_sb->s_umount); + writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE); + up_read(&c->vfs_sb->s_umount); +} + +/** + * run_gc - run garbage collector. + * @c: UBIFS file-system description object + * + * This function runs garbage collector to make some more free space. Returns + * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a + * negative error code in case of failure. + */ +static int run_gc(struct ubifs_info *c) +{ + int err, lnum; + + /* Make some free space by garbage-collecting dirty space */ + down_read(&c->commit_sem); + lnum = ubifs_garbage_collect(c, 1); + up_read(&c->commit_sem); + if (lnum < 0) + return lnum; + + /* GC freed one LEB, return it to lprops */ + dbg_budg("GC freed LEB %d", lnum); + err = ubifs_return_leb(c, lnum); + if (err) + return err; + return 0; +} + /** - * ubifs_calc_min_idx_lebs - calculate amount of eraseblocks for the index. + * get_liability - calculate current liability. * @c: UBIFS file-system description object * - * This function calculates and returns the number of eraseblocks which should - * be kept for index usage. + * This function calculates and returns current UBIFS liability, i.e. the + * amount of bytes UBIFS has "promised" to write to the media. + */ +static long long get_liability(struct ubifs_info *c) +{ + long long liab; + + spin_lock(&c->space_lock); + liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth; + spin_unlock(&c->space_lock); + return liab; +} + +/** + * make_free_space - make more free space on the file-system. + * @c: UBIFS file-system description object + * + * This function is called when an operation cannot be budgeted because there + * is supposedly no free space. But in most cases there is some free space: + * o budgeting is pessimistic, so it always budgets more than it is actually + * needed, so shrinking the liability is one way to make free space - the + * cached data will take less space then it was budgeted for; + * o GC may turn some dark space into free space (budgeting treats dark space + * as not available); + * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. + * + * So this function tries to do the above. Returns %-EAGAIN if some free space + * was presumably made and the caller has to re-try budgeting the operation. + * Returns %-ENOSPC if it couldn't do more free space, and other negative error + * codes on failures. + */ +static int make_free_space(struct ubifs_info *c) +{ + int err, retries = 0; + long long liab1, liab2; + + do { + liab1 = get_liability(c); + /* + * We probably have some dirty pages or inodes (liability), try + * to write them back. + */ + dbg_budg("liability %lld, run write-back", liab1); + shrink_liability(c, NR_TO_WRITE); + + liab2 = get_liability(c); + if (liab2 < liab1) + return -EAGAIN; + + dbg_budg("new liability %lld (not shrunk)", liab2); + + /* Liability did not shrink again, try GC */ + dbg_budg("Run GC"); + err = run_gc(c); + if (!err) + return -EAGAIN; + + if (err != -EAGAIN && err != -ENOSPC) + /* Some real error happened */ + return err; + + dbg_budg("Run commit (retries %d)", retries); + err = ubifs_run_commit(c); + if (err) + return err; + } while (retries++ < MAX_MKSPC_RETRIES); + + return -ENOSPC; +} +#endif + +/** + * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index. + * @c: UBIFS file-system description object + * + * This function calculates and returns the number of LEBs which should be kept + * for index usage. */ int ubifs_calc_min_idx_lebs(struct ubifs_info *c) { - int idx_lebs, eff_leb_size = c->leb_size - c->max_idx_node_sz; + int idx_lebs; long long idx_size; - idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx; - + idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx; /* And make sure we have thrice the index size of space reserved */ - idx_size = idx_size + (idx_size << 1); - + idx_size += idx_size << 1; /* * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' * pair, nor similarly the two variables for the new index size, so we * have to do this costly 64-bit division on fast-path. */ - idx_size += eff_leb_size - 1; - idx_lebs = div_u64(idx_size, eff_leb_size); + idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size); /* * The index head is not available for the in-the-gaps method, so add an * extra LEB to compensate. @@ -67,6 +195,424 @@ int ubifs_calc_min_idx_lebs(struct ubifs_info *c) return idx_lebs; } +#ifndef __UBOOT__ +/** + * ubifs_calc_available - calculate available FS space. + * @c: UBIFS file-system description object + * @min_idx_lebs: minimum number of LEBs reserved for the index + * + * This function calculates and returns amount of FS space available for use. + */ +long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) +{ + int subtract_lebs; + long long available; + + available = c->main_bytes - c->lst.total_used; + + /* + * Now 'available' contains theoretically available flash space + * assuming there is no index, so we have to subtract the space which + * is reserved for the index. + */ + subtract_lebs = min_idx_lebs; + + /* Take into account that GC reserves one LEB for its own needs */ + subtract_lebs += 1; + + /* + * The GC journal head LEB is not really accessible. And since + * different write types go to different heads, we may count only on + * one head's space. + */ + subtract_lebs += c->jhead_cnt - 1; + + /* We also reserve one LEB for deletions, which bypass budgeting */ + subtract_lebs += 1; + + available -= (long long)subtract_lebs * c->leb_size; + + /* Subtract the dead space which is not available for use */ + available -= c->lst.total_dead; + + /* + * Subtract dark space, which might or might not be usable - it depends + * on the data which we have on the media and which will be written. If + * this is a lot of uncompressed or not-compressible data, the dark + * space cannot be used. + */ + available -= c->lst.total_dark; + + /* + * However, there is more dark space. The index may be bigger than + * @min_idx_lebs. Those extra LEBs are assumed to be available, but + * their dark space is not included in total_dark, so it is subtracted + * here. + */ + if (c->lst.idx_lebs > min_idx_lebs) { + subtract_lebs = c->lst.idx_lebs - min_idx_lebs; + available -= subtract_lebs * c->dark_wm; + } + + /* The calculations are rough and may end up with a negative number */ + return available > 0 ? available : 0; +} + +/** + * can_use_rp - check whether the user is allowed to use reserved pool. + * @c: UBIFS file-system description object + * + * UBIFS has so-called "reserved pool" which is flash space reserved + * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. + * This function checks whether current user is allowed to use reserved pool. + * Returns %1 current user is allowed to use reserved pool and %0 otherwise. + */ +static int can_use_rp(struct ubifs_info *c) +{ + if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) || + (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid))) + return 1; + return 0; +} + +/** + * do_budget_space - reserve flash space for index and data growth. + * @c: UBIFS file-system description object + * + * This function makes sure UBIFS has enough free LEBs for index growth and + * data. + * + * When budgeting index space, UBIFS reserves thrice as many LEBs as the index + * would take if it was consolidated and written to the flash. This guarantees + * that the "in-the-gaps" commit method always succeeds and UBIFS will always + * be able to commit dirty index. So this function basically adds amount of + * budgeted index space to the size of the current index, multiplies this by 3, + * and makes sure this does not exceed the amount of free LEBs. + * + * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables: + * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might + * be large, because UBIFS does not do any index consolidation as long as + * there is free space. IOW, the index may take a lot of LEBs, but the LEBs + * will contain a lot of dirt. + * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW, + * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs. + * + * This function returns zero in case of success, and %-ENOSPC in case of + * failure. + */ +static int do_budget_space(struct ubifs_info *c) +{ + long long outstanding, available; + int lebs, rsvd_idx_lebs, min_idx_lebs; + + /* First budget index space */ + min_idx_lebs = ubifs_calc_min_idx_lebs(c); + + /* Now 'min_idx_lebs' contains number of LEBs to reserve */ + if (min_idx_lebs > c->lst.idx_lebs) + rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; + else + rsvd_idx_lebs = 0; + + /* + * The number of LEBs that are available to be used by the index is: + * + * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - + * @c->lst.taken_empty_lebs + * + * @c->lst.empty_lebs are available because they are empty. + * @c->freeable_cnt are available because they contain only free and + * dirty space, @c->idx_gc_cnt are available because they are index + * LEBs that have been garbage collected and are awaiting the commit + * before they can be used. And the in-the-gaps method will grab these + * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have + * already been allocated for some purpose. + * + * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because + * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they + * are taken until after the commit). + * + * Note, @c->lst.taken_empty_lebs may temporarily be higher by one + * because of the way we serialize LEB allocations and budgeting. See a + * comment in 'ubifs_find_free_space()'. + */ + lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - + c->lst.taken_empty_lebs; + if (unlikely(rsvd_idx_lebs > lebs)) { + dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d", + min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs); + return -ENOSPC; + } + + available = ubifs_calc_available(c, min_idx_lebs); + outstanding = c->bi.data_growth + c->bi.dd_growth; + + if (unlikely(available < outstanding)) { + dbg_budg("out of data space: available %lld, outstanding %lld", + available, outstanding); + return -ENOSPC; + } + + if (available - outstanding <= c->rp_size && !can_use_rp(c)) + return -ENOSPC; + + c->bi.min_idx_lebs = min_idx_lebs; + return 0; +} + +/** + * calc_idx_growth - calculate approximate index growth from budgeting request. + * @c: UBIFS file-system description object + * @req: budgeting request + * + * For now we assume each new node adds one znode. But this is rather poor + * approximation, though. + */ +static int calc_idx_growth(const struct ubifs_info *c, + const struct ubifs_budget_req *req) +{ + int znodes; + + znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + + req->new_dent; + return znodes * c->max_idx_node_sz; +} + +/** + * calc_data_growth - calculate approximate amount of new data from budgeting + * request. + * @c: UBIFS file-system description object + * @req: budgeting request + */ +static int calc_data_growth(const struct ubifs_info *c, + const struct ubifs_budget_req *req) +{ + int data_growth; + + data_growth = req->new_ino ? c->bi.inode_budget : 0; + if (req->new_page) + data_growth += c->bi.page_budget; + if (req->new_dent) + data_growth += c->bi.dent_budget; + data_growth += req->new_ino_d; + return data_growth; +} + +/** + * calc_dd_growth - calculate approximate amount of data which makes other data + * dirty from budgeting request. + * @c: UBIFS file-system description object + * @req: budgeting request + */ +static int calc_dd_growth(const struct ubifs_info *c, + const struct ubifs_budget_req *req) +{ + int dd_growth; + + dd_growth = req->dirtied_page ? c->bi.page_budget : 0; + + if (req->dirtied_ino) + dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1); + if (req->mod_dent) + dd_growth += c->bi.dent_budget; + dd_growth += req->dirtied_ino_d; + return dd_growth; +} + +/** + * ubifs_budget_space - ensure there is enough space to complete an operation. + * @c: UBIFS file-system description object + * @req: budget request + * + * This function allocates budget for an operation. It uses pessimistic + * approximation of how much flash space the operation needs. The goal of this + * function is to make sure UBIFS always has flash space to flush all dirty + * pages, dirty inodes, and dirty znodes (liability). This function may force + * commit, garbage-collection or write-back. Returns zero in case of success, + * %-ENOSPC if there is no free space and other negative error codes in case of + * failures. + */ +int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) +{ + int uninitialized_var(cmt_retries), uninitialized_var(wb_retries); + int err, idx_growth, data_growth, dd_growth, retried = 0; + + ubifs_assert(req->new_page <= 1); + ubifs_assert(req->dirtied_page <= 1); + ubifs_assert(req->new_dent <= 1); + ubifs_assert(req->mod_dent <= 1); + ubifs_assert(req->new_ino <= 1); + ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); + ubifs_assert(req->dirtied_ino <= 4); + ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); + ubifs_assert(!(req->new_ino_d & 7)); + ubifs_assert(!(req->dirtied_ino_d & 7)); + + data_growth = calc_data_growth(c, req); + dd_growth = calc_dd_growth(c, req); + if (!data_growth && !dd_growth) + return 0; + idx_growth = calc_idx_growth(c, req); + +again: + spin_lock(&c->space_lock); + ubifs_assert(c->bi.idx_growth >= 0); + ubifs_assert(c->bi.data_growth >= 0); + ubifs_assert(c->bi.dd_growth >= 0); + + if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) { + dbg_budg("no space"); + spin_unlock(&c->space_lock); + return -ENOSPC; + } + + c->bi.idx_growth += idx_growth; + c->bi.data_growth += data_growth; + c->bi.dd_growth += dd_growth; + + err = do_budget_space(c); + if (likely(!err)) { + req->idx_growth = idx_growth; + req->data_growth = data_growth; + req->dd_growth = dd_growth; + spin_unlock(&c->space_lock); + return 0; + } + + /* Restore the old values */ + c->bi.idx_growth -= idx_growth; + c->bi.data_growth -= data_growth; + c->bi.dd_growth -= dd_growth; + spin_unlock(&c->space_lock); + + if (req->fast) { + dbg_budg("no space for fast budgeting"); + return err; + } + + err = make_free_space(c); + cond_resched(); + if (err == -EAGAIN) { + dbg_budg("try again"); + goto again; + } else if (err == -ENOSPC) { + if (!retried) { + retried = 1; + dbg_budg("-ENOSPC, but anyway try once again"); + goto again; + } + dbg_budg("FS is full, -ENOSPC"); + c->bi.nospace = 1; + if (can_use_rp(c) || c->rp_size == 0) + c->bi.nospace_rp = 1; + smp_wmb(); + } else + ubifs_err("cannot budget space, error %d", err); + return err; +} + +/** + * ubifs_release_budget - release budgeted free space. + * @c: UBIFS file-system description object + * @req: budget request + * + * This function releases the space budgeted by 'ubifs_budget_space()'. Note, + * since the index changes (which were budgeted for in @req->idx_growth) will + * only be written to the media on commit, this function moves the index budget + * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed + * by the commit operation. + */ +void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) +{ + ubifs_assert(req->new_page <= 1); + ubifs_assert(req->dirtied_page <= 1); + ubifs_assert(req->new_dent <= 1); + ubifs_assert(req->mod_dent <= 1); + ubifs_assert(req->new_ino <= 1); + ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); + ubifs_assert(req->dirtied_ino <= 4); + ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); + ubifs_assert(!(req->new_ino_d & 7)); + ubifs_assert(!(req->dirtied_ino_d & 7)); + if (!req->recalculate) { + ubifs_assert(req->idx_growth >= 0); + ubifs_assert(req->data_growth >= 0); + ubifs_assert(req->dd_growth >= 0); + } + + if (req->recalculate) { + req->data_growth = calc_data_growth(c, req); + req->dd_growth = calc_dd_growth(c, req); + req->idx_growth = calc_idx_growth(c, req); + } + + if (!req->data_growth && !req->dd_growth) + return; + + c->bi.nospace = c->bi.nospace_rp = 0; + smp_wmb(); + + spin_lock(&c->space_lock); + c->bi.idx_growth -= req->idx_growth; + c->bi.uncommitted_idx += req->idx_growth; + c->bi.data_growth -= req->data_growth; + c->bi.dd_growth -= req->dd_growth; + c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); + + ubifs_assert(c->bi.idx_growth >= 0); + ubifs_assert(c->bi.data_growth >= 0); + ubifs_assert(c->bi.dd_growth >= 0); + ubifs_assert(c->bi.min_idx_lebs < c->main_lebs); + ubifs_assert(!(c->bi.idx_growth & 7)); + ubifs_assert(!(c->bi.data_growth & 7)); + ubifs_assert(!(c->bi.dd_growth & 7)); + spin_unlock(&c->space_lock); +} + +/** + * ubifs_convert_page_budget - convert budget of a new page. + * @c: UBIFS file-system description object + * + * This function converts budget which was allocated for a new page of data to + * the budget of changing an existing page of data. The latter is smaller than + * the former, so this function only does simple re-calculation and does not + * involve any write-back. + */ +void ubifs_convert_page_budget(struct ubifs_info *c) +{ + spin_lock(&c->space_lock); + /* Release the index growth reservation */ + c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; + /* Release the data growth reservation */ + c->bi.data_growth -= c->bi.page_budget; + /* Increase the dirty data growth reservation instead */ + c->bi.dd_growth += c->bi.page_budget; + /* And re-calculate the indexing space reservation */ + c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); + spin_unlock(&c->space_lock); +} + +/** + * ubifs_release_dirty_inode_budget - release dirty inode budget. + * @c: UBIFS file-system description object + * @ui: UBIFS inode to release the budget for + * + * This function releases budget corresponding to a dirty inode. It is usually + * called when after the inode has been written to the media and marked as + * clean. It also causes the "no space" flags to be cleared. + */ +void ubifs_release_dirty_inode_budget(struct ubifs_info *c, + struct ubifs_inode *ui) +{ + struct ubifs_budget_req req; + + memset(&req, 0, sizeof(struct ubifs_budget_req)); + /* The "no space" flags will be cleared because dd_growth is > 0 */ + req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8); + ubifs_release_budget(c, &req); +} +#endif + /** * ubifs_reported_space - calculate reported free space. * @c: the UBIFS file-system description object @@ -111,3 +657,75 @@ long long ubifs_reported_space(const struct ubifs_info *c, long long free) free *= factor; return div_u64(free, divisor); } + +#ifndef __UBOOT__ +/** + * ubifs_get_free_space_nolock - return amount of free space. + * @c: UBIFS file-system description object + * + * This function calculates amount of free space to report to user-space. + * + * Because UBIFS may introduce substantial overhead (the index, node headers, + * alignment, wastage at the end of LEBs, etc), it cannot report real amount of + * free flash space it has (well, because not all dirty space is reclaimable, + * UBIFS does not actually know the real amount). If UBIFS did so, it would + * bread user expectations about what free space is. Users seem to accustomed + * to assume that if the file-system reports N bytes of free space, they would + * be able to fit a file of N bytes to the FS. This almost works for + * traditional file-systems, because they have way less overhead than UBIFS. + * So, to keep users happy, UBIFS tries to take the overhead into account. + */ +long long ubifs_get_free_space_nolock(struct ubifs_info *c) +{ + int rsvd_idx_lebs, lebs; + long long available, outstanding, free; + + ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); + outstanding = c->bi.data_growth + c->bi.dd_growth; + available = ubifs_calc_available(c, c->bi.min_idx_lebs); + + /* + * When reporting free space to user-space, UBIFS guarantees that it is + * possible to write a file of free space size. This means that for + * empty LEBs we may use more precise calculations than + * 'ubifs_calc_available()' is using. Namely, we know that in empty + * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. + * Thus, amend the available space. + * + * Note, the calculations below are similar to what we have in + * 'do_budget_space()', so refer there for comments. + */ + if (c->bi.min_idx_lebs > c->lst.idx_lebs) + rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; + else + rsvd_idx_lebs = 0; + lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - + c->lst.taken_empty_lebs; + lebs -= rsvd_idx_lebs; + available += lebs * (c->dark_wm - c->leb_overhead); + + if (available > outstanding) + free = ubifs_reported_space(c, available - outstanding); + else + free = 0; + return free; +} + +/** + * ubifs_get_free_space - return amount of free space. + * @c: UBIFS file-system description object + * + * This function calculates and returns amount of free space to report to + * user-space. + */ +long long ubifs_get_free_space(struct ubifs_info *c) +{ + long long free; + + spin_lock(&c->space_lock); + free = ubifs_get_free_space_nolock(c); + spin_unlock(&c->space_lock); + + return free; +} +#endif diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c index 6afb883..2f50a55 100644 --- a/fs/ubifs/debug.c +++ b/fs/ubifs/debug.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -27,28 +16,44 @@ * various local functions of those subsystems. */ -#define UBIFS_DBG_PRESERVE_UBI - +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/module.h> +#include <linux/debugfs.h> +#include <linux/math64.h> +#include <linux/uaccess.h> +#include <linux/random.h> +#else +#include <linux/compat.h> +#include <linux/err.h> +#endif #include "ubifs.h" -#ifdef CONFIG_UBIFS_FS_DEBUG - -DEFINE_SPINLOCK(dbg_lock); +#ifndef __UBOOT__ +static DEFINE_SPINLOCK(dbg_lock); +#endif -static char dbg_key_buf0[128]; -static char dbg_key_buf1[128]; - -unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; -unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; -unsigned int ubifs_tst_flags; - -module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); -module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); -module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); +static const char *get_key_fmt(int fmt) +{ + switch (fmt) { + case UBIFS_SIMPLE_KEY_FMT: + return "simple"; + default: + return "unknown/invalid format"; + } +} -MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); -MODULE_PARM_DESC(debug_chks, "Debug check flags"); -MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); +static const char *get_key_hash(int hash) +{ + switch (hash) { + case UBIFS_KEY_HASH_R5: + return "R5"; + case UBIFS_KEY_HASH_TEST: + return "test"; + default: + return "unknown/invalid name hash"; + } +} static const char *get_key_type(int type) { @@ -68,8 +73,32 @@ static const char *get_key_type(int type) } } -static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, - char *buffer) +#ifndef __UBOOT__ +static const char *get_dent_type(int type) +{ + switch (type) { + case UBIFS_ITYPE_REG: + return "file"; + case UBIFS_ITYPE_DIR: + return "dir"; + case UBIFS_ITYPE_LNK: + return "symlink"; + case UBIFS_ITYPE_BLK: + return "blkdev"; + case UBIFS_ITYPE_CHR: + return "char dev"; + case UBIFS_ITYPE_FIFO: + return "fifo"; + case UBIFS_ITYPE_SOCK: + return "socket"; + default: + return "unknown/invalid type"; + } +} +#endif + +const char *dbg_snprintf_key(const struct ubifs_info *c, + const union ubifs_key *key, char *buffer, int len) { char *p = buffer; int type = key_type(c, key); @@ -77,70 +106,3030 @@ static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { switch (type) { case UBIFS_INO_KEY: - sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), - get_key_type(type)); + len -= snprintf(p, len, "(%lu, %s)", + (unsigned long)key_inum(c, key), + get_key_type(type)); break; case UBIFS_DENT_KEY: case UBIFS_XENT_KEY: - sprintf(p, "(%lu, %s, %#08x)", - (unsigned long)key_inum(c, key), - get_key_type(type), key_hash(c, key)); + len -= snprintf(p, len, "(%lu, %s, %#08x)", + (unsigned long)key_inum(c, key), + get_key_type(type), key_hash(c, key)); break; case UBIFS_DATA_KEY: - sprintf(p, "(%lu, %s, %u)", - (unsigned long)key_inum(c, key), - get_key_type(type), key_block(c, key)); + len -= snprintf(p, len, "(%lu, %s, %u)", + (unsigned long)key_inum(c, key), + get_key_type(type), key_block(c, key)); break; case UBIFS_TRUN_KEY: - sprintf(p, "(%lu, %s)", - (unsigned long)key_inum(c, key), - get_key_type(type)); + len -= snprintf(p, len, "(%lu, %s)", + (unsigned long)key_inum(c, key), + get_key_type(type)); break; default: - sprintf(p, "(bad key type: %#08x, %#08x)", - key->u32[0], key->u32[1]); + len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", + key->u32[0], key->u32[1]); } } else - sprintf(p, "bad key format %d", c->key_fmt); + len -= snprintf(p, len, "bad key format %d", c->key_fmt); + ubifs_assert(len > 0); + return p; } -const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) +const char *dbg_ntype(int type) { - /* dbg_lock must be held */ - sprintf_key(c, key, dbg_key_buf0); - return dbg_key_buf0; + switch (type) { + case UBIFS_PAD_NODE: + return "padding node"; + case UBIFS_SB_NODE: + return "superblock node"; + case UBIFS_MST_NODE: + return "master node"; + case UBIFS_REF_NODE: + return "reference node"; + case UBIFS_INO_NODE: + return "inode node"; + case UBIFS_DENT_NODE: + return "direntry node"; + case UBIFS_XENT_NODE: + return "xentry node"; + case UBIFS_DATA_NODE: + return "data node"; + case UBIFS_TRUN_NODE: + return "truncate node"; + case UBIFS_IDX_NODE: + return "indexing node"; + case UBIFS_CS_NODE: + return "commit start node"; + case UBIFS_ORPH_NODE: + return "orphan node"; + default: + return "unknown node"; + } } -const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) +static const char *dbg_gtype(int type) { - /* dbg_lock must be held */ - sprintf_key(c, key, dbg_key_buf1); - return dbg_key_buf1; + switch (type) { + case UBIFS_NO_NODE_GROUP: + return "no node group"; + case UBIFS_IN_NODE_GROUP: + return "in node group"; + case UBIFS_LAST_OF_NODE_GROUP: + return "last of node group"; + default: + return "unknown"; + } +} + +const char *dbg_cstate(int cmt_state) +{ + switch (cmt_state) { + case COMMIT_RESTING: + return "commit resting"; + case COMMIT_BACKGROUND: + return "background commit requested"; + case COMMIT_REQUIRED: + return "commit required"; + case COMMIT_RUNNING_BACKGROUND: + return "BACKGROUND commit running"; + case COMMIT_RUNNING_REQUIRED: + return "commit running and required"; + case COMMIT_BROKEN: + return "broken commit"; + default: + return "unknown commit state"; + } +} + +const char *dbg_jhead(int jhead) +{ + switch (jhead) { + case GCHD: + return "0 (GC)"; + case BASEHD: + return "1 (base)"; + case DATAHD: + return "2 (data)"; + default: + return "unknown journal head"; + } +} + +static void dump_ch(const struct ubifs_ch *ch) +{ + pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); + pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); + pr_err("\tnode_type %d (%s)\n", ch->node_type, + dbg_ntype(ch->node_type)); + pr_err("\tgroup_type %d (%s)\n", ch->group_type, + dbg_gtype(ch->group_type)); + pr_err("\tsqnum %llu\n", + (unsigned long long)le64_to_cpu(ch->sqnum)); + pr_err("\tlen %u\n", le32_to_cpu(ch->len)); +} + +void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) +{ +#ifndef __UBOOT__ + const struct ubifs_inode *ui = ubifs_inode(inode); + struct qstr nm = { .name = NULL }; + union ubifs_key key; + struct ubifs_dent_node *dent, *pdent = NULL; + int count = 2; + + pr_err("Dump in-memory inode:"); + pr_err("\tinode %lu\n", inode->i_ino); + pr_err("\tsize %llu\n", + (unsigned long long)i_size_read(inode)); + pr_err("\tnlink %u\n", inode->i_nlink); + pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); + pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); + pr_err("\tatime %u.%u\n", + (unsigned int)inode->i_atime.tv_sec, + (unsigned int)inode->i_atime.tv_nsec); + pr_err("\tmtime %u.%u\n", + (unsigned int)inode->i_mtime.tv_sec, + (unsigned int)inode->i_mtime.tv_nsec); + pr_err("\tctime %u.%u\n", + (unsigned int)inode->i_ctime.tv_sec, + (unsigned int)inode->i_ctime.tv_nsec); + pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); + pr_err("\txattr_size %u\n", ui->xattr_size); + pr_err("\txattr_cnt %u\n", ui->xattr_cnt); + pr_err("\txattr_names %u\n", ui->xattr_names); + pr_err("\tdirty %u\n", ui->dirty); + pr_err("\txattr %u\n", ui->xattr); + pr_err("\tbulk_read %u\n", ui->xattr); + pr_err("\tsynced_i_size %llu\n", + (unsigned long long)ui->synced_i_size); + pr_err("\tui_size %llu\n", + (unsigned long long)ui->ui_size); + pr_err("\tflags %d\n", ui->flags); + pr_err("\tcompr_type %d\n", ui->compr_type); + pr_err("\tlast_page_read %lu\n", ui->last_page_read); + pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); + pr_err("\tdata_len %d\n", ui->data_len); + + if (!S_ISDIR(inode->i_mode)) + return; + + pr_err("List of directory entries:\n"); + ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); + + lowest_dent_key(c, &key, inode->i_ino); + while (1) { + dent = ubifs_tnc_next_ent(c, &key, &nm); + if (IS_ERR(dent)) { + if (PTR_ERR(dent) != -ENOENT) + pr_err("error %ld\n", PTR_ERR(dent)); + break; + } + + pr_err("\t%d: %s (%s)\n", + count++, dent->name, get_dent_type(dent->type)); + + nm.name = dent->name; + nm.len = le16_to_cpu(dent->nlen); + kfree(pdent); + pdent = dent; + key_read(c, &dent->key, &key); + } + kfree(pdent); +#endif +} + +void ubifs_dump_node(const struct ubifs_info *c, const void *node) +{ + int i, n; + union ubifs_key key; + const struct ubifs_ch *ch = node; + char key_buf[DBG_KEY_BUF_LEN]; + + /* If the magic is incorrect, just hexdump the first bytes */ + if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { + pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); + print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, + (void *)node, UBIFS_CH_SZ, 1); + return; + } + + spin_lock(&dbg_lock); + dump_ch(node); + + switch (ch->node_type) { + case UBIFS_PAD_NODE: + { + const struct ubifs_pad_node *pad = node; + + pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); + break; + } + case UBIFS_SB_NODE: + { + const struct ubifs_sb_node *sup = node; + unsigned int sup_flags = le32_to_cpu(sup->flags); + + pr_err("\tkey_hash %d (%s)\n", + (int)sup->key_hash, get_key_hash(sup->key_hash)); + pr_err("\tkey_fmt %d (%s)\n", + (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); + pr_err("\tflags %#x\n", sup_flags); + pr_err("\t big_lpt %u\n", + !!(sup_flags & UBIFS_FLG_BIGLPT)); + pr_err("\t space_fixup %u\n", + !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); + pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); + pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); + pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); + pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); + pr_err("\tmax_bud_bytes %llu\n", + (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); + pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); + pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); + pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); + pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); + pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); + pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); + pr_err("\tdefault_compr %u\n", + (int)le16_to_cpu(sup->default_compr)); + pr_err("\trp_size %llu\n", + (unsigned long long)le64_to_cpu(sup->rp_size)); + pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); + pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); + pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); + pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); + pr_err("\tUUID %pUB\n", sup->uuid); + break; + } + case UBIFS_MST_NODE: + { + const struct ubifs_mst_node *mst = node; + + pr_err("\thighest_inum %llu\n", + (unsigned long long)le64_to_cpu(mst->highest_inum)); + pr_err("\tcommit number %llu\n", + (unsigned long long)le64_to_cpu(mst->cmt_no)); + pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); + pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); + pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); + pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); + pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); + pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); + pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); + pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); + pr_err("\tindex_size %llu\n", + (unsigned long long)le64_to_cpu(mst->index_size)); + pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); + pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); + pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); + pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); + pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); + pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); + pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); + pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); + pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); + pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); + pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); + pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); + pr_err("\ttotal_free %llu\n", + (unsigned long long)le64_to_cpu(mst->total_free)); + pr_err("\ttotal_dirty %llu\n", + (unsigned long long)le64_to_cpu(mst->total_dirty)); + pr_err("\ttotal_used %llu\n", + (unsigned long long)le64_to_cpu(mst->total_used)); + pr_err("\ttotal_dead %llu\n", + (unsigned long long)le64_to_cpu(mst->total_dead)); + pr_err("\ttotal_dark %llu\n", + (unsigned long long)le64_to_cpu(mst->total_dark)); + break; + } + case UBIFS_REF_NODE: + { + const struct ubifs_ref_node *ref = node; + + pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); + pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); + pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); + break; + } + case UBIFS_INO_NODE: + { + const struct ubifs_ino_node *ino = node; + + key_read(c, &ino->key, &key); + pr_err("\tkey %s\n", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + pr_err("\tcreat_sqnum %llu\n", + (unsigned long long)le64_to_cpu(ino->creat_sqnum)); + pr_err("\tsize %llu\n", + (unsigned long long)le64_to_cpu(ino->size)); + pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); + pr_err("\tatime %lld.%u\n", + (long long)le64_to_cpu(ino->atime_sec), + le32_to_cpu(ino->atime_nsec)); + pr_err("\tmtime %lld.%u\n", + (long long)le64_to_cpu(ino->mtime_sec), + le32_to_cpu(ino->mtime_nsec)); + pr_err("\tctime %lld.%u\n", + (long long)le64_to_cpu(ino->ctime_sec), + le32_to_cpu(ino->ctime_nsec)); + pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); + pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); + pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); + pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); + pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); + pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); + pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); + pr_err("\tcompr_type %#x\n", + (int)le16_to_cpu(ino->compr_type)); + pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); + break; + } + case UBIFS_DENT_NODE: + case UBIFS_XENT_NODE: + { + const struct ubifs_dent_node *dent = node; + int nlen = le16_to_cpu(dent->nlen); + + key_read(c, &dent->key, &key); + pr_err("\tkey %s\n", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + pr_err("\tinum %llu\n", + (unsigned long long)le64_to_cpu(dent->inum)); + pr_err("\ttype %d\n", (int)dent->type); + pr_err("\tnlen %d\n", nlen); + pr_err("\tname "); + + if (nlen > UBIFS_MAX_NLEN) + pr_err("(bad name length, not printing, bad or corrupted node)"); + else { + for (i = 0; i < nlen && dent->name[i]; i++) + pr_cont("%c", dent->name[i]); + } + pr_cont("\n"); + + break; + } + case UBIFS_DATA_NODE: + { + const struct ubifs_data_node *dn = node; + int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; + + key_read(c, &dn->key, &key); + pr_err("\tkey %s\n", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + pr_err("\tsize %u\n", le32_to_cpu(dn->size)); + pr_err("\tcompr_typ %d\n", + (int)le16_to_cpu(dn->compr_type)); + pr_err("\tdata size %d\n", dlen); + pr_err("\tdata:\n"); + print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, + (void *)&dn->data, dlen, 0); + break; + } + case UBIFS_TRUN_NODE: + { + const struct ubifs_trun_node *trun = node; + + pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); + pr_err("\told_size %llu\n", + (unsigned long long)le64_to_cpu(trun->old_size)); + pr_err("\tnew_size %llu\n", + (unsigned long long)le64_to_cpu(trun->new_size)); + break; + } + case UBIFS_IDX_NODE: + { + const struct ubifs_idx_node *idx = node; + + n = le16_to_cpu(idx->child_cnt); + pr_err("\tchild_cnt %d\n", n); + pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); + pr_err("\tBranches:\n"); + + for (i = 0; i < n && i < c->fanout - 1; i++) { + const struct ubifs_branch *br; + + br = ubifs_idx_branch(c, idx, i); + key_read(c, &br->key, &key); + pr_err("\t%d: LEB %d:%d len %d key %s\n", + i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), + le32_to_cpu(br->len), + dbg_snprintf_key(c, &key, key_buf, + DBG_KEY_BUF_LEN)); + } + break; + } + case UBIFS_CS_NODE: + break; + case UBIFS_ORPH_NODE: + { + const struct ubifs_orph_node *orph = node; + + pr_err("\tcommit number %llu\n", + (unsigned long long) + le64_to_cpu(orph->cmt_no) & LLONG_MAX); + pr_err("\tlast node flag %llu\n", + (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); + n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; + pr_err("\t%d orphan inode numbers:\n", n); + for (i = 0; i < n; i++) + pr_err("\t ino %llu\n", + (unsigned long long)le64_to_cpu(orph->inos[i])); + break; + } + default: + pr_err("node type %d was not recognized\n", + (int)ch->node_type); + } + spin_unlock(&dbg_lock); +} + +void ubifs_dump_budget_req(const struct ubifs_budget_req *req) +{ + spin_lock(&dbg_lock); + pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", + req->new_ino, req->dirtied_ino); + pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", + req->new_ino_d, req->dirtied_ino_d); + pr_err("\tnew_page %d, dirtied_page %d\n", + req->new_page, req->dirtied_page); + pr_err("\tnew_dent %d, mod_dent %d\n", + req->new_dent, req->mod_dent); + pr_err("\tidx_growth %d\n", req->idx_growth); + pr_err("\tdata_growth %d dd_growth %d\n", + req->data_growth, req->dd_growth); + spin_unlock(&dbg_lock); +} + +void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) +{ + spin_lock(&dbg_lock); + pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", + current->pid, lst->empty_lebs, lst->idx_lebs); + pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", + lst->taken_empty_lebs, lst->total_free, lst->total_dirty); + pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", + lst->total_used, lst->total_dark, lst->total_dead); + spin_unlock(&dbg_lock); +} + +#ifndef __UBOOT__ +void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) +{ + int i; + struct rb_node *rb; + struct ubifs_bud *bud; + struct ubifs_gced_idx_leb *idx_gc; + long long available, outstanding, free; + + spin_lock(&c->space_lock); + spin_lock(&dbg_lock); + pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", + current->pid, bi->data_growth + bi->dd_growth, + bi->data_growth + bi->dd_growth + bi->idx_growth); + pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", + bi->data_growth, bi->dd_growth, bi->idx_growth); + pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", + bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); + pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", + bi->page_budget, bi->inode_budget, bi->dent_budget); + pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); + pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", + c->dark_wm, c->dead_wm, c->max_idx_node_sz); + + if (bi != &c->bi) + /* + * If we are dumping saved budgeting data, do not print + * additional information which is about the current state, not + * the old one which corresponded to the saved budgeting data. + */ + goto out_unlock; + + pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", + c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); + pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", + atomic_long_read(&c->dirty_pg_cnt), + atomic_long_read(&c->dirty_zn_cnt), + atomic_long_read(&c->clean_zn_cnt)); + pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); + + /* If we are in R/O mode, journal heads do not exist */ + if (c->jheads) + for (i = 0; i < c->jhead_cnt; i++) + pr_err("\tjhead %s\t LEB %d\n", + dbg_jhead(c->jheads[i].wbuf.jhead), + c->jheads[i].wbuf.lnum); + for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { + bud = rb_entry(rb, struct ubifs_bud, rb); + pr_err("\tbud LEB %d\n", bud->lnum); + } + list_for_each_entry(bud, &c->old_buds, list) + pr_err("\told bud LEB %d\n", bud->lnum); + list_for_each_entry(idx_gc, &c->idx_gc, list) + pr_err("\tGC'ed idx LEB %d unmap %d\n", + idx_gc->lnum, idx_gc->unmap); + pr_err("\tcommit state %d\n", c->cmt_state); + + /* Print budgeting predictions */ + available = ubifs_calc_available(c, c->bi.min_idx_lebs); + outstanding = c->bi.data_growth + c->bi.dd_growth; + free = ubifs_get_free_space_nolock(c); + pr_err("Budgeting predictions:\n"); + pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", + available, outstanding, free); +out_unlock: + spin_unlock(&dbg_lock); + spin_unlock(&c->space_lock); +} +#else +void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) +{ +} +#endif + +void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) +{ + int i, spc, dark = 0, dead = 0; + struct rb_node *rb; + struct ubifs_bud *bud; + + spc = lp->free + lp->dirty; + if (spc < c->dead_wm) + dead = spc; + else + dark = ubifs_calc_dark(c, spc); + + if (lp->flags & LPROPS_INDEX) + pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", + lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, + lp->flags); + else + pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", + lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, + dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); + + if (lp->flags & LPROPS_TAKEN) { + if (lp->flags & LPROPS_INDEX) + pr_cont("index, taken"); + else + pr_cont("taken"); + } else { + const char *s; + + if (lp->flags & LPROPS_INDEX) { + switch (lp->flags & LPROPS_CAT_MASK) { + case LPROPS_DIRTY_IDX: + s = "dirty index"; + break; + case LPROPS_FRDI_IDX: + s = "freeable index"; + break; + default: + s = "index"; + } + } else { + switch (lp->flags & LPROPS_CAT_MASK) { + case LPROPS_UNCAT: + s = "not categorized"; + break; + case LPROPS_DIRTY: + s = "dirty"; + break; + case LPROPS_FREE: + s = "free"; + break; + case LPROPS_EMPTY: + s = "empty"; + break; + case LPROPS_FREEABLE: + s = "freeable"; + break; + default: + s = NULL; + break; + } + } + pr_cont("%s", s); + } + + for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { + bud = rb_entry(rb, struct ubifs_bud, rb); + if (bud->lnum == lp->lnum) { + int head = 0; + for (i = 0; i < c->jhead_cnt; i++) { + /* + * Note, if we are in R/O mode or in the middle + * of mounting/re-mounting, the write-buffers do + * not exist. + */ + if (c->jheads && + lp->lnum == c->jheads[i].wbuf.lnum) { + pr_cont(", jhead %s", dbg_jhead(i)); + head = 1; + } + } + if (!head) + pr_cont(", bud of jhead %s", + dbg_jhead(bud->jhead)); + } + } + if (lp->lnum == c->gc_lnum) + pr_cont(", GC LEB"); + pr_cont(")\n"); +} + +void ubifs_dump_lprops(struct ubifs_info *c) +{ + int lnum, err; + struct ubifs_lprops lp; + struct ubifs_lp_stats lst; + + pr_err("(pid %d) start dumping LEB properties\n", current->pid); + ubifs_get_lp_stats(c, &lst); + ubifs_dump_lstats(&lst); + + for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { + err = ubifs_read_one_lp(c, lnum, &lp); + if (err) + ubifs_err("cannot read lprops for LEB %d", lnum); + + ubifs_dump_lprop(c, &lp); + } + pr_err("(pid %d) finish dumping LEB properties\n", current->pid); +} + +void ubifs_dump_lpt_info(struct ubifs_info *c) +{ + int i; + + spin_lock(&dbg_lock); + pr_err("(pid %d) dumping LPT information\n", current->pid); + pr_err("\tlpt_sz: %lld\n", c->lpt_sz); + pr_err("\tpnode_sz: %d\n", c->pnode_sz); + pr_err("\tnnode_sz: %d\n", c->nnode_sz); + pr_err("\tltab_sz: %d\n", c->ltab_sz); + pr_err("\tlsave_sz: %d\n", c->lsave_sz); + pr_err("\tbig_lpt: %d\n", c->big_lpt); + pr_err("\tlpt_hght: %d\n", c->lpt_hght); + pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); + pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); + pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); + pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); + pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); + pr_err("\tspace_bits: %d\n", c->space_bits); + pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); + pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); + pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); + pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); + pr_err("\tlnum_bits: %d\n", c->lnum_bits); + pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); + pr_err("\tLPT head is at %d:%d\n", + c->nhead_lnum, c->nhead_offs); + pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); + if (c->big_lpt) + pr_err("\tLPT lsave is at %d:%d\n", + c->lsave_lnum, c->lsave_offs); + for (i = 0; i < c->lpt_lebs; i++) + pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", + i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, + c->ltab[i].tgc, c->ltab[i].cmt); + spin_unlock(&dbg_lock); +} + +void ubifs_dump_sleb(const struct ubifs_info *c, + const struct ubifs_scan_leb *sleb, int offs) +{ + struct ubifs_scan_node *snod; + + pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", + current->pid, sleb->lnum, offs); + + list_for_each_entry(snod, &sleb->nodes, list) { + cond_resched(); + pr_err("Dumping node at LEB %d:%d len %d\n", + sleb->lnum, snod->offs, snod->len); + ubifs_dump_node(c, snod->node); + } +} + +void ubifs_dump_leb(const struct ubifs_info *c, int lnum) +{ + struct ubifs_scan_leb *sleb; + struct ubifs_scan_node *snod; + void *buf; + + pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); + + buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory for dumping LEB %d", lnum); + return; + } + + sleb = ubifs_scan(c, lnum, 0, buf, 0); + if (IS_ERR(sleb)) { + ubifs_err("scan error %d", (int)PTR_ERR(sleb)); + goto out; + } + + pr_err("LEB %d has %d nodes ending at %d\n", lnum, + sleb->nodes_cnt, sleb->endpt); + + list_for_each_entry(snod, &sleb->nodes, list) { + cond_resched(); + pr_err("Dumping node at LEB %d:%d len %d\n", lnum, + snod->offs, snod->len); + ubifs_dump_node(c, snod->node); + } + + pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); + ubifs_scan_destroy(sleb); + +out: + vfree(buf); + return; +} + +void ubifs_dump_znode(const struct ubifs_info *c, + const struct ubifs_znode *znode) +{ + int n; + const struct ubifs_zbranch *zbr; + char key_buf[DBG_KEY_BUF_LEN]; + + spin_lock(&dbg_lock); + if (znode->parent) + zbr = &znode->parent->zbranch[znode->iip]; + else + zbr = &c->zroot; + + pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", + znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, + znode->level, znode->child_cnt, znode->flags); + + if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { + spin_unlock(&dbg_lock); + return; + } + + pr_err("zbranches:\n"); + for (n = 0; n < znode->child_cnt; n++) { + zbr = &znode->zbranch[n]; + if (znode->level > 0) + pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", + n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, + dbg_snprintf_key(c, &zbr->key, key_buf, + DBG_KEY_BUF_LEN)); + else + pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", + n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, + dbg_snprintf_key(c, &zbr->key, key_buf, + DBG_KEY_BUF_LEN)); + } + spin_unlock(&dbg_lock); +} + +void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) +{ + int i; + + pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", + current->pid, cat, heap->cnt); + for (i = 0; i < heap->cnt; i++) { + struct ubifs_lprops *lprops = heap->arr[i]; + + pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", + i, lprops->lnum, lprops->hpos, lprops->free, + lprops->dirty, lprops->flags); + } + pr_err("(pid %d) finish dumping heap\n", current->pid); +} + +void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, + struct ubifs_nnode *parent, int iip) +{ + int i; + + pr_err("(pid %d) dumping pnode:\n", current->pid); + pr_err("\taddress %zx parent %zx cnext %zx\n", + (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); + pr_err("\tflags %lu iip %d level %d num %d\n", + pnode->flags, iip, pnode->level, pnode->num); + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + struct ubifs_lprops *lp = &pnode->lprops[i]; + + pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", + i, lp->free, lp->dirty, lp->flags, lp->lnum); + } +} + +void ubifs_dump_tnc(struct ubifs_info *c) +{ + struct ubifs_znode *znode; + int level; + + pr_err("\n"); + pr_err("(pid %d) start dumping TNC tree\n", current->pid); + znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); + level = znode->level; + pr_err("== Level %d ==\n", level); + while (znode) { + if (level != znode->level) { + level = znode->level; + pr_err("== Level %d ==\n", level); + } + ubifs_dump_znode(c, znode); + znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); + } + pr_err("(pid %d) finish dumping TNC tree\n", current->pid); +} + +static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, + void *priv) +{ + ubifs_dump_znode(c, znode); + return 0; } /** - * ubifs_debugging_init - initialize UBIFS debugging. + * ubifs_dump_index - dump the on-flash index. * @c: UBIFS file-system description object * - * This function initializes debugging-related data for the file system. + * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' + * which dumps only in-memory znodes and does not read znodes which from flash. + */ +void ubifs_dump_index(struct ubifs_info *c) +{ + dbg_walk_index(c, NULL, dump_znode, NULL); +} + +#ifndef __UBOOT__ +/** + * dbg_save_space_info - save information about flash space. + * @c: UBIFS file-system description object + * + * This function saves information about UBIFS free space, dirty space, etc, in + * order to check it later. + */ +void dbg_save_space_info(struct ubifs_info *c) +{ + struct ubifs_debug_info *d = c->dbg; + int freeable_cnt; + + spin_lock(&c->space_lock); + memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); + memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); + d->saved_idx_gc_cnt = c->idx_gc_cnt; + + /* + * We use a dirty hack here and zero out @c->freeable_cnt, because it + * affects the free space calculations, and UBIFS might not know about + * all freeable eraseblocks. Indeed, we know about freeable eraseblocks + * only when we read their lprops, and we do this only lazily, upon the + * need. So at any given point of time @c->freeable_cnt might be not + * exactly accurate. + * + * Just one example about the issue we hit when we did not zero + * @c->freeable_cnt. + * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the + * amount of free space in @d->saved_free + * 2. We re-mount R/W, which makes UBIFS to read the "lsave" + * information from flash, where we cache LEBs from various + * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' + * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' + * -> 'ubifs_get_pnode()' -> 'update_cats()' + * -> 'ubifs_add_to_cat()'). + * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt + * becomes %1. + * 4. We calculate the amount of free space when the re-mount is + * finished in 'dbg_check_space_info()' and it does not match + * @d->saved_free. + */ + freeable_cnt = c->freeable_cnt; + c->freeable_cnt = 0; + d->saved_free = ubifs_get_free_space_nolock(c); + c->freeable_cnt = freeable_cnt; + spin_unlock(&c->space_lock); +} + +/** + * dbg_check_space_info - check flash space information. + * @c: UBIFS file-system description object + * + * This function compares current flash space information with the information + * which was saved when the 'dbg_save_space_info()' function was called. + * Returns zero if the information has not changed, and %-EINVAL it it has + * changed. + */ +int dbg_check_space_info(struct ubifs_info *c) +{ + struct ubifs_debug_info *d = c->dbg; + struct ubifs_lp_stats lst; + long long free; + int freeable_cnt; + + spin_lock(&c->space_lock); + freeable_cnt = c->freeable_cnt; + c->freeable_cnt = 0; + free = ubifs_get_free_space_nolock(c); + c->freeable_cnt = freeable_cnt; + spin_unlock(&c->space_lock); + + if (free != d->saved_free) { + ubifs_err("free space changed from %lld to %lld", + d->saved_free, free); + goto out; + } + + return 0; + +out: + ubifs_msg("saved lprops statistics dump"); + ubifs_dump_lstats(&d->saved_lst); + ubifs_msg("saved budgeting info dump"); + ubifs_dump_budg(c, &d->saved_bi); + ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); + ubifs_msg("current lprops statistics dump"); + ubifs_get_lp_stats(c, &lst); + ubifs_dump_lstats(&lst); + ubifs_msg("current budgeting info dump"); + ubifs_dump_budg(c, &c->bi); + dump_stack(); + return -EINVAL; +} + +/** + * dbg_check_synced_i_size - check synchronized inode size. + * @c: UBIFS file-system description object + * @inode: inode to check + * + * If inode is clean, synchronized inode size has to be equivalent to current + * inode size. This function has to be called only for locked inodes (@i_mutex + * has to be locked). Returns %0 if synchronized inode size if correct, and + * %-EINVAL if not. + */ +int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) +{ + int err = 0; + struct ubifs_inode *ui = ubifs_inode(inode); + + if (!dbg_is_chk_gen(c)) + return 0; + if (!S_ISREG(inode->i_mode)) + return 0; + + mutex_lock(&ui->ui_mutex); + spin_lock(&ui->ui_lock); + if (ui->ui_size != ui->synced_i_size && !ui->dirty) { + ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean", + ui->ui_size, ui->synced_i_size); + ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, + inode->i_mode, i_size_read(inode)); + dump_stack(); + err = -EINVAL; + } + spin_unlock(&ui->ui_lock); + mutex_unlock(&ui->ui_mutex); + return err; +} + +/* + * dbg_check_dir - check directory inode size and link count. + * @c: UBIFS file-system description object + * @dir: the directory to calculate size for + * @size: the result is returned here + * + * This function makes sure that directory size and link count are correct. * Returns zero in case of success and a negative error code in case of * failure. + * + * Note, it is good idea to make sure the @dir->i_mutex is locked before + * calling this function. + */ +int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) +{ + unsigned int nlink = 2; + union ubifs_key key; + struct ubifs_dent_node *dent, *pdent = NULL; + struct qstr nm = { .name = NULL }; + loff_t size = UBIFS_INO_NODE_SZ; + + if (!dbg_is_chk_gen(c)) + return 0; + + if (!S_ISDIR(dir->i_mode)) + return 0; + + lowest_dent_key(c, &key, dir->i_ino); + while (1) { + int err; + + dent = ubifs_tnc_next_ent(c, &key, &nm); + if (IS_ERR(dent)) { + err = PTR_ERR(dent); + if (err == -ENOENT) + break; + return err; + } + + nm.name = dent->name; + nm.len = le16_to_cpu(dent->nlen); + size += CALC_DENT_SIZE(nm.len); + if (dent->type == UBIFS_ITYPE_DIR) + nlink += 1; + kfree(pdent); + pdent = dent; + key_read(c, &dent->key, &key); + } + kfree(pdent); + + if (i_size_read(dir) != size) { + ubifs_err("directory inode %lu has size %llu, but calculated size is %llu", + dir->i_ino, (unsigned long long)i_size_read(dir), + (unsigned long long)size); + ubifs_dump_inode(c, dir); + dump_stack(); + return -EINVAL; + } + if (dir->i_nlink != nlink) { + ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u", + dir->i_ino, dir->i_nlink, nlink); + ubifs_dump_inode(c, dir); + dump_stack(); + return -EINVAL; + } + + return 0; +} + +/** + * dbg_check_key_order - make sure that colliding keys are properly ordered. + * @c: UBIFS file-system description object + * @zbr1: first zbranch + * @zbr2: following zbranch + * + * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of + * names of the direntries/xentries which are referred by the keys. This + * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes + * sure the name of direntry/xentry referred by @zbr1 is less than + * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, + * and a negative error code in case of failure. */ +static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, + struct ubifs_zbranch *zbr2) +{ + int err, nlen1, nlen2, cmp; + struct ubifs_dent_node *dent1, *dent2; + union ubifs_key key; + char key_buf[DBG_KEY_BUF_LEN]; + + ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); + dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); + if (!dent1) + return -ENOMEM; + dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); + if (!dent2) { + err = -ENOMEM; + goto out_free; + } + + err = ubifs_tnc_read_node(c, zbr1, dent1); + if (err) + goto out_free; + err = ubifs_validate_entry(c, dent1); + if (err) + goto out_free; + + err = ubifs_tnc_read_node(c, zbr2, dent2); + if (err) + goto out_free; + err = ubifs_validate_entry(c, dent2); + if (err) + goto out_free; + + /* Make sure node keys are the same as in zbranch */ + err = 1; + key_read(c, &dent1->key, &key); + if (keys_cmp(c, &zbr1->key, &key)) { + ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum, + zbr1->offs, dbg_snprintf_key(c, &key, key_buf, + DBG_KEY_BUF_LEN)); + ubifs_err("but it should have key %s according to tnc", + dbg_snprintf_key(c, &zbr1->key, key_buf, + DBG_KEY_BUF_LEN)); + ubifs_dump_node(c, dent1); + goto out_free; + } + + key_read(c, &dent2->key, &key); + if (keys_cmp(c, &zbr2->key, &key)) { + ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum, + zbr1->offs, dbg_snprintf_key(c, &key, key_buf, + DBG_KEY_BUF_LEN)); + ubifs_err("but it should have key %s according to tnc", + dbg_snprintf_key(c, &zbr2->key, key_buf, + DBG_KEY_BUF_LEN)); + ubifs_dump_node(c, dent2); + goto out_free; + } + + nlen1 = le16_to_cpu(dent1->nlen); + nlen2 = le16_to_cpu(dent2->nlen); + + cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); + if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { + err = 0; + goto out_free; + } + if (cmp == 0 && nlen1 == nlen2) + ubifs_err("2 xent/dent nodes with the same name"); + else + ubifs_err("bad order of colliding key %s", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + + ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); + ubifs_dump_node(c, dent1); + ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); + ubifs_dump_node(c, dent2); + +out_free: + kfree(dent2); + kfree(dent1); + return err; +} + +/** + * dbg_check_znode - check if znode is all right. + * @c: UBIFS file-system description object + * @zbr: zbranch which points to this znode + * + * This function makes sure that znode referred to by @zbr is all right. + * Returns zero if it is, and %-EINVAL if it is not. + */ +static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) +{ + struct ubifs_znode *znode = zbr->znode; + struct ubifs_znode *zp = znode->parent; + int n, err, cmp; + + if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { + err = 1; + goto out; + } + if (znode->level < 0) { + err = 2; + goto out; + } + if (znode->iip < 0 || znode->iip >= c->fanout) { + err = 3; + goto out; + } + + if (zbr->len == 0) + /* Only dirty zbranch may have no on-flash nodes */ + if (!ubifs_zn_dirty(znode)) { + err = 4; + goto out; + } + + if (ubifs_zn_dirty(znode)) { + /* + * If znode is dirty, its parent has to be dirty as well. The + * order of the operation is important, so we have to have + * memory barriers. + */ + smp_mb(); + if (zp && !ubifs_zn_dirty(zp)) { + /* + * The dirty flag is atomic and is cleared outside the + * TNC mutex, so znode's dirty flag may now have + * been cleared. The child is always cleared before the + * parent, so we just need to check again. + */ + smp_mb(); + if (ubifs_zn_dirty(znode)) { + err = 5; + goto out; + } + } + } + + if (zp) { + const union ubifs_key *min, *max; + + if (znode->level != zp->level - 1) { + err = 6; + goto out; + } + + /* Make sure the 'parent' pointer in our znode is correct */ + err = ubifs_search_zbranch(c, zp, &zbr->key, &n); + if (!err) { + /* This zbranch does not exist in the parent */ + err = 7; + goto out; + } + + if (znode->iip >= zp->child_cnt) { + err = 8; + goto out; + } + + if (znode->iip != n) { + /* This may happen only in case of collisions */ + if (keys_cmp(c, &zp->zbranch[n].key, + &zp->zbranch[znode->iip].key)) { + err = 9; + goto out; + } + n = znode->iip; + } + + /* + * Make sure that the first key in our znode is greater than or + * equal to the key in the pointing zbranch. + */ + min = &zbr->key; + cmp = keys_cmp(c, min, &znode->zbranch[0].key); + if (cmp == 1) { + err = 10; + goto out; + } + + if (n + 1 < zp->child_cnt) { + max = &zp->zbranch[n + 1].key; + + /* + * Make sure the last key in our znode is less or + * equivalent than the key in the zbranch which goes + * after our pointing zbranch. + */ + cmp = keys_cmp(c, max, + &znode->zbranch[znode->child_cnt - 1].key); + if (cmp == -1) { + err = 11; + goto out; + } + } + } else { + /* This may only be root znode */ + if (zbr != &c->zroot) { + err = 12; + goto out; + } + } + + /* + * Make sure that next key is greater or equivalent then the previous + * one. + */ + for (n = 1; n < znode->child_cnt; n++) { + cmp = keys_cmp(c, &znode->zbranch[n - 1].key, + &znode->zbranch[n].key); + if (cmp > 0) { + err = 13; + goto out; + } + if (cmp == 0) { + /* This can only be keys with colliding hash */ + if (!is_hash_key(c, &znode->zbranch[n].key)) { + err = 14; + goto out; + } + + if (znode->level != 0 || c->replaying) + continue; + + /* + * Colliding keys should follow binary order of + * corresponding xentry/dentry names. + */ + err = dbg_check_key_order(c, &znode->zbranch[n - 1], + &znode->zbranch[n]); + if (err < 0) + return err; + if (err) { + err = 15; + goto out; + } + } + } + + for (n = 0; n < znode->child_cnt; n++) { + if (!znode->zbranch[n].znode && + (znode->zbranch[n].lnum == 0 || + znode->zbranch[n].len == 0)) { + err = 16; + goto out; + } + + if (znode->zbranch[n].lnum != 0 && + znode->zbranch[n].len == 0) { + err = 17; + goto out; + } + + if (znode->zbranch[n].lnum == 0 && + znode->zbranch[n].len != 0) { + err = 18; + goto out; + } + + if (znode->zbranch[n].lnum == 0 && + znode->zbranch[n].offs != 0) { + err = 19; + goto out; + } + + if (znode->level != 0 && znode->zbranch[n].znode) + if (znode->zbranch[n].znode->parent != znode) { + err = 20; + goto out; + } + } + + return 0; + +out: + ubifs_err("failed, error %d", err); + ubifs_msg("dump of the znode"); + ubifs_dump_znode(c, znode); + if (zp) { + ubifs_msg("dump of the parent znode"); + ubifs_dump_znode(c, zp); + } + dump_stack(); + return -EINVAL; +} +#else + +int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) +{ + return 0; +} + +void dbg_debugfs_exit_fs(struct ubifs_info *c) +{ + return; +} + int ubifs_debugging_init(struct ubifs_info *c) { - c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); - if (!c->dbg) + return 0; +} +void ubifs_debugging_exit(struct ubifs_info *c) +{ +} +int dbg_check_filesystem(struct ubifs_info *c) +{ + return 0; +} +int dbg_debugfs_init_fs(struct ubifs_info *c) +{ + return 0; +} +#endif + +#ifndef __UBOOT__ +/** + * dbg_check_tnc - check TNC tree. + * @c: UBIFS file-system description object + * @extra: do extra checks that are possible at start commit + * + * This function traverses whole TNC tree and checks every znode. Returns zero + * if everything is all right and %-EINVAL if something is wrong with TNC. + */ +int dbg_check_tnc(struct ubifs_info *c, int extra) +{ + struct ubifs_znode *znode; + long clean_cnt = 0, dirty_cnt = 0; + int err, last; + + if (!dbg_is_chk_index(c)) + return 0; + + ubifs_assert(mutex_is_locked(&c->tnc_mutex)); + if (!c->zroot.znode) + return 0; + + znode = ubifs_tnc_postorder_first(c->zroot.znode); + while (1) { + struct ubifs_znode *prev; + struct ubifs_zbranch *zbr; + + if (!znode->parent) + zbr = &c->zroot; + else + zbr = &znode->parent->zbranch[znode->iip]; + + err = dbg_check_znode(c, zbr); + if (err) + return err; + + if (extra) { + if (ubifs_zn_dirty(znode)) + dirty_cnt += 1; + else + clean_cnt += 1; + } + + prev = znode; + znode = ubifs_tnc_postorder_next(znode); + if (!znode) + break; + + /* + * If the last key of this znode is equivalent to the first key + * of the next znode (collision), then check order of the keys. + */ + last = prev->child_cnt - 1; + if (prev->level == 0 && znode->level == 0 && !c->replaying && + !keys_cmp(c, &prev->zbranch[last].key, + &znode->zbranch[0].key)) { + err = dbg_check_key_order(c, &prev->zbranch[last], + &znode->zbranch[0]); + if (err < 0) + return err; + if (err) { + ubifs_msg("first znode"); + ubifs_dump_znode(c, prev); + ubifs_msg("second znode"); + ubifs_dump_znode(c, znode); + return -EINVAL; + } + } + } + + if (extra) { + if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { + ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", + atomic_long_read(&c->clean_zn_cnt), + clean_cnt); + return -EINVAL; + } + if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { + ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", + atomic_long_read(&c->dirty_zn_cnt), + dirty_cnt); + return -EINVAL; + } + } + + return 0; +} +#else +int dbg_check_tnc(struct ubifs_info *c, int extra) +{ + return 0; +} +#endif + +/** + * dbg_walk_index - walk the on-flash index. + * @c: UBIFS file-system description object + * @leaf_cb: called for each leaf node + * @znode_cb: called for each indexing node + * @priv: private data which is passed to callbacks + * + * This function walks the UBIFS index and calls the @leaf_cb for each leaf + * node and @znode_cb for each indexing node. Returns zero in case of success + * and a negative error code in case of failure. + * + * It would be better if this function removed every znode it pulled to into + * the TNC, so that the behavior more closely matched the non-debugging + * behavior. + */ +int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, + dbg_znode_callback znode_cb, void *priv) +{ + int err; + struct ubifs_zbranch *zbr; + struct ubifs_znode *znode, *child; + + mutex_lock(&c->tnc_mutex); + /* If the root indexing node is not in TNC - pull it */ + if (!c->zroot.znode) { + c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); + if (IS_ERR(c->zroot.znode)) { + err = PTR_ERR(c->zroot.znode); + c->zroot.znode = NULL; + goto out_unlock; + } + } + + /* + * We are going to traverse the indexing tree in the postorder manner. + * Go down and find the leftmost indexing node where we are going to + * start from. + */ + znode = c->zroot.znode; + while (znode->level > 0) { + zbr = &znode->zbranch[0]; + child = zbr->znode; + if (!child) { + child = ubifs_load_znode(c, zbr, znode, 0); + if (IS_ERR(child)) { + err = PTR_ERR(child); + goto out_unlock; + } + zbr->znode = child; + } + + znode = child; + } + + /* Iterate over all indexing nodes */ + while (1) { + int idx; + + cond_resched(); + + if (znode_cb) { + err = znode_cb(c, znode, priv); + if (err) { + ubifs_err("znode checking function returned error %d", + err); + ubifs_dump_znode(c, znode); + goto out_dump; + } + } + if (leaf_cb && znode->level == 0) { + for (idx = 0; idx < znode->child_cnt; idx++) { + zbr = &znode->zbranch[idx]; + err = leaf_cb(c, zbr, priv); + if (err) { + ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d", + err, zbr->lnum, zbr->offs); + goto out_dump; + } + } + } + + if (!znode->parent) + break; + + idx = znode->iip + 1; + znode = znode->parent; + if (idx < znode->child_cnt) { + /* Switch to the next index in the parent */ + zbr = &znode->zbranch[idx]; + child = zbr->znode; + if (!child) { + child = ubifs_load_znode(c, zbr, znode, idx); + if (IS_ERR(child)) { + err = PTR_ERR(child); + goto out_unlock; + } + zbr->znode = child; + } + znode = child; + } else + /* + * This is the last child, switch to the parent and + * continue. + */ + continue; + + /* Go to the lowest leftmost znode in the new sub-tree */ + while (znode->level > 0) { + zbr = &znode->zbranch[0]; + child = zbr->znode; + if (!child) { + child = ubifs_load_znode(c, zbr, znode, 0); + if (IS_ERR(child)) { + err = PTR_ERR(child); + goto out_unlock; + } + zbr->znode = child; + } + znode = child; + } + } + + mutex_unlock(&c->tnc_mutex); + return 0; + +out_dump: + if (znode->parent) + zbr = &znode->parent->zbranch[znode->iip]; + else + zbr = &c->zroot; + ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); + ubifs_dump_znode(c, znode); +out_unlock: + mutex_unlock(&c->tnc_mutex); + return err; +} + +/** + * add_size - add znode size to partially calculated index size. + * @c: UBIFS file-system description object + * @znode: znode to add size for + * @priv: partially calculated index size + * + * This is a helper function for 'dbg_check_idx_size()' which is called for + * every indexing node and adds its size to the 'long long' variable pointed to + * by @priv. + */ +static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) +{ + long long *idx_size = priv; + int add; + + add = ubifs_idx_node_sz(c, znode->child_cnt); + add = ALIGN(add, 8); + *idx_size += add; + return 0; +} + +/** + * dbg_check_idx_size - check index size. + * @c: UBIFS file-system description object + * @idx_size: size to check + * + * This function walks the UBIFS index, calculates its size and checks that the + * size is equivalent to @idx_size. Returns zero in case of success and a + * negative error code in case of failure. + */ +int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) +{ + int err; + long long calc = 0; + + if (!dbg_is_chk_index(c)) + return 0; + + err = dbg_walk_index(c, NULL, add_size, &calc); + if (err) { + ubifs_err("error %d while walking the index", err); + return err; + } + + if (calc != idx_size) { + ubifs_err("index size check failed: calculated size is %lld, should be %lld", + calc, idx_size); + dump_stack(); + return -EINVAL; + } + + return 0; +} + +#ifndef __UBOOT__ +/** + * struct fsck_inode - information about an inode used when checking the file-system. + * @rb: link in the RB-tree of inodes + * @inum: inode number + * @mode: inode type, permissions, etc + * @nlink: inode link count + * @xattr_cnt: count of extended attributes + * @references: how many directory/xattr entries refer this inode (calculated + * while walking the index) + * @calc_cnt: for directory inode count of child directories + * @size: inode size (read from on-flash inode) + * @xattr_sz: summary size of all extended attributes (read from on-flash + * inode) + * @calc_sz: for directories calculated directory size + * @calc_xcnt: count of extended attributes + * @calc_xsz: calculated summary size of all extended attributes + * @xattr_nms: sum of lengths of all extended attribute names belonging to this + * inode (read from on-flash inode) + * @calc_xnms: calculated sum of lengths of all extended attribute names + */ +struct fsck_inode { + struct rb_node rb; + ino_t inum; + umode_t mode; + unsigned int nlink; + unsigned int xattr_cnt; + int references; + int calc_cnt; + long long size; + unsigned int xattr_sz; + long long calc_sz; + long long calc_xcnt; + long long calc_xsz; + unsigned int xattr_nms; + long long calc_xnms; +}; + +/** + * struct fsck_data - private FS checking information. + * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) + */ +struct fsck_data { + struct rb_root inodes; +}; + +/** + * add_inode - add inode information to RB-tree of inodes. + * @c: UBIFS file-system description object + * @fsckd: FS checking information + * @ino: raw UBIFS inode to add + * + * This is a helper function for 'check_leaf()' which adds information about + * inode @ino to the RB-tree of inodes. Returns inode information pointer in + * case of success and a negative error code in case of failure. + */ +static struct fsck_inode *add_inode(struct ubifs_info *c, + struct fsck_data *fsckd, + struct ubifs_ino_node *ino) +{ + struct rb_node **p, *parent = NULL; + struct fsck_inode *fscki; + ino_t inum = key_inum_flash(c, &ino->key); + struct inode *inode; + struct ubifs_inode *ui; + + p = &fsckd->inodes.rb_node; + while (*p) { + parent = *p; + fscki = rb_entry(parent, struct fsck_inode, rb); + if (inum < fscki->inum) + p = &(*p)->rb_left; + else if (inum > fscki->inum) + p = &(*p)->rb_right; + else + return fscki; + } + + if (inum > c->highest_inum) { + ubifs_err("too high inode number, max. is %lu", + (unsigned long)c->highest_inum); + return ERR_PTR(-EINVAL); + } + + fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); + if (!fscki) + return ERR_PTR(-ENOMEM); + + inode = ilookup(c->vfs_sb, inum); + + fscki->inum = inum; + /* + * If the inode is present in the VFS inode cache, use it instead of + * the on-flash inode which might be out-of-date. E.g., the size might + * be out-of-date. If we do not do this, the following may happen, for + * example: + * 1. A power cut happens + * 2. We mount the file-system R/O, the replay process fixes up the + * inode size in the VFS cache, but on on-flash. + * 3. 'check_leaf()' fails because it hits a data node beyond inode + * size. + */ + if (!inode) { + fscki->nlink = le32_to_cpu(ino->nlink); + fscki->size = le64_to_cpu(ino->size); + fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); + fscki->xattr_sz = le32_to_cpu(ino->xattr_size); + fscki->xattr_nms = le32_to_cpu(ino->xattr_names); + fscki->mode = le32_to_cpu(ino->mode); + } else { + ui = ubifs_inode(inode); + fscki->nlink = inode->i_nlink; + fscki->size = inode->i_size; + fscki->xattr_cnt = ui->xattr_cnt; + fscki->xattr_sz = ui->xattr_size; + fscki->xattr_nms = ui->xattr_names; + fscki->mode = inode->i_mode; + iput(inode); + } + + if (S_ISDIR(fscki->mode)) { + fscki->calc_sz = UBIFS_INO_NODE_SZ; + fscki->calc_cnt = 2; + } + + rb_link_node(&fscki->rb, parent, p); + rb_insert_color(&fscki->rb, &fsckd->inodes); + + return fscki; +} + +/** + * search_inode - search inode in the RB-tree of inodes. + * @fsckd: FS checking information + * @inum: inode number to search + * + * This is a helper function for 'check_leaf()' which searches inode @inum in + * the RB-tree of inodes and returns an inode information pointer or %NULL if + * the inode was not found. + */ +static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) +{ + struct rb_node *p; + struct fsck_inode *fscki; + + p = fsckd->inodes.rb_node; + while (p) { + fscki = rb_entry(p, struct fsck_inode, rb); + if (inum < fscki->inum) + p = p->rb_left; + else if (inum > fscki->inum) + p = p->rb_right; + else + return fscki; + } + return NULL; +} + +/** + * read_add_inode - read inode node and add it to RB-tree of inodes. + * @c: UBIFS file-system description object + * @fsckd: FS checking information + * @inum: inode number to read + * + * This is a helper function for 'check_leaf()' which finds inode node @inum in + * the index, reads it, and adds it to the RB-tree of inodes. Returns inode + * information pointer in case of success and a negative error code in case of + * failure. + */ +static struct fsck_inode *read_add_inode(struct ubifs_info *c, + struct fsck_data *fsckd, ino_t inum) +{ + int n, err; + union ubifs_key key; + struct ubifs_znode *znode; + struct ubifs_zbranch *zbr; + struct ubifs_ino_node *ino; + struct fsck_inode *fscki; + + fscki = search_inode(fsckd, inum); + if (fscki) + return fscki; + + ino_key_init(c, &key, inum); + err = ubifs_lookup_level0(c, &key, &znode, &n); + if (!err) { + ubifs_err("inode %lu not found in index", (unsigned long)inum); + return ERR_PTR(-ENOENT); + } else if (err < 0) { + ubifs_err("error %d while looking up inode %lu", + err, (unsigned long)inum); + return ERR_PTR(err); + } + + zbr = &znode->zbranch[n]; + if (zbr->len < UBIFS_INO_NODE_SZ) { + ubifs_err("bad node %lu node length %d", + (unsigned long)inum, zbr->len); + return ERR_PTR(-EINVAL); + } + + ino = kmalloc(zbr->len, GFP_NOFS); + if (!ino) + return ERR_PTR(-ENOMEM); + + err = ubifs_tnc_read_node(c, zbr, ino); + if (err) { + ubifs_err("cannot read inode node at LEB %d:%d, error %d", + zbr->lnum, zbr->offs, err); + kfree(ino); + return ERR_PTR(err); + } + + fscki = add_inode(c, fsckd, ino); + kfree(ino); + if (IS_ERR(fscki)) { + ubifs_err("error %ld while adding inode %lu node", + PTR_ERR(fscki), (unsigned long)inum); + return fscki; + } + + return fscki; +} + +/** + * check_leaf - check leaf node. + * @c: UBIFS file-system description object + * @zbr: zbranch of the leaf node to check + * @priv: FS checking information + * + * This is a helper function for 'dbg_check_filesystem()' which is called for + * every single leaf node while walking the indexing tree. It checks that the + * leaf node referred from the indexing tree exists, has correct CRC, and does + * some other basic validation. This function is also responsible for building + * an RB-tree of inodes - it adds all inodes into the RB-tree. It also + * calculates reference count, size, etc for each inode in order to later + * compare them to the information stored inside the inodes and detect possible + * inconsistencies. Returns zero in case of success and a negative error code + * in case of failure. + */ +static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, + void *priv) +{ + ino_t inum; + void *node; + struct ubifs_ch *ch; + int err, type = key_type(c, &zbr->key); + struct fsck_inode *fscki; + + if (zbr->len < UBIFS_CH_SZ) { + ubifs_err("bad leaf length %d (LEB %d:%d)", + zbr->len, zbr->lnum, zbr->offs); + return -EINVAL; + } + + node = kmalloc(zbr->len, GFP_NOFS); + if (!node) return -ENOMEM; - c->dbg->buf = vmalloc(c->leb_size); - if (!c->dbg->buf) + err = ubifs_tnc_read_node(c, zbr, node); + if (err) { + ubifs_err("cannot read leaf node at LEB %d:%d, error %d", + zbr->lnum, zbr->offs, err); + goto out_free; + } + + /* If this is an inode node, add it to RB-tree of inodes */ + if (type == UBIFS_INO_KEY) { + fscki = add_inode(c, priv, node); + if (IS_ERR(fscki)) { + err = PTR_ERR(fscki); + ubifs_err("error %d while adding inode node", err); + goto out_dump; + } goto out; + } + + if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && + type != UBIFS_DATA_KEY) { + ubifs_err("unexpected node type %d at LEB %d:%d", + type, zbr->lnum, zbr->offs); + err = -EINVAL; + goto out_free; + } + + ch = node; + if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { + ubifs_err("too high sequence number, max. is %llu", + c->max_sqnum); + err = -EINVAL; + goto out_dump; + } + + if (type == UBIFS_DATA_KEY) { + long long blk_offs; + struct ubifs_data_node *dn = node; + + /* + * Search the inode node this data node belongs to and insert + * it to the RB-tree of inodes. + */ + inum = key_inum_flash(c, &dn->key); + fscki = read_add_inode(c, priv, inum); + if (IS_ERR(fscki)) { + err = PTR_ERR(fscki); + ubifs_err("error %d while processing data node and trying to find inode node %lu", + err, (unsigned long)inum); + goto out_dump; + } + + /* Make sure the data node is within inode size */ + blk_offs = key_block_flash(c, &dn->key); + blk_offs <<= UBIFS_BLOCK_SHIFT; + blk_offs += le32_to_cpu(dn->size); + if (blk_offs > fscki->size) { + ubifs_err("data node at LEB %d:%d is not within inode size %lld", + zbr->lnum, zbr->offs, fscki->size); + err = -EINVAL; + goto out_dump; + } + } else { + int nlen; + struct ubifs_dent_node *dent = node; + struct fsck_inode *fscki1; + + err = ubifs_validate_entry(c, dent); + if (err) + goto out_dump; + + /* + * Search the inode node this entry refers to and the parent + * inode node and insert them to the RB-tree of inodes. + */ + inum = le64_to_cpu(dent->inum); + fscki = read_add_inode(c, priv, inum); + if (IS_ERR(fscki)) { + err = PTR_ERR(fscki); + ubifs_err("error %d while processing entry node and trying to find inode node %lu", + err, (unsigned long)inum); + goto out_dump; + } + + /* Count how many direntries or xentries refers this inode */ + fscki->references += 1; + + inum = key_inum_flash(c, &dent->key); + fscki1 = read_add_inode(c, priv, inum); + if (IS_ERR(fscki1)) { + err = PTR_ERR(fscki1); + ubifs_err("error %d while processing entry node and trying to find parent inode node %lu", + err, (unsigned long)inum); + goto out_dump; + } + + nlen = le16_to_cpu(dent->nlen); + if (type == UBIFS_XENT_KEY) { + fscki1->calc_xcnt += 1; + fscki1->calc_xsz += CALC_DENT_SIZE(nlen); + fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); + fscki1->calc_xnms += nlen; + } else { + fscki1->calc_sz += CALC_DENT_SIZE(nlen); + if (dent->type == UBIFS_ITYPE_DIR) + fscki1->calc_cnt += 1; + } + } + +out: + kfree(node); + return 0; + +out_dump: + ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); + ubifs_dump_node(c, node); +out_free: + kfree(node); + return err; +} + +/** + * free_inodes - free RB-tree of inodes. + * @fsckd: FS checking information + */ +static void free_inodes(struct fsck_data *fsckd) +{ + struct fsck_inode *fscki, *n; + + rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) + kfree(fscki); +} + +/** + * check_inodes - checks all inodes. + * @c: UBIFS file-system description object + * @fsckd: FS checking information + * + * This is a helper function for 'dbg_check_filesystem()' which walks the + * RB-tree of inodes after the index scan has been finished, and checks that + * inode nlink, size, etc are correct. Returns zero if inodes are fine, + * %-EINVAL if not, and a negative error code in case of failure. + */ +static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) +{ + int n, err; + union ubifs_key key; + struct ubifs_znode *znode; + struct ubifs_zbranch *zbr; + struct ubifs_ino_node *ino; + struct fsck_inode *fscki; + struct rb_node *this = rb_first(&fsckd->inodes); + + while (this) { + fscki = rb_entry(this, struct fsck_inode, rb); + this = rb_next(this); + + if (S_ISDIR(fscki->mode)) { + /* + * Directories have to have exactly one reference (they + * cannot have hardlinks), although root inode is an + * exception. + */ + if (fscki->inum != UBIFS_ROOT_INO && + fscki->references != 1) { + ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1", + (unsigned long)fscki->inum, + fscki->references); + goto out_dump; + } + if (fscki->inum == UBIFS_ROOT_INO && + fscki->references != 0) { + ubifs_err("root inode %lu has non-zero (%d) direntries which refer it", + (unsigned long)fscki->inum, + fscki->references); + goto out_dump; + } + if (fscki->calc_sz != fscki->size) { + ubifs_err("directory inode %lu size is %lld, but calculated size is %lld", + (unsigned long)fscki->inum, + fscki->size, fscki->calc_sz); + goto out_dump; + } + if (fscki->calc_cnt != fscki->nlink) { + ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d", + (unsigned long)fscki->inum, + fscki->nlink, fscki->calc_cnt); + goto out_dump; + } + } else { + if (fscki->references != fscki->nlink) { + ubifs_err("inode %lu nlink is %d, but calculated nlink is %d", + (unsigned long)fscki->inum, + fscki->nlink, fscki->references); + goto out_dump; + } + } + if (fscki->xattr_sz != fscki->calc_xsz) { + ubifs_err("inode %lu has xattr size %u, but calculated size is %lld", + (unsigned long)fscki->inum, fscki->xattr_sz, + fscki->calc_xsz); + goto out_dump; + } + if (fscki->xattr_cnt != fscki->calc_xcnt) { + ubifs_err("inode %lu has %u xattrs, but calculated count is %lld", + (unsigned long)fscki->inum, + fscki->xattr_cnt, fscki->calc_xcnt); + goto out_dump; + } + if (fscki->xattr_nms != fscki->calc_xnms) { + ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld", + (unsigned long)fscki->inum, fscki->xattr_nms, + fscki->calc_xnms); + goto out_dump; + } + } + + return 0; + +out_dump: + /* Read the bad inode and dump it */ + ino_key_init(c, &key, fscki->inum); + err = ubifs_lookup_level0(c, &key, &znode, &n); + if (!err) { + ubifs_err("inode %lu not found in index", + (unsigned long)fscki->inum); + return -ENOENT; + } else if (err < 0) { + ubifs_err("error %d while looking up inode %lu", + err, (unsigned long)fscki->inum); + return err; + } + + zbr = &znode->zbranch[n]; + ino = kmalloc(zbr->len, GFP_NOFS); + if (!ino) + return -ENOMEM; + + err = ubifs_tnc_read_node(c, zbr, ino); + if (err) { + ubifs_err("cannot read inode node at LEB %d:%d, error %d", + zbr->lnum, zbr->offs, err); + kfree(ino); + return err; + } + + ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", + (unsigned long)fscki->inum, zbr->lnum, zbr->offs); + ubifs_dump_node(c, ino); + kfree(ino); + return -EINVAL; +} + +/** + * dbg_check_filesystem - check the file-system. + * @c: UBIFS file-system description object + * + * This function checks the file system, namely: + * o makes sure that all leaf nodes exist and their CRCs are correct; + * o makes sure inode nlink, size, xattr size/count are correct (for all + * inodes). + * + * The function reads whole indexing tree and all nodes, so it is pretty + * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if + * not, and a negative error code in case of failure. + */ +int dbg_check_filesystem(struct ubifs_info *c) +{ + int err; + struct fsck_data fsckd; + + if (!dbg_is_chk_fs(c)) + return 0; + + fsckd.inodes = RB_ROOT; + err = dbg_walk_index(c, check_leaf, NULL, &fsckd); + if (err) + goto out_free; + + err = check_inodes(c, &fsckd); + if (err) + goto out_free; + + free_inodes(&fsckd); + return 0; + +out_free: + ubifs_err("file-system check failed with error %d", err); + dump_stack(); + free_inodes(&fsckd); + return err; +} + +/** + * dbg_check_data_nodes_order - check that list of data nodes is sorted. + * @c: UBIFS file-system description object + * @head: the list of nodes ('struct ubifs_scan_node' objects) + * + * This function returns zero if the list of data nodes is sorted correctly, + * and %-EINVAL if not. + */ +int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) +{ + struct list_head *cur; + struct ubifs_scan_node *sa, *sb; + + if (!dbg_is_chk_gen(c)) + return 0; + + for (cur = head->next; cur->next != head; cur = cur->next) { + ino_t inuma, inumb; + uint32_t blka, blkb; + + cond_resched(); + sa = container_of(cur, struct ubifs_scan_node, list); + sb = container_of(cur->next, struct ubifs_scan_node, list); + + if (sa->type != UBIFS_DATA_NODE) { + ubifs_err("bad node type %d", sa->type); + ubifs_dump_node(c, sa->node); + return -EINVAL; + } + if (sb->type != UBIFS_DATA_NODE) { + ubifs_err("bad node type %d", sb->type); + ubifs_dump_node(c, sb->node); + return -EINVAL; + } + + inuma = key_inum(c, &sa->key); + inumb = key_inum(c, &sb->key); + + if (inuma < inumb) + continue; + if (inuma > inumb) { + ubifs_err("larger inum %lu goes before inum %lu", + (unsigned long)inuma, (unsigned long)inumb); + goto error_dump; + } + + blka = key_block(c, &sa->key); + blkb = key_block(c, &sb->key); + + if (blka > blkb) { + ubifs_err("larger block %u goes before %u", blka, blkb); + goto error_dump; + } + if (blka == blkb) { + ubifs_err("two data nodes for the same block"); + goto error_dump; + } + } return 0; +error_dump: + ubifs_dump_node(c, sa->node); + ubifs_dump_node(c, sb->node); + return -EINVAL; +} + +/** + * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. + * @c: UBIFS file-system description object + * @head: the list of nodes ('struct ubifs_scan_node' objects) + * + * This function returns zero if the list of non-data nodes is sorted correctly, + * and %-EINVAL if not. + */ +int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) +{ + struct list_head *cur; + struct ubifs_scan_node *sa, *sb; + + if (!dbg_is_chk_gen(c)) + return 0; + + for (cur = head->next; cur->next != head; cur = cur->next) { + ino_t inuma, inumb; + uint32_t hasha, hashb; + + cond_resched(); + sa = container_of(cur, struct ubifs_scan_node, list); + sb = container_of(cur->next, struct ubifs_scan_node, list); + + if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && + sa->type != UBIFS_XENT_NODE) { + ubifs_err("bad node type %d", sa->type); + ubifs_dump_node(c, sa->node); + return -EINVAL; + } + if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && + sa->type != UBIFS_XENT_NODE) { + ubifs_err("bad node type %d", sb->type); + ubifs_dump_node(c, sb->node); + return -EINVAL; + } + + if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { + ubifs_err("non-inode node goes before inode node"); + goto error_dump; + } + + if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) + continue; + + if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { + /* Inode nodes are sorted in descending size order */ + if (sa->len < sb->len) { + ubifs_err("smaller inode node goes first"); + goto error_dump; + } + continue; + } + + /* + * This is either a dentry or xentry, which should be sorted in + * ascending (parent ino, hash) order. + */ + inuma = key_inum(c, &sa->key); + inumb = key_inum(c, &sb->key); + + if (inuma < inumb) + continue; + if (inuma > inumb) { + ubifs_err("larger inum %lu goes before inum %lu", + (unsigned long)inuma, (unsigned long)inumb); + goto error_dump; + } + + hasha = key_block(c, &sa->key); + hashb = key_block(c, &sb->key); + + if (hasha > hashb) { + ubifs_err("larger hash %u goes before %u", + hasha, hashb); + goto error_dump; + } + } + + return 0; + +error_dump: + ubifs_msg("dumping first node"); + ubifs_dump_node(c, sa->node); + ubifs_msg("dumping second node"); + ubifs_dump_node(c, sb->node); + return -EINVAL; + return 0; +} + +static inline int chance(unsigned int n, unsigned int out_of) +{ + return !!((prandom_u32() % out_of) + 1 <= n); + +} + +static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) +{ + struct ubifs_debug_info *d = c->dbg; + + ubifs_assert(dbg_is_tst_rcvry(c)); + + if (!d->pc_cnt) { + /* First call - decide delay to the power cut */ + if (chance(1, 2)) { + unsigned long delay; + + if (chance(1, 2)) { + d->pc_delay = 1; + /* Fail withing 1 minute */ + delay = prandom_u32() % 60000; + d->pc_timeout = jiffies; + d->pc_timeout += msecs_to_jiffies(delay); + ubifs_warn("failing after %lums", delay); + } else { + d->pc_delay = 2; + delay = prandom_u32() % 10000; + /* Fail within 10000 operations */ + d->pc_cnt_max = delay; + ubifs_warn("failing after %lu calls", delay); + } + } + + d->pc_cnt += 1; + } + + /* Determine if failure delay has expired */ + if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) + return 0; + if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) + return 0; + + if (lnum == UBIFS_SB_LNUM) { + if (write && chance(1, 2)) + return 0; + if (chance(19, 20)) + return 0; + ubifs_warn("failing in super block LEB %d", lnum); + } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { + if (chance(19, 20)) + return 0; + ubifs_warn("failing in master LEB %d", lnum); + } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { + if (write && chance(99, 100)) + return 0; + if (chance(399, 400)) + return 0; + ubifs_warn("failing in log LEB %d", lnum); + } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { + if (write && chance(7, 8)) + return 0; + if (chance(19, 20)) + return 0; + ubifs_warn("failing in LPT LEB %d", lnum); + } else if (lnum >= c->orph_first && lnum <= c->orph_last) { + if (write && chance(1, 2)) + return 0; + if (chance(9, 10)) + return 0; + ubifs_warn("failing in orphan LEB %d", lnum); + } else if (lnum == c->ihead_lnum) { + if (chance(99, 100)) + return 0; + ubifs_warn("failing in index head LEB %d", lnum); + } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { + if (chance(9, 10)) + return 0; + ubifs_warn("failing in GC head LEB %d", lnum); + } else if (write && !RB_EMPTY_ROOT(&c->buds) && + !ubifs_search_bud(c, lnum)) { + if (chance(19, 20)) + return 0; + ubifs_warn("failing in non-bud LEB %d", lnum); + } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || + c->cmt_state == COMMIT_RUNNING_REQUIRED) { + if (chance(999, 1000)) + return 0; + ubifs_warn("failing in bud LEB %d commit running", lnum); + } else { + if (chance(9999, 10000)) + return 0; + ubifs_warn("failing in bud LEB %d commit not running", lnum); + } + + d->pc_happened = 1; + ubifs_warn("========== Power cut emulated =========="); + dump_stack(); + return 1; +} + +static int corrupt_data(const struct ubifs_info *c, const void *buf, + unsigned int len) +{ + unsigned int from, to, ffs = chance(1, 2); + unsigned char *p = (void *)buf; + + from = prandom_u32() % len; + /* Corruption span max to end of write unit */ + to = min(len, ALIGN(from + 1, c->max_write_size)); + + ubifs_warn("filled bytes %u-%u with %s", from, to - 1, + ffs ? "0xFFs" : "random data"); + + if (ffs) + memset(p + from, 0xFF, to - from); + else + prandom_bytes(p + from, to - from); + + return to; +} + +int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, + int offs, int len) +{ + int err, failing; + + if (c->dbg->pc_happened) + return -EROFS; + + failing = power_cut_emulated(c, lnum, 1); + if (failing) { + len = corrupt_data(c, buf, len); + ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)", + len, lnum, offs); + } + err = ubi_leb_write(c->ubi, lnum, buf, offs, len); + if (err) + return err; + if (failing) + return -EROFS; + return 0; +} + +int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, + int len) +{ + int err; + + if (c->dbg->pc_happened) + return -EROFS; + if (power_cut_emulated(c, lnum, 1)) + return -EROFS; + err = ubi_leb_change(c->ubi, lnum, buf, len); + if (err) + return err; + if (power_cut_emulated(c, lnum, 1)) + return -EROFS; + return 0; +} + +int dbg_leb_unmap(struct ubifs_info *c, int lnum) +{ + int err; + + if (c->dbg->pc_happened) + return -EROFS; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + err = ubi_leb_unmap(c->ubi, lnum); + if (err) + return err; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + return 0; +} + +int dbg_leb_map(struct ubifs_info *c, int lnum) +{ + int err; + + if (c->dbg->pc_happened) + return -EROFS; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + err = ubi_leb_map(c->ubi, lnum); + if (err) + return err; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + return 0; +} + +/* + * Root directory for UBIFS stuff in debugfs. Contains sub-directories which + * contain the stuff specific to particular file-system mounts. + */ +static struct dentry *dfs_rootdir; + +static int dfs_file_open(struct inode *inode, struct file *file) +{ + file->private_data = inode->i_private; + return nonseekable_open(inode, file); +} + +/** + * provide_user_output - provide output to the user reading a debugfs file. + * @val: boolean value for the answer + * @u: the buffer to store the answer at + * @count: size of the buffer + * @ppos: position in the @u output buffer + * + * This is a simple helper function which stores @val boolean value in the user + * buffer when the user reads one of UBIFS debugfs files. Returns amount of + * bytes written to @u in case of success and a negative error code in case of + * failure. + */ +static int provide_user_output(int val, char __user *u, size_t count, + loff_t *ppos) +{ + char buf[3]; + + if (val) + buf[0] = '1'; + else + buf[0] = '0'; + buf[1] = '\n'; + buf[2] = 0x00; + + return simple_read_from_buffer(u, count, ppos, buf, 2); +} + +static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, + loff_t *ppos) +{ + struct dentry *dent = file->f_path.dentry; + struct ubifs_info *c = file->private_data; + struct ubifs_debug_info *d = c->dbg; + int val; + + if (dent == d->dfs_chk_gen) + val = d->chk_gen; + else if (dent == d->dfs_chk_index) + val = d->chk_index; + else if (dent == d->dfs_chk_orph) + val = d->chk_orph; + else if (dent == d->dfs_chk_lprops) + val = d->chk_lprops; + else if (dent == d->dfs_chk_fs) + val = d->chk_fs; + else if (dent == d->dfs_tst_rcvry) + val = d->tst_rcvry; + else if (dent == d->dfs_ro_error) + val = c->ro_error; + else + return -EINVAL; + + return provide_user_output(val, u, count, ppos); +} + +/** + * interpret_user_input - interpret user debugfs file input. + * @u: user-provided buffer with the input + * @count: buffer size + * + * This is a helper function which interpret user input to a boolean UBIFS + * debugfs file. Returns %0 or %1 in case of success and a negative error code + * in case of failure. + */ +static int interpret_user_input(const char __user *u, size_t count) +{ + size_t buf_size; + char buf[8]; + + buf_size = min_t(size_t, count, (sizeof(buf) - 1)); + if (copy_from_user(buf, u, buf_size)) + return -EFAULT; + + if (buf[0] == '1') + return 1; + else if (buf[0] == '0') + return 0; + + return -EINVAL; +} + +static ssize_t dfs_file_write(struct file *file, const char __user *u, + size_t count, loff_t *ppos) +{ + struct ubifs_info *c = file->private_data; + struct ubifs_debug_info *d = c->dbg; + struct dentry *dent = file->f_path.dentry; + int val; + + /* + * TODO: this is racy - the file-system might have already been + * unmounted and we'd oops in this case. The plan is to fix it with + * help of 'iterate_supers_type()' which we should have in v3.0: when + * a debugfs opened, we rember FS's UUID in file->private_data. Then + * whenever we access the FS via a debugfs file, we iterate all UBIFS + * superblocks and fine the one with the same UUID, and take the + * locking right. + * + * The other way to go suggested by Al Viro is to create a separate + * 'ubifs-debug' file-system instead. + */ + if (file->f_path.dentry == d->dfs_dump_lprops) { + ubifs_dump_lprops(c); + return count; + } + if (file->f_path.dentry == d->dfs_dump_budg) { + ubifs_dump_budg(c, &c->bi); + return count; + } + if (file->f_path.dentry == d->dfs_dump_tnc) { + mutex_lock(&c->tnc_mutex); + ubifs_dump_tnc(c); + mutex_unlock(&c->tnc_mutex); + return count; + } + + val = interpret_user_input(u, count); + if (val < 0) + return val; + + if (dent == d->dfs_chk_gen) + d->chk_gen = val; + else if (dent == d->dfs_chk_index) + d->chk_index = val; + else if (dent == d->dfs_chk_orph) + d->chk_orph = val; + else if (dent == d->dfs_chk_lprops) + d->chk_lprops = val; + else if (dent == d->dfs_chk_fs) + d->chk_fs = val; + else if (dent == d->dfs_tst_rcvry) + d->tst_rcvry = val; + else if (dent == d->dfs_ro_error) + c->ro_error = !!val; + else + return -EINVAL; + + return count; +} + +static const struct file_operations dfs_fops = { + .open = dfs_file_open, + .read = dfs_file_read, + .write = dfs_file_write, + .owner = THIS_MODULE, + .llseek = no_llseek, +}; + +/** + * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. + * @c: UBIFS file-system description object + * + * This function creates all debugfs files for this instance of UBIFS. Returns + * zero in case of success and a negative error code in case of failure. + * + * Note, the only reason we have not merged this function with the + * 'ubifs_debugging_init()' function is because it is better to initialize + * debugfs interfaces at the very end of the mount process, and remove them at + * the very beginning of the mount process. + */ +int dbg_debugfs_init_fs(struct ubifs_info *c) +{ + int err, n; + const char *fname; + struct dentry *dent; + struct ubifs_debug_info *d = c->dbg; + + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, + c->vi.ubi_num, c->vi.vol_id); + if (n == UBIFS_DFS_DIR_LEN) { + /* The array size is too small */ + fname = UBIFS_DFS_DIR_NAME; + dent = ERR_PTR(-EINVAL); + goto out; + } + + fname = d->dfs_dir_name; + dent = debugfs_create_dir(fname, dfs_rootdir); + if (IS_ERR_OR_NULL(dent)) + goto out; + d->dfs_dir = dent; + + fname = "dump_lprops"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_dump_lprops = dent; + + fname = "dump_budg"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_dump_budg = dent; + + fname = "dump_tnc"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_dump_tnc = dent; + + fname = "chk_general"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_gen = dent; + + fname = "chk_index"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_index = dent; + + fname = "chk_orphans"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_orph = dent; + + fname = "chk_lprops"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_lprops = dent; + + fname = "chk_fs"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_fs = dent; + + fname = "tst_recovery"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_tst_rcvry = dent; + + fname = "ro_error"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_ro_error = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(d->dfs_dir); out: - kfree(c->dbg); - return -ENOMEM; + err = dent ? PTR_ERR(dent) : -ENODEV; + ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", + fname, err); + return err; +} + +/** + * dbg_debugfs_exit_fs - remove all debugfs files. + * @c: UBIFS file-system description object + */ +void dbg_debugfs_exit_fs(struct ubifs_info *c) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove_recursive(c->dbg->dfs_dir); +} + +struct ubifs_global_debug_info ubifs_dbg; + +static struct dentry *dfs_chk_gen; +static struct dentry *dfs_chk_index; +static struct dentry *dfs_chk_orph; +static struct dentry *dfs_chk_lprops; +static struct dentry *dfs_chk_fs; +static struct dentry *dfs_tst_rcvry; + +static ssize_t dfs_global_file_read(struct file *file, char __user *u, + size_t count, loff_t *ppos) +{ + struct dentry *dent = file->f_path.dentry; + int val; + + if (dent == dfs_chk_gen) + val = ubifs_dbg.chk_gen; + else if (dent == dfs_chk_index) + val = ubifs_dbg.chk_index; + else if (dent == dfs_chk_orph) + val = ubifs_dbg.chk_orph; + else if (dent == dfs_chk_lprops) + val = ubifs_dbg.chk_lprops; + else if (dent == dfs_chk_fs) + val = ubifs_dbg.chk_fs; + else if (dent == dfs_tst_rcvry) + val = ubifs_dbg.tst_rcvry; + else + return -EINVAL; + + return provide_user_output(val, u, count, ppos); +} + +static ssize_t dfs_global_file_write(struct file *file, const char __user *u, + size_t count, loff_t *ppos) +{ + struct dentry *dent = file->f_path.dentry; + int val; + + val = interpret_user_input(u, count); + if (val < 0) + return val; + + if (dent == dfs_chk_gen) + ubifs_dbg.chk_gen = val; + else if (dent == dfs_chk_index) + ubifs_dbg.chk_index = val; + else if (dent == dfs_chk_orph) + ubifs_dbg.chk_orph = val; + else if (dent == dfs_chk_lprops) + ubifs_dbg.chk_lprops = val; + else if (dent == dfs_chk_fs) + ubifs_dbg.chk_fs = val; + else if (dent == dfs_tst_rcvry) + ubifs_dbg.tst_rcvry = val; + else + return -EINVAL; + + return count; +} + +static const struct file_operations dfs_global_fops = { + .read = dfs_global_file_read, + .write = dfs_global_file_write, + .owner = THIS_MODULE, + .llseek = no_llseek, +}; + +/** + * dbg_debugfs_init - initialize debugfs file-system. + * + * UBIFS uses debugfs file-system to expose various debugging knobs to + * user-space. This function creates "ubifs" directory in the debugfs + * file-system. Returns zero in case of success and a negative error code in + * case of failure. + */ +int dbg_debugfs_init(void) +{ + int err; + const char *fname; + struct dentry *dent; + + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + fname = "ubifs"; + dent = debugfs_create_dir(fname, NULL); + if (IS_ERR_OR_NULL(dent)) + goto out; + dfs_rootdir = dent; + + fname = "chk_general"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_gen = dent; + + fname = "chk_index"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_index = dent; + + fname = "chk_orphans"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_orph = dent; + + fname = "chk_lprops"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_lprops = dent; + + fname = "chk_fs"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_fs = dent; + + fname = "tst_recovery"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_tst_rcvry = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(dfs_rootdir); +out: + err = dent ? PTR_ERR(dent) : -ENODEV; + ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", + fname, err); + return err; +} + +/** + * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. + */ +void dbg_debugfs_exit(void) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove_recursive(dfs_rootdir); +} + +/** + * ubifs_debugging_init - initialize UBIFS debugging. + * @c: UBIFS file-system description object + * + * This function initializes debugging-related data for the file system. + * Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubifs_debugging_init(struct ubifs_info *c) +{ + c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); + if (!c->dbg) + return -ENOMEM; + + return 0; } /** @@ -149,8 +3138,6 @@ out: */ void ubifs_debugging_exit(struct ubifs_info *c) { - vfree(c->dbg->buf); kfree(c->dbg); } - -#endif /* CONFIG_UBIFS_FS_DEBUG */ +#endif diff --git a/fs/ubifs/debug.h b/fs/ubifs/debug.h index 62617b6..6d325af 100644 --- a/fs/ubifs/debug.h +++ b/fs/ubifs/debug.h @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -23,19 +12,32 @@ #ifndef __UBIFS_DEBUG_H__ #define __UBIFS_DEBUG_H__ -#ifdef CONFIG_UBIFS_FS_DEBUG +#define __UBOOT__ +/* Checking helper functions */ +typedef int (*dbg_leaf_callback)(struct ubifs_info *c, + struct ubifs_zbranch *zbr, void *priv); +typedef int (*dbg_znode_callback)(struct ubifs_info *c, + struct ubifs_znode *znode, void *priv); + +/* + * The UBIFS debugfs directory name pattern and maximum name length (3 for "ubi" + * + 1 for "_" and plus 2x2 for 2 UBI numbers and 1 for the trailing zero byte. + */ +#define UBIFS_DFS_DIR_NAME "ubi%d_%d" +#define UBIFS_DFS_DIR_LEN (3 + 1 + 2*2 + 1) /** * ubifs_debug_info - per-FS debugging information. - * @buf: a buffer of LEB size, used for various purposes * @old_zroot: old index root - used by 'dbg_check_old_index()' * @old_zroot_level: old index root level - used by 'dbg_check_old_index()' * @old_zroot_sqnum: old index root sqnum - used by 'dbg_check_old_index()' - * @failure_mode: failure mode for recovery testing - * @fail_delay: 0=>don't delay, 1=>delay a time, 2=>delay a number of calls - * @fail_timeout: time in jiffies when delay of failure mode expires - * @fail_cnt: current number of calls to failure mode I/O functions - * @fail_cnt_max: number of calls by which to delay failure mode + * + * @pc_happened: non-zero if an emulated power cut happened + * @pc_delay: 0=>don't delay, 1=>delay a time, 2=>delay a number of calls + * @pc_timeout: time in jiffies when delay of failure mode expires + * @pc_cnt: current number of calls to failure mode I/O functions + * @pc_cnt_max: number of calls by which to delay failure mode + * * @chk_lpt_sz: used by LPT tree size checker * @chk_lpt_sz2: used by LPT tree size checker * @chk_lpt_wastage: used by LPT tree size checker @@ -45,24 +47,44 @@ * @new_ihead_offs: used by debugging to check @c->ihead_offs * * @saved_lst: saved lprops statistics (used by 'dbg_save_space_info()') - * @saved_free: saved free space (used by 'dbg_save_space_info()') + * @saved_bi: saved budgeting information + * @saved_free: saved amount of free space + * @saved_idx_gc_cnt: saved value of @c->idx_gc_cnt + * + * @chk_gen: if general extra checks are enabled + * @chk_index: if index xtra checks are enabled + * @chk_orph: if orphans extra checks are enabled + * @chk_lprops: if lprops extra checks are enabled + * @chk_fs: if UBIFS contents extra checks are enabled + * @tst_rcvry: if UBIFS recovery testing mode enabled * - * dfs_dir_name: name of debugfs directory containing this file-system's files - * dfs_dir: direntry object of the file-system debugfs directory - * dfs_dump_lprops: "dump lprops" debugfs knob - * dfs_dump_budg: "dump budgeting information" debugfs knob - * dfs_dump_tnc: "dump TNC" debugfs knob + * @dfs_dir_name: name of debugfs directory containing this file-system's files + * @dfs_dir: direntry object of the file-system debugfs directory + * @dfs_dump_lprops: "dump lprops" debugfs knob + * @dfs_dump_budg: "dump budgeting information" debugfs knob + * @dfs_dump_tnc: "dump TNC" debugfs knob + * @dfs_chk_gen: debugfs knob to enable UBIFS general extra checks + * @dfs_chk_index: debugfs knob to enable UBIFS index extra checks + * @dfs_chk_orph: debugfs knob to enable UBIFS orphans extra checks + * @dfs_chk_lprops: debugfs knob to enable UBIFS LEP properties extra checks + * @dfs_chk_fs: debugfs knob to enable UBIFS contents extra checks + * @dfs_tst_rcvry: debugfs knob to enable UBIFS recovery testing + * @dfs_ro_error: debugfs knob to switch UBIFS to R/O mode (different to + * re-mounting to R/O mode because it does not flush any buffers + * and UBIFS just starts returning -EROFS on all write + * operations) */ struct ubifs_debug_info { - void *buf; struct ubifs_zbranch old_zroot; int old_zroot_level; unsigned long long old_zroot_sqnum; - int failure_mode; - int fail_delay; - unsigned long fail_timeout; - unsigned int fail_cnt; - unsigned int fail_cnt_max; + + int pc_happened; + int pc_delay; + unsigned long pc_timeout; + unsigned int pc_cnt; + unsigned int pc_cnt_max; + long long chk_lpt_sz; long long chk_lpt_sz2; long long chk_lpt_wastage; @@ -72,321 +94,285 @@ struct ubifs_debug_info { int new_ihead_offs; struct ubifs_lp_stats saved_lst; + struct ubifs_budg_info saved_bi; long long saved_free; + int saved_idx_gc_cnt; + + unsigned int chk_gen:1; + unsigned int chk_index:1; + unsigned int chk_orph:1; + unsigned int chk_lprops:1; + unsigned int chk_fs:1; + unsigned int tst_rcvry:1; - char dfs_dir_name[100]; + char dfs_dir_name[UBIFS_DFS_DIR_LEN + 1]; struct dentry *dfs_dir; struct dentry *dfs_dump_lprops; struct dentry *dfs_dump_budg; struct dentry *dfs_dump_tnc; + struct dentry *dfs_chk_gen; + struct dentry *dfs_chk_index; + struct dentry *dfs_chk_orph; + struct dentry *dfs_chk_lprops; + struct dentry *dfs_chk_fs; + struct dentry *dfs_tst_rcvry; + struct dentry *dfs_ro_error; }; -#define UBIFS_DBG(op) op +/** + * ubifs_global_debug_info - global (not per-FS) UBIFS debugging information. + * + * @chk_gen: if general extra checks are enabled + * @chk_index: if index xtra checks are enabled + * @chk_orph: if orphans extra checks are enabled + * @chk_lprops: if lprops extra checks are enabled + * @chk_fs: if UBIFS contents extra checks are enabled + * @tst_rcvry: if UBIFS recovery testing mode enabled + */ +struct ubifs_global_debug_info { + unsigned int chk_gen:1; + unsigned int chk_index:1; + unsigned int chk_orph:1; + unsigned int chk_lprops:1; + unsigned int chk_fs:1; + unsigned int tst_rcvry:1; +}; +#ifndef __UBOOT__ #define ubifs_assert(expr) do { \ if (unlikely(!(expr))) { \ - printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \ - __func__, __LINE__, 0); \ - dbg_dump_stack(); \ + pr_crit("UBIFS assert failed in %s at %u (pid %d)\n", \ + __func__, __LINE__, current->pid); \ + dump_stack(); \ } \ } while (0) #define ubifs_assert_cmt_locked(c) do { \ if (unlikely(down_write_trylock(&(c)->commit_sem))) { \ up_write(&(c)->commit_sem); \ - printk(KERN_CRIT "commit lock is not locked!\n"); \ + pr_crit("commit lock is not locked!\n"); \ ubifs_assert(0); \ } \ } while (0) -#define dbg_dump_stack() do { \ - if (!dbg_failure_mode) \ +#define ubifs_dbg_msg(type, fmt, ...) \ + pr_debug("UBIFS DBG " type " (pid %d): " fmt "\n", current->pid, \ + ##__VA_ARGS__) + +#define DBG_KEY_BUF_LEN 48 +#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \ + char __tmp_key_buf[DBG_KEY_BUF_LEN]; \ + pr_debug("UBIFS DBG " type " (pid %d): " fmt "%s\n", current->pid, \ + ##__VA_ARGS__, \ + dbg_snprintf_key(c, key, __tmp_key_buf, DBG_KEY_BUF_LEN)); \ +} while (0) +#else +#define ubifs_assert(expr) do { \ + if (unlikely(!(expr))) { \ + pr_crit("UBIFS assert failed in %s at %u\n", \ + __func__, __LINE__); \ dump_stack(); \ + } \ } while (0) -/* Generic debugging messages */ -#define dbg_msg(fmt, ...) do { \ - spin_lock(&dbg_lock); \ - printk(KERN_DEBUG "UBIFS DBG (pid %d): %s: " fmt "\n", 0, \ - __func__, ##__VA_ARGS__); \ - spin_unlock(&dbg_lock); \ +#define ubifs_assert_cmt_locked(c) do { \ + if (unlikely(down_write_trylock(&(c)->commit_sem))) { \ + up_write(&(c)->commit_sem); \ + pr_crit("commit lock is not locked!\n"); \ + ubifs_assert(0); \ + } \ } while (0) -#define dbg_do_msg(typ, fmt, ...) do { \ - if (ubifs_msg_flags & typ) \ - dbg_msg(fmt, ##__VA_ARGS__); \ +#define ubifs_dbg_msg(type, fmt, ...) \ + pr_debug("UBIFS DBG " type ": " fmt "\n", \ + ##__VA_ARGS__) + +#define DBG_KEY_BUF_LEN 48 +#if defined CONFIG_MTD_DEBUG +#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \ + char __tmp_key_buf[DBG_KEY_BUF_LEN]; \ + pr_debug("UBIFS DBG " type ": " fmt "%s\n", \ + ##__VA_ARGS__, \ + dbg_snprintf_key(c, key, __tmp_key_buf, DBG_KEY_BUF_LEN)); \ } while (0) - -#define dbg_err(fmt, ...) do { \ - spin_lock(&dbg_lock); \ - ubifs_err(fmt, ##__VA_ARGS__); \ - spin_unlock(&dbg_lock); \ +#else +#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \ + pr_debug("UBIFS DBG\n"); \ } while (0) -const char *dbg_key_str0(const struct ubifs_info *c, - const union ubifs_key *key); -const char *dbg_key_str1(const struct ubifs_info *c, - const union ubifs_key *key); +#endif -/* - * DBGKEY macros require @dbg_lock to be held, which it is in the dbg message - * macros. - */ -#define DBGKEY(key) dbg_key_str0(c, (key)) -#define DBGKEY1(key) dbg_key_str1(c, (key)) +#endif /* General messages */ -#define dbg_gen(fmt, ...) dbg_do_msg(UBIFS_MSG_GEN, fmt, ##__VA_ARGS__) - +#define dbg_gen(fmt, ...) ubifs_dbg_msg("gen", fmt, ##__VA_ARGS__) /* Additional journal messages */ -#define dbg_jnl(fmt, ...) dbg_do_msg(UBIFS_MSG_JNL, fmt, ##__VA_ARGS__) - +#define dbg_jnl(fmt, ...) ubifs_dbg_msg("jnl", fmt, ##__VA_ARGS__) +#define dbg_jnlk(key, fmt, ...) \ + ubifs_dbg_msg_key("jnl", key, fmt, ##__VA_ARGS__) /* Additional TNC messages */ -#define dbg_tnc(fmt, ...) dbg_do_msg(UBIFS_MSG_TNC, fmt, ##__VA_ARGS__) - +#define dbg_tnc(fmt, ...) ubifs_dbg_msg("tnc", fmt, ##__VA_ARGS__) +#define dbg_tnck(key, fmt, ...) \ + ubifs_dbg_msg_key("tnc", key, fmt, ##__VA_ARGS__) /* Additional lprops messages */ -#define dbg_lp(fmt, ...) dbg_do_msg(UBIFS_MSG_LP, fmt, ##__VA_ARGS__) - +#define dbg_lp(fmt, ...) ubifs_dbg_msg("lp", fmt, ##__VA_ARGS__) /* Additional LEB find messages */ -#define dbg_find(fmt, ...) dbg_do_msg(UBIFS_MSG_FIND, fmt, ##__VA_ARGS__) - +#define dbg_find(fmt, ...) ubifs_dbg_msg("find", fmt, ##__VA_ARGS__) /* Additional mount messages */ -#define dbg_mnt(fmt, ...) dbg_do_msg(UBIFS_MSG_MNT, fmt, ##__VA_ARGS__) - +#define dbg_mnt(fmt, ...) ubifs_dbg_msg("mnt", fmt, ##__VA_ARGS__) +#define dbg_mntk(key, fmt, ...) \ + ubifs_dbg_msg_key("mnt", key, fmt, ##__VA_ARGS__) /* Additional I/O messages */ -#define dbg_io(fmt, ...) dbg_do_msg(UBIFS_MSG_IO, fmt, ##__VA_ARGS__) - +#define dbg_io(fmt, ...) ubifs_dbg_msg("io", fmt, ##__VA_ARGS__) /* Additional commit messages */ -#define dbg_cmt(fmt, ...) dbg_do_msg(UBIFS_MSG_CMT, fmt, ##__VA_ARGS__) - +#define dbg_cmt(fmt, ...) ubifs_dbg_msg("cmt", fmt, ##__VA_ARGS__) /* Additional budgeting messages */ -#define dbg_budg(fmt, ...) dbg_do_msg(UBIFS_MSG_BUDG, fmt, ##__VA_ARGS__) - +#define dbg_budg(fmt, ...) ubifs_dbg_msg("budg", fmt, ##__VA_ARGS__) /* Additional log messages */ -#define dbg_log(fmt, ...) dbg_do_msg(UBIFS_MSG_LOG, fmt, ##__VA_ARGS__) - +#define dbg_log(fmt, ...) ubifs_dbg_msg("log", fmt, ##__VA_ARGS__) /* Additional gc messages */ -#define dbg_gc(fmt, ...) dbg_do_msg(UBIFS_MSG_GC, fmt, ##__VA_ARGS__) - +#define dbg_gc(fmt, ...) ubifs_dbg_msg("gc", fmt, ##__VA_ARGS__) /* Additional scan messages */ -#define dbg_scan(fmt, ...) dbg_do_msg(UBIFS_MSG_SCAN, fmt, ##__VA_ARGS__) - +#define dbg_scan(fmt, ...) ubifs_dbg_msg("scan", fmt, ##__VA_ARGS__) /* Additional recovery messages */ -#define dbg_rcvry(fmt, ...) dbg_do_msg(UBIFS_MSG_RCVRY, fmt, ##__VA_ARGS__) +#define dbg_rcvry(fmt, ...) ubifs_dbg_msg("rcvry", fmt, ##__VA_ARGS__) + +#ifndef __UBOOT__ +extern struct ubifs_global_debug_info ubifs_dbg; + +static inline int dbg_is_chk_gen(const struct ubifs_info *c) +{ + return !!(ubifs_dbg.chk_gen || c->dbg->chk_gen); +} +static inline int dbg_is_chk_index(const struct ubifs_info *c) +{ + return !!(ubifs_dbg.chk_index || c->dbg->chk_index); +} +static inline int dbg_is_chk_orph(const struct ubifs_info *c) +{ + return !!(ubifs_dbg.chk_orph || c->dbg->chk_orph); +} +static inline int dbg_is_chk_lprops(const struct ubifs_info *c) +{ + return !!(ubifs_dbg.chk_lprops || c->dbg->chk_lprops); +} +static inline int dbg_is_chk_fs(const struct ubifs_info *c) +{ + return !!(ubifs_dbg.chk_fs || c->dbg->chk_fs); +} +static inline int dbg_is_tst_rcvry(const struct ubifs_info *c) +{ + return !!(ubifs_dbg.tst_rcvry || c->dbg->tst_rcvry); +} +static inline int dbg_is_power_cut(const struct ubifs_info *c) +{ + return !!c->dbg->pc_happened; +} -/* - * Debugging message type flags (must match msg_type_names in debug.c). - * - * UBIFS_MSG_GEN: general messages - * UBIFS_MSG_JNL: journal messages - * UBIFS_MSG_MNT: mount messages - * UBIFS_MSG_CMT: commit messages - * UBIFS_MSG_FIND: LEB find messages - * UBIFS_MSG_BUDG: budgeting messages - * UBIFS_MSG_GC: garbage collection messages - * UBIFS_MSG_TNC: TNC messages - * UBIFS_MSG_LP: lprops messages - * UBIFS_MSG_IO: I/O messages - * UBIFS_MSG_LOG: log messages - * UBIFS_MSG_SCAN: scan messages - * UBIFS_MSG_RCVRY: recovery messages - */ -enum { - UBIFS_MSG_GEN = 0x1, - UBIFS_MSG_JNL = 0x2, - UBIFS_MSG_MNT = 0x4, - UBIFS_MSG_CMT = 0x8, - UBIFS_MSG_FIND = 0x10, - UBIFS_MSG_BUDG = 0x20, - UBIFS_MSG_GC = 0x40, - UBIFS_MSG_TNC = 0x80, - UBIFS_MSG_LP = 0x100, - UBIFS_MSG_IO = 0x200, - UBIFS_MSG_LOG = 0x400, - UBIFS_MSG_SCAN = 0x800, - UBIFS_MSG_RCVRY = 0x1000, -}; - -/* Debugging message type flags for each default debug message level */ -#define UBIFS_MSG_LVL_0 0 -#define UBIFS_MSG_LVL_1 0x1 -#define UBIFS_MSG_LVL_2 0x7f -#define UBIFS_MSG_LVL_3 0xffff - -/* - * Debugging check flags (must match chk_names in debug.c). - * - * UBIFS_CHK_GEN: general checks - * UBIFS_CHK_TNC: check TNC - * UBIFS_CHK_IDX_SZ: check index size - * UBIFS_CHK_ORPH: check orphans - * UBIFS_CHK_OLD_IDX: check the old index - * UBIFS_CHK_LPROPS: check lprops - * UBIFS_CHK_FS: check the file-system - */ -enum { - UBIFS_CHK_GEN = 0x1, - UBIFS_CHK_TNC = 0x2, - UBIFS_CHK_IDX_SZ = 0x4, - UBIFS_CHK_ORPH = 0x8, - UBIFS_CHK_OLD_IDX = 0x10, - UBIFS_CHK_LPROPS = 0x20, - UBIFS_CHK_FS = 0x40, -}; - -/* - * Special testing flags (must match tst_names in debug.c). - * - * UBIFS_TST_FORCE_IN_THE_GAPS: force the use of in-the-gaps method - * UBIFS_TST_RCVRY: failure mode for recovery testing - */ -enum { - UBIFS_TST_FORCE_IN_THE_GAPS = 0x2, - UBIFS_TST_RCVRY = 0x4, -}; - -#if CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 1 -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_1 -#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 2 -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_2 -#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 3 -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_3 -#else -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_0 -#endif - -#ifdef CONFIG_UBIFS_FS_DEBUG_CHKS -#define UBIFS_CHK_FLAGS_DEFAULT 0xffffffff +int ubifs_debugging_init(struct ubifs_info *c); +void ubifs_debugging_exit(struct ubifs_info *c); #else -#define UBIFS_CHK_FLAGS_DEFAULT 0 -#endif - -#define dbg_ntype(type) "" -#define dbg_cstate(cmt_state) "" -#define dbg_get_key_dump(c, key) ({}) -#define dbg_dump_inode(c, inode) ({}) -#define dbg_dump_node(c, node) ({}) -#define dbg_dump_budget_req(req) ({}) -#define dbg_dump_lstats(lst) ({}) -#define dbg_dump_budg(c) ({}) -#define dbg_dump_lprop(c, lp) ({}) -#define dbg_dump_lprops(c) ({}) -#define dbg_dump_lpt_info(c) ({}) -#define dbg_dump_leb(c, lnum) ({}) -#define dbg_dump_znode(c, znode) ({}) -#define dbg_dump_heap(c, heap, cat) ({}) -#define dbg_dump_pnode(c, pnode, parent, iip) ({}) -#define dbg_dump_tnc(c) ({}) -#define dbg_dump_index(c) ({}) - -#define dbg_walk_index(c, leaf_cb, znode_cb, priv) 0 -#define dbg_old_index_check_init(c, zroot) 0 -#define dbg_check_old_index(c, zroot) 0 -#define dbg_check_cats(c) 0 -#define dbg_check_ltab(c) 0 -#define dbg_chk_lpt_free_spc(c) 0 -#define dbg_chk_lpt_sz(c, action, len) 0 -#define dbg_check_synced_i_size(inode) 0 -#define dbg_check_dir_size(c, dir) 0 -#define dbg_check_tnc(c, x) 0 -#define dbg_check_idx_size(c, idx_size) 0 -#define dbg_check_filesystem(c) 0 -#define dbg_check_heap(c, heap, cat, add_pos) ({}) -#define dbg_check_lprops(c) 0 -#define dbg_check_lpt_nodes(c, cnode, row, col) 0 -#define dbg_force_in_the_gaps_enabled 0 -#define dbg_force_in_the_gaps() 0 -#define dbg_failure_mode 0 -#define dbg_failure_mode_registration(c) ({}) -#define dbg_failure_mode_deregistration(c) ({}) +static inline int dbg_is_chk_gen(const struct ubifs_info *c) +{ + return 0; +} +static inline int dbg_is_chk_index(const struct ubifs_info *c) +{ + return 0; +} +static inline int dbg_is_chk_orph(const struct ubifs_info *c) +{ + return 0; +} +static inline int dbg_is_chk_lprops(const struct ubifs_info *c) +{ + return 0; +} +static inline int dbg_is_chk_fs(const struct ubifs_info *c) +{ + return 0; +} +static inline int dbg_is_tst_rcvry(const struct ubifs_info *c) +{ + return 0; +} +static inline int dbg_is_power_cut(const struct ubifs_info *c) +{ + return 0; +} int ubifs_debugging_init(struct ubifs_info *c); void ubifs_debugging_exit(struct ubifs_info *c); -#else /* !CONFIG_UBIFS_FS_DEBUG */ - -#define UBIFS_DBG(op) - -/* Use "if (0)" to make compiler check arguments even if debugging is off */ -#define ubifs_assert(expr) do { \ - if (0 && (expr)) \ - printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \ - __func__, __LINE__, 0); \ -} while (0) - -#define dbg_err(fmt, ...) do { \ - if (0) \ - ubifs_err(fmt, ##__VA_ARGS__); \ -} while (0) - -#define dbg_msg(fmt, ...) do { \ - if (0) \ - printk(KERN_DEBUG "UBIFS DBG (pid %d): %s: " fmt "\n", \ - 0, __func__, ##__VA_ARGS__); \ -} while (0) - -#define dbg_dump_stack() -#define ubifs_assert_cmt_locked(c) - -#define dbg_gen(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_jnl(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_tnc(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_lp(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_find(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_mnt(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_io(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_cmt(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_budg(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_log(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_gc(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_scan(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) -#define dbg_rcvry(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__) - -#define DBGKEY(key) ((char *)(key)) -#define DBGKEY1(key) ((char *)(key)) - -#define ubifs_debugging_init(c) 0 -#define ubifs_debugging_exit(c) ({}) - -#define dbg_ntype(type) "" -#define dbg_cstate(cmt_state) "" -#define dbg_get_key_dump(c, key) ({}) -#define dbg_dump_inode(c, inode) ({}) -#define dbg_dump_node(c, node) ({}) -#define dbg_dump_budget_req(req) ({}) -#define dbg_dump_lstats(lst) ({}) -#define dbg_dump_budg(c) ({}) -#define dbg_dump_lprop(c, lp) ({}) -#define dbg_dump_lprops(c) ({}) -#define dbg_dump_lpt_info(c) ({}) -#define dbg_dump_leb(c, lnum) ({}) -#define dbg_dump_znode(c, znode) ({}) -#define dbg_dump_heap(c, heap, cat) ({}) -#define dbg_dump_pnode(c, pnode, parent, iip) ({}) -#define dbg_dump_tnc(c) ({}) -#define dbg_dump_index(c) ({}) - -#define dbg_walk_index(c, leaf_cb, znode_cb, priv) 0 -#define dbg_old_index_check_init(c, zroot) 0 -#define dbg_check_old_index(c, zroot) 0 -#define dbg_check_cats(c) 0 -#define dbg_check_ltab(c) 0 -#define dbg_chk_lpt_free_spc(c) 0 -#define dbg_chk_lpt_sz(c, action, len) 0 -#define dbg_check_synced_i_size(inode) 0 -#define dbg_check_dir_size(c, dir) 0 -#define dbg_check_tnc(c, x) 0 -#define dbg_check_idx_size(c, idx_size) 0 -#define dbg_check_filesystem(c) 0 -#define dbg_check_heap(c, heap, cat, add_pos) ({}) -#define dbg_check_lprops(c) 0 -#define dbg_check_lpt_nodes(c, cnode, row, col) 0 -#define dbg_force_in_the_gaps_enabled 0 -#define dbg_force_in_the_gaps() 0 -#define dbg_failure_mode 0 -#define dbg_failure_mode_registration(c) ({}) -#define dbg_failure_mode_deregistration(c) ({}) +#endif -#endif /* !CONFIG_UBIFS_FS_DEBUG */ +/* Dump functions */ +const char *dbg_ntype(int type); +const char *dbg_cstate(int cmt_state); +const char *dbg_jhead(int jhead); +const char *dbg_get_key_dump(const struct ubifs_info *c, + const union ubifs_key *key); +const char *dbg_snprintf_key(const struct ubifs_info *c, + const union ubifs_key *key, char *buffer, int len); +void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode); +void ubifs_dump_node(const struct ubifs_info *c, const void *node); +void ubifs_dump_budget_req(const struct ubifs_budget_req *req); +void ubifs_dump_lstats(const struct ubifs_lp_stats *lst); +void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi); +void ubifs_dump_lprop(const struct ubifs_info *c, + const struct ubifs_lprops *lp); +void ubifs_dump_lprops(struct ubifs_info *c); +void ubifs_dump_lpt_info(struct ubifs_info *c); +void ubifs_dump_leb(const struct ubifs_info *c, int lnum); +void ubifs_dump_sleb(const struct ubifs_info *c, + const struct ubifs_scan_leb *sleb, int offs); +void ubifs_dump_znode(const struct ubifs_info *c, + const struct ubifs_znode *znode); +void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, + int cat); +void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, + struct ubifs_nnode *parent, int iip); +void ubifs_dump_tnc(struct ubifs_info *c); +void ubifs_dump_index(struct ubifs_info *c); +void ubifs_dump_lpt_lebs(const struct ubifs_info *c); + +int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, + dbg_znode_callback znode_cb, void *priv); + +/* Checking functions */ +void dbg_save_space_info(struct ubifs_info *c); +int dbg_check_space_info(struct ubifs_info *c); +int dbg_check_lprops(struct ubifs_info *c); +int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot); +int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot); +int dbg_check_cats(struct ubifs_info *c); +int dbg_check_ltab(struct ubifs_info *c); +int dbg_chk_lpt_free_spc(struct ubifs_info *c); +int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len); +int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode); +int dbg_check_dir(struct ubifs_info *c, const struct inode *dir); +int dbg_check_tnc(struct ubifs_info *c, int extra); +int dbg_check_idx_size(struct ubifs_info *c, long long idx_size); +int dbg_check_filesystem(struct ubifs_info *c); +void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, + int add_pos); +int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, + int row, int col); +int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, + loff_t size); +int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head); +int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head); + +int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, + int len); +int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len); +int dbg_leb_unmap(struct ubifs_info *c, int lnum); +int dbg_leb_map(struct ubifs_info *c, int lnum); + +/* Debugfs-related stuff */ +int dbg_debugfs_init(void); +void dbg_debugfs_exit(void); +int dbg_debugfs_init_fs(struct ubifs_info *c); +void dbg_debugfs_exit_fs(struct ubifs_info *c); #endif /* !__UBIFS_DEBUG_H__ */ diff --git a/fs/ubifs/io.c b/fs/ubifs/io.c index aae5c65..f87341e 100644 --- a/fs/ubifs/io.c +++ b/fs/ubifs/io.c @@ -4,18 +4,7 @@ * Copyright (C) 2006-2008 Nokia Corporation. * Copyright (C) 2006, 2007 University of Szeged, Hungary * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -31,6 +20,26 @@ * buffer is full or when it is not used for some time (by timer). This is * similar to the mechanism is used by JFFS2. * + * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum + * write size (@c->max_write_size). The latter is the maximum amount of bytes + * the underlying flash is able to program at a time, and writing in + * @c->max_write_size units should presumably be faster. Obviously, + * @c->min_io_size <= @c->max_write_size. Write-buffers are of + * @c->max_write_size bytes in size for maximum performance. However, when a + * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size + * boundary) which contains data is written, not the whole write-buffer, + * because this is more space-efficient. + * + * This optimization adds few complications to the code. Indeed, on the one + * hand, we want to write in optimal @c->max_write_size bytes chunks, which + * also means aligning writes at the @c->max_write_size bytes offsets. On the + * other hand, we do not want to waste space when synchronizing the write + * buffer, so during synchronization we writes in smaller chunks. And this makes + * the next write offset to be not aligned to @c->max_write_size bytes. So the + * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned + * to @c->max_write_size bytes again. We do this by temporarily shrinking + * write-buffer size (@wbuf->size). + * * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by * mutexes defined inside these objects. Since sometimes upper-level code * has to lock the write-buffer (e.g. journal space reservation code), many @@ -46,10 +55,18 @@ * UBIFS uses padding when it pads to the next min. I/O unit. In this case it * uses padding nodes or padding bytes, if the padding node does not fit. * - * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes - * every time they are read from the flash media. + * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when + * they are read from the flash media. */ +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/crc32.h> +#include <linux/slab.h> +#else +#include <linux/compat.h> +#include <linux/err.h> +#endif #include "ubifs.h" /** @@ -59,12 +76,129 @@ */ void ubifs_ro_mode(struct ubifs_info *c, int err) { - if (!c->ro_media) { - c->ro_media = 1; + if (!c->ro_error) { + c->ro_error = 1; c->no_chk_data_crc = 0; + c->vfs_sb->s_flags |= MS_RDONLY; ubifs_warn("switched to read-only mode, error %d", err); - dbg_dump_stack(); + dump_stack(); + } +} + +/* + * Below are simple wrappers over UBI I/O functions which include some + * additional checks and UBIFS debugging stuff. See corresponding UBI function + * for more information. + */ + +int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, + int len, int even_ebadmsg) +{ + int err; + + err = ubi_read(c->ubi, lnum, buf, offs, len); + /* + * In case of %-EBADMSG print the error message only if the + * @even_ebadmsg is true. + */ + if (err && (err != -EBADMSG || even_ebadmsg)) { + ubifs_err("reading %d bytes from LEB %d:%d failed, error %d", + len, lnum, offs, err); + dump_stack(); + } + return err; +} + +int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, + int len) +{ + int err; + + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->ro_error) + return -EROFS; + if (!dbg_is_tst_rcvry(c)) + err = ubi_leb_write(c->ubi, lnum, buf, offs, len); + else + err = dbg_leb_write(c, lnum, buf, offs, len); + if (err) { + ubifs_err("writing %d bytes to LEB %d:%d failed, error %d", + len, lnum, offs, err); + ubifs_ro_mode(c, err); + dump_stack(); + } + return err; +} + +int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) +{ + int err; + + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->ro_error) + return -EROFS; + if (!dbg_is_tst_rcvry(c)) + err = ubi_leb_change(c->ubi, lnum, buf, len); + else + err = dbg_leb_change(c, lnum, buf, len); + if (err) { + ubifs_err("changing %d bytes in LEB %d failed, error %d", + len, lnum, err); + ubifs_ro_mode(c, err); + dump_stack(); } + return err; +} + +int ubifs_leb_unmap(struct ubifs_info *c, int lnum) +{ + int err; + + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->ro_error) + return -EROFS; + if (!dbg_is_tst_rcvry(c)) + err = ubi_leb_unmap(c->ubi, lnum); + else + err = dbg_leb_unmap(c, lnum); + if (err) { + ubifs_err("unmap LEB %d failed, error %d", lnum, err); + ubifs_ro_mode(c, err); + dump_stack(); + } + return err; +} + +int ubifs_leb_map(struct ubifs_info *c, int lnum) +{ + int err; + + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->ro_error) + return -EROFS; + if (!dbg_is_tst_rcvry(c)) + err = ubi_leb_map(c->ubi, lnum); + else + err = dbg_leb_map(c, lnum); + if (err) { + ubifs_err("mapping LEB %d failed, error %d", lnum, err); + ubifs_ro_mode(c, err); + dump_stack(); + } + return err; +} + +int ubifs_is_mapped(const struct ubifs_info *c, int lnum) +{ + int err; + + err = ubi_is_mapped(c->ubi, lnum); + if (err < 0) { + ubifs_err("ubi_is_mapped failed for LEB %d, error %d", + lnum, err); + dump_stack(); + } + return err; } /** @@ -85,8 +219,12 @@ void ubifs_ro_mode(struct ubifs_info *c, int err) * This function may skip data nodes CRC checking if @c->no_chk_data_crc is * true, which is controlled by corresponding UBIFS mount option. However, if * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is - * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is - * ignored and CRC is checked. + * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are + * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC + * is checked. This is because during mounting or re-mounting from R/O mode to + * R/W mode we may read journal nodes (when replying the journal or doing the + * recovery) and the journal nodes may potentially be corrupted, so checking is + * required. * * This function returns zero in case of success and %-EUCLEAN in case of bad * CRC or magic. @@ -128,8 +266,8 @@ int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, node_len > c->ranges[type].max_len) goto out_len; - if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc && - c->no_chk_data_crc) + if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && + !c->remounting_rw && c->no_chk_data_crc) return 0; crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); @@ -150,8 +288,8 @@ out_len: out: if (!quiet) { ubifs_err("bad node at LEB %d:%d", lnum, offs); - dbg_dump_node(c, buf); - dbg_dump_stack(); + ubifs_dump_node(c, buf); + dump_stack(); } return err; } @@ -257,6 +395,571 @@ void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) } /** + * ubifs_prep_grp_node - prepare node of a group to be written to flash. + * @c: UBIFS file-system description object + * @node: the node to pad + * @len: node length + * @last: indicates the last node of the group + * + * This function prepares node at @node to be written to the media - it + * calculates node CRC and fills the common header. + */ +void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) +{ + uint32_t crc; + struct ubifs_ch *ch = node; + unsigned long long sqnum = next_sqnum(c); + + ubifs_assert(len >= UBIFS_CH_SZ); + + ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); + ch->len = cpu_to_le32(len); + if (last) + ch->group_type = UBIFS_LAST_OF_NODE_GROUP; + else + ch->group_type = UBIFS_IN_NODE_GROUP; + ch->sqnum = cpu_to_le64(sqnum); + ch->padding[0] = ch->padding[1] = 0; + crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); + ch->crc = cpu_to_le32(crc); +} + +#ifndef __UBOOT__ +/** + * wbuf_timer_callback - write-buffer timer callback function. + * @data: timer data (write-buffer descriptor) + * + * This function is called when the write-buffer timer expires. + */ +static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) +{ + struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); + + dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); + wbuf->need_sync = 1; + wbuf->c->need_wbuf_sync = 1; + ubifs_wake_up_bgt(wbuf->c); + return HRTIMER_NORESTART; +} + +/** + * new_wbuf_timer - start new write-buffer timer. + * @wbuf: write-buffer descriptor + */ +static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) +{ + ubifs_assert(!hrtimer_active(&wbuf->timer)); + + if (wbuf->no_timer) + return; + dbg_io("set timer for jhead %s, %llu-%llu millisecs", + dbg_jhead(wbuf->jhead), + div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), + div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, + USEC_PER_SEC)); + hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, + HRTIMER_MODE_REL); +} +#endif + +/** + * cancel_wbuf_timer - cancel write-buffer timer. + * @wbuf: write-buffer descriptor + */ +static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) +{ + if (wbuf->no_timer) + return; + wbuf->need_sync = 0; +#ifndef __UBOOT__ + hrtimer_cancel(&wbuf->timer); +#endif +} + +/** + * ubifs_wbuf_sync_nolock - synchronize write-buffer. + * @wbuf: write-buffer to synchronize + * + * This function synchronizes write-buffer @buf and returns zero in case of + * success or a negative error code in case of failure. + * + * Note, although write-buffers are of @c->max_write_size, this function does + * not necessarily writes all @c->max_write_size bytes to the flash. Instead, + * if the write-buffer is only partially filled with data, only the used part + * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. + * This way we waste less space. + */ +int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) +{ + struct ubifs_info *c = wbuf->c; + int err, dirt, sync_len; + + cancel_wbuf_timer_nolock(wbuf); + if (!wbuf->used || wbuf->lnum == -1) + /* Write-buffer is empty or not seeked */ + return 0; + + dbg_io("LEB %d:%d, %d bytes, jhead %s", + wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); + ubifs_assert(!(wbuf->avail & 7)); + ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); + ubifs_assert(wbuf->size >= c->min_io_size); + ubifs_assert(wbuf->size <= c->max_write_size); + ubifs_assert(wbuf->size % c->min_io_size == 0); + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->leb_size - wbuf->offs >= c->max_write_size) + ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); + + if (c->ro_error) + return -EROFS; + + /* + * Do not write whole write buffer but write only the minimum necessary + * amount of min. I/O units. + */ + sync_len = ALIGN(wbuf->used, c->min_io_size); + dirt = sync_len - wbuf->used; + if (dirt) + ubifs_pad(c, wbuf->buf + wbuf->used, dirt); + err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); + if (err) + return err; + + spin_lock(&wbuf->lock); + wbuf->offs += sync_len; + /* + * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. + * But our goal is to optimize writes and make sure we write in + * @c->max_write_size chunks and to @c->max_write_size-aligned offset. + * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make + * sure that @wbuf->offs + @wbuf->size is aligned to + * @c->max_write_size. This way we make sure that after next + * write-buffer flush we are again at the optimal offset (aligned to + * @c->max_write_size). + */ + if (c->leb_size - wbuf->offs < c->max_write_size) + wbuf->size = c->leb_size - wbuf->offs; + else if (wbuf->offs & (c->max_write_size - 1)) + wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; + else + wbuf->size = c->max_write_size; + wbuf->avail = wbuf->size; + wbuf->used = 0; + wbuf->next_ino = 0; + spin_unlock(&wbuf->lock); + + if (wbuf->sync_callback) + err = wbuf->sync_callback(c, wbuf->lnum, + c->leb_size - wbuf->offs, dirt); + return err; +} + +/** + * ubifs_wbuf_seek_nolock - seek write-buffer. + * @wbuf: write-buffer + * @lnum: logical eraseblock number to seek to + * @offs: logical eraseblock offset to seek to + * + * This function targets the write-buffer to logical eraseblock @lnum:@offs. + * The write-buffer has to be empty. Returns zero in case of success and a + * negative error code in case of failure. + */ +int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) +{ + const struct ubifs_info *c = wbuf->c; + + dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); + ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); + ubifs_assert(offs >= 0 && offs <= c->leb_size); + ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); + ubifs_assert(lnum != wbuf->lnum); + ubifs_assert(wbuf->used == 0); + + spin_lock(&wbuf->lock); + wbuf->lnum = lnum; + wbuf->offs = offs; + if (c->leb_size - wbuf->offs < c->max_write_size) + wbuf->size = c->leb_size - wbuf->offs; + else if (wbuf->offs & (c->max_write_size - 1)) + wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; + else + wbuf->size = c->max_write_size; + wbuf->avail = wbuf->size; + wbuf->used = 0; + spin_unlock(&wbuf->lock); + + return 0; +} + +#ifndef __UBOOT__ +/** + * ubifs_bg_wbufs_sync - synchronize write-buffers. + * @c: UBIFS file-system description object + * + * This function is called by background thread to synchronize write-buffers. + * Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubifs_bg_wbufs_sync(struct ubifs_info *c) +{ + int err, i; + + ubifs_assert(!c->ro_media && !c->ro_mount); + if (!c->need_wbuf_sync) + return 0; + c->need_wbuf_sync = 0; + + if (c->ro_error) { + err = -EROFS; + goto out_timers; + } + + dbg_io("synchronize"); + for (i = 0; i < c->jhead_cnt; i++) { + struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; + + cond_resched(); + + /* + * If the mutex is locked then wbuf is being changed, so + * synchronization is not necessary. + */ + if (mutex_is_locked(&wbuf->io_mutex)) + continue; + + mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); + if (!wbuf->need_sync) { + mutex_unlock(&wbuf->io_mutex); + continue; + } + + err = ubifs_wbuf_sync_nolock(wbuf); + mutex_unlock(&wbuf->io_mutex); + if (err) { + ubifs_err("cannot sync write-buffer, error %d", err); + ubifs_ro_mode(c, err); + goto out_timers; + } + } + + return 0; + +out_timers: + /* Cancel all timers to prevent repeated errors */ + for (i = 0; i < c->jhead_cnt; i++) { + struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; + + mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); + cancel_wbuf_timer_nolock(wbuf); + mutex_unlock(&wbuf->io_mutex); + } + return err; +} + +/** + * ubifs_wbuf_write_nolock - write data to flash via write-buffer. + * @wbuf: write-buffer + * @buf: node to write + * @len: node length + * + * This function writes data to flash via write-buffer @wbuf. This means that + * the last piece of the node won't reach the flash media immediately if it + * does not take whole max. write unit (@c->max_write_size). Instead, the node + * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or + * because more data are appended to the write-buffer). + * + * This function returns zero in case of success and a negative error code in + * case of failure. If the node cannot be written because there is no more + * space in this logical eraseblock, %-ENOSPC is returned. + */ +int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) +{ + struct ubifs_info *c = wbuf->c; + int err, written, n, aligned_len = ALIGN(len, 8); + + dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, + dbg_ntype(((struct ubifs_ch *)buf)->node_type), + dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); + ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); + ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); + ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); + ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); + ubifs_assert(wbuf->size >= c->min_io_size); + ubifs_assert(wbuf->size <= c->max_write_size); + ubifs_assert(wbuf->size % c->min_io_size == 0); + ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); + ubifs_assert(!c->ro_media && !c->ro_mount); + ubifs_assert(!c->space_fixup); + if (c->leb_size - wbuf->offs >= c->max_write_size) + ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); + + if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { + err = -ENOSPC; + goto out; + } + + cancel_wbuf_timer_nolock(wbuf); + + if (c->ro_error) + return -EROFS; + + if (aligned_len <= wbuf->avail) { + /* + * The node is not very large and fits entirely within + * write-buffer. + */ + memcpy(wbuf->buf + wbuf->used, buf, len); + + if (aligned_len == wbuf->avail) { + dbg_io("flush jhead %s wbuf to LEB %d:%d", + dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); + err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, + wbuf->offs, wbuf->size); + if (err) + goto out; + + spin_lock(&wbuf->lock); + wbuf->offs += wbuf->size; + if (c->leb_size - wbuf->offs >= c->max_write_size) + wbuf->size = c->max_write_size; + else + wbuf->size = c->leb_size - wbuf->offs; + wbuf->avail = wbuf->size; + wbuf->used = 0; + wbuf->next_ino = 0; + spin_unlock(&wbuf->lock); + } else { + spin_lock(&wbuf->lock); + wbuf->avail -= aligned_len; + wbuf->used += aligned_len; + spin_unlock(&wbuf->lock); + } + + goto exit; + } + + written = 0; + + if (wbuf->used) { + /* + * The node is large enough and does not fit entirely within + * current available space. We have to fill and flush + * write-buffer and switch to the next max. write unit. + */ + dbg_io("flush jhead %s wbuf to LEB %d:%d", + dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); + memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); + err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, + wbuf->size); + if (err) + goto out; + + wbuf->offs += wbuf->size; + len -= wbuf->avail; + aligned_len -= wbuf->avail; + written += wbuf->avail; + } else if (wbuf->offs & (c->max_write_size - 1)) { + /* + * The write-buffer offset is not aligned to + * @c->max_write_size and @wbuf->size is less than + * @c->max_write_size. Write @wbuf->size bytes to make sure the + * following writes are done in optimal @c->max_write_size + * chunks. + */ + dbg_io("write %d bytes to LEB %d:%d", + wbuf->size, wbuf->lnum, wbuf->offs); + err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, + wbuf->size); + if (err) + goto out; + + wbuf->offs += wbuf->size; + len -= wbuf->size; + aligned_len -= wbuf->size; + written += wbuf->size; + } + + /* + * The remaining data may take more whole max. write units, so write the + * remains multiple to max. write unit size directly to the flash media. + * We align node length to 8-byte boundary because we anyway flash wbuf + * if the remaining space is less than 8 bytes. + */ + n = aligned_len >> c->max_write_shift; + if (n) { + n <<= c->max_write_shift; + dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, + wbuf->offs); + err = ubifs_leb_write(c, wbuf->lnum, buf + written, + wbuf->offs, n); + if (err) + goto out; + wbuf->offs += n; + aligned_len -= n; + len -= n; + written += n; + } + + spin_lock(&wbuf->lock); + if (aligned_len) + /* + * And now we have what's left and what does not take whole + * max. write unit, so write it to the write-buffer and we are + * done. + */ + memcpy(wbuf->buf, buf + written, len); + + if (c->leb_size - wbuf->offs >= c->max_write_size) + wbuf->size = c->max_write_size; + else + wbuf->size = c->leb_size - wbuf->offs; + wbuf->avail = wbuf->size - aligned_len; + wbuf->used = aligned_len; + wbuf->next_ino = 0; + spin_unlock(&wbuf->lock); + +exit: + if (wbuf->sync_callback) { + int free = c->leb_size - wbuf->offs - wbuf->used; + + err = wbuf->sync_callback(c, wbuf->lnum, free, 0); + if (err) + goto out; + } + + if (wbuf->used) + new_wbuf_timer_nolock(wbuf); + + return 0; + +out: + ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", + len, wbuf->lnum, wbuf->offs, err); + ubifs_dump_node(c, buf); + dump_stack(); + ubifs_dump_leb(c, wbuf->lnum); + return err; +} + +/** + * ubifs_write_node - write node to the media. + * @c: UBIFS file-system description object + * @buf: the node to write + * @len: node length + * @lnum: logical eraseblock number + * @offs: offset within the logical eraseblock + * + * This function automatically fills node magic number, assigns sequence + * number, and calculates node CRC checksum. The length of the @buf buffer has + * to be aligned to the minimal I/O unit size. This function automatically + * appends padding node and padding bytes if needed. Returns zero in case of + * success and a negative error code in case of failure. + */ +int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, + int offs) +{ + int err, buf_len = ALIGN(len, c->min_io_size); + + dbg_io("LEB %d:%d, %s, length %d (aligned %d)", + lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, + buf_len); + ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); + ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); + ubifs_assert(!c->ro_media && !c->ro_mount); + ubifs_assert(!c->space_fixup); + + if (c->ro_error) + return -EROFS; + + ubifs_prepare_node(c, buf, len, 1); + err = ubifs_leb_write(c, lnum, buf, offs, buf_len); + if (err) + ubifs_dump_node(c, buf); + + return err; +} +#endif + +/** + * ubifs_read_node_wbuf - read node from the media or write-buffer. + * @wbuf: wbuf to check for un-written data + * @buf: buffer to read to + * @type: node type + * @len: node length + * @lnum: logical eraseblock number + * @offs: offset within the logical eraseblock + * + * This function reads a node of known type and length, checks it and stores + * in @buf. If the node partially or fully sits in the write-buffer, this + * function takes data from the buffer, otherwise it reads the flash media. + * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative + * error code in case of failure. + */ +int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, + int lnum, int offs) +{ + const struct ubifs_info *c = wbuf->c; + int err, rlen, overlap; + struct ubifs_ch *ch = buf; + + dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, + dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); + ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); + ubifs_assert(!(offs & 7) && offs < c->leb_size); + ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); + + spin_lock(&wbuf->lock); + overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); + if (!overlap) { + /* We may safely unlock the write-buffer and read the data */ + spin_unlock(&wbuf->lock); + return ubifs_read_node(c, buf, type, len, lnum, offs); + } + + /* Don't read under wbuf */ + rlen = wbuf->offs - offs; + if (rlen < 0) + rlen = 0; + + /* Copy the rest from the write-buffer */ + memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); + spin_unlock(&wbuf->lock); + + if (rlen > 0) { + /* Read everything that goes before write-buffer */ + err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); + if (err && err != -EBADMSG) + return err; + } + + if (type != ch->node_type) { + ubifs_err("bad node type (%d but expected %d)", + ch->node_type, type); + goto out; + } + + err = ubifs_check_node(c, buf, lnum, offs, 0, 0); + if (err) { + ubifs_err("expected node type %d", type); + return err; + } + + rlen = le32_to_cpu(ch->len); + if (rlen != len) { + ubifs_err("bad node length %d, expected %d", rlen, len); + goto out; + } + + return 0; + +out: + ubifs_err("bad node at LEB %d:%d", lnum, offs); + ubifs_dump_node(c, buf); + dump_stack(); + return -EINVAL; +} + +/** * ubifs_read_node - read node. * @c: UBIFS file-system description object * @buf: buffer to read to @@ -281,12 +984,9 @@ int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, ubifs_assert(!(offs & 7) && offs < c->leb_size); ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); - err = ubi_read(c->ubi, lnum, buf, offs, len); - if (err && err != -EBADMSG) { - ubifs_err("cannot read node %d from LEB %d:%d, error %d", - type, lnum, offs, err); + err = ubifs_leb_read(c, lnum, buf, offs, len, 0); + if (err && err != -EBADMSG) return err; - } if (type != ch->node_type) { ubifs_err("bad node type (%d but expected %d)", @@ -309,8 +1009,143 @@ int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, return 0; out: - ubifs_err("bad node at LEB %d:%d", lnum, offs); - dbg_dump_node(c, buf); - dbg_dump_stack(); + ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs, + ubi_is_mapped(c->ubi, lnum)); + ubifs_dump_node(c, buf); + dump_stack(); return -EINVAL; } + +/** + * ubifs_wbuf_init - initialize write-buffer. + * @c: UBIFS file-system description object + * @wbuf: write-buffer to initialize + * + * This function initializes write-buffer. Returns zero in case of success + * %-ENOMEM in case of failure. + */ +int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) +{ + size_t size; + + wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); + if (!wbuf->buf) + return -ENOMEM; + + size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); + wbuf->inodes = kmalloc(size, GFP_KERNEL); + if (!wbuf->inodes) { + kfree(wbuf->buf); + wbuf->buf = NULL; + return -ENOMEM; + } + + wbuf->used = 0; + wbuf->lnum = wbuf->offs = -1; + /* + * If the LEB starts at the max. write size aligned address, then + * write-buffer size has to be set to @c->max_write_size. Otherwise, + * set it to something smaller so that it ends at the closest max. + * write size boundary. + */ + size = c->max_write_size - (c->leb_start % c->max_write_size); + wbuf->avail = wbuf->size = size; + wbuf->sync_callback = NULL; + mutex_init(&wbuf->io_mutex); + spin_lock_init(&wbuf->lock); + wbuf->c = c; + wbuf->next_ino = 0; + +#ifndef __UBOOT__ + hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + wbuf->timer.function = wbuf_timer_callback_nolock; + wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); + wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; + wbuf->delta *= 1000000000ULL; + ubifs_assert(wbuf->delta <= ULONG_MAX); +#endif + return 0; +} + +/** + * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. + * @wbuf: the write-buffer where to add + * @inum: the inode number + * + * This function adds an inode number to the inode array of the write-buffer. + */ +void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) +{ + if (!wbuf->buf) + /* NOR flash or something similar */ + return; + + spin_lock(&wbuf->lock); + if (wbuf->used) + wbuf->inodes[wbuf->next_ino++] = inum; + spin_unlock(&wbuf->lock); +} + +/** + * wbuf_has_ino - returns if the wbuf contains data from the inode. + * @wbuf: the write-buffer + * @inum: the inode number + * + * This function returns with %1 if the write-buffer contains some data from the + * given inode otherwise it returns with %0. + */ +static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) +{ + int i, ret = 0; + + spin_lock(&wbuf->lock); + for (i = 0; i < wbuf->next_ino; i++) + if (inum == wbuf->inodes[i]) { + ret = 1; + break; + } + spin_unlock(&wbuf->lock); + + return ret; +} + +/** + * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. + * @c: UBIFS file-system description object + * @inode: inode to synchronize + * + * This function synchronizes write-buffers which contain nodes belonging to + * @inode. Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) +{ + int i, err = 0; + + for (i = 0; i < c->jhead_cnt; i++) { + struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; + + if (i == GCHD) + /* + * GC head is special, do not look at it. Even if the + * head contains something related to this inode, it is + * a _copy_ of corresponding on-flash node which sits + * somewhere else. + */ + continue; + + if (!wbuf_has_ino(wbuf, inode->i_ino)) + continue; + + mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); + if (wbuf_has_ino(wbuf, inode->i_ino)) + err = ubifs_wbuf_sync_nolock(wbuf); + mutex_unlock(&wbuf->io_mutex); + + if (err) { + ubifs_ro_mode(c, err); + return err; + } + } + return 0; +} diff --git a/fs/ubifs/key.h b/fs/ubifs/key.h index efb3430..b5c4884 100644 --- a/fs/ubifs/key.h +++ b/fs/ubifs/key.h @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -229,23 +218,6 @@ static inline void xent_key_init(const struct ubifs_info *c, } /** - * xent_key_init_hash - initialize extended attribute entry key without - * re-calculating hash function. - * @c: UBIFS file-system description object - * @key: key to initialize - * @inum: host inode number - * @hash: extended attribute entry name hash - */ -static inline void xent_key_init_hash(const struct ubifs_info *c, - union ubifs_key *key, ino_t inum, - uint32_t hash) -{ - ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK)); - key->u32[0] = inum; - key->u32[1] = hash | (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS); -} - -/** * xent_key_init_flash - initialize on-flash extended attribute entry key. * @c: UBIFS file-system description object * @k: key to initialize @@ -295,22 +267,15 @@ static inline void data_key_init(const struct ubifs_info *c, } /** - * data_key_init_flash - initialize on-flash data key. + * highest_data_key - get the highest possible data key for an inode. * @c: UBIFS file-system description object - * @k: key to initialize + * @key: key to initialize * @inum: inode number - * @block: block number */ -static inline void data_key_init_flash(const struct ubifs_info *c, void *k, - ino_t inum, unsigned int block) +static inline void highest_data_key(const struct ubifs_info *c, + union ubifs_key *key, ino_t inum) { - union ubifs_key *key = k; - - ubifs_assert(!(block & ~UBIFS_S_KEY_BLOCK_MASK)); - key->j32[0] = cpu_to_le32(inum); - key->j32[1] = cpu_to_le32(block | - (UBIFS_DATA_KEY << UBIFS_S_KEY_BLOCK_BITS)); - memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8); + data_key_init(c, key, inum, UBIFS_S_KEY_BLOCK_MASK); } /** @@ -330,6 +295,20 @@ static inline void trun_key_init(const struct ubifs_info *c, } /** + * invalid_key_init - initialize invalid node key. + * @c: UBIFS file-system description object + * @key: key to initialize + * + * This is a helper function which marks a @key object as invalid. + */ +static inline void invalid_key_init(const struct ubifs_info *c, + union ubifs_key *key) +{ + key->u32[0] = 0xDEADBEAF; + key->u32[1] = UBIFS_INVALID_KEY; +} + +/** * key_type - get key type. * @c: UBIFS file-system description object * @key: key to get type of @@ -381,8 +360,8 @@ static inline ino_t key_inum_flash(const struct ubifs_info *c, const void *k) * @c: UBIFS file-system description object * @key: the key to get hash from */ -static inline int key_hash(const struct ubifs_info *c, - const union ubifs_key *key) +static inline uint32_t key_hash(const struct ubifs_info *c, + const union ubifs_key *key) { return key->u32[1] & UBIFS_S_KEY_HASH_MASK; } @@ -392,7 +371,7 @@ static inline int key_hash(const struct ubifs_info *c, * @c: UBIFS file-system description object * @k: the key to get hash from */ -static inline int key_hash_flash(const struct ubifs_info *c, const void *k) +static inline uint32_t key_hash_flash(const struct ubifs_info *c, const void *k) { const union ubifs_key *key = k; @@ -554,4 +533,5 @@ static inline unsigned long long key_max_inode_size(const struct ubifs_info *c) return 0; } } + #endif /* !__UBIFS_KEY_H__ */ diff --git a/fs/ubifs/log.c b/fs/ubifs/log.c index 68a9bd9..ced0424 100644 --- a/fs/ubifs/log.c +++ b/fs/ubifs/log.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -27,8 +16,14 @@ * journal. */ +#define __UBOOT__ +#ifdef __UBOOT__ +#include <linux/err.h> +#endif #include "ubifs.h" +static int dbg_check_bud_bytes(struct ubifs_info *c); + /** * ubifs_search_bud - search bud LEB. * @c: UBIFS file-system description object @@ -60,6 +55,57 @@ struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum) } /** + * ubifs_get_wbuf - get the wbuf associated with a LEB, if there is one. + * @c: UBIFS file-system description object + * @lnum: logical eraseblock number to search + * + * This functions returns the wbuf for @lnum or %NULL if there is not one. + */ +struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum) +{ + struct rb_node *p; + struct ubifs_bud *bud; + int jhead; + + if (!c->jheads) + return NULL; + + spin_lock(&c->buds_lock); + p = c->buds.rb_node; + while (p) { + bud = rb_entry(p, struct ubifs_bud, rb); + if (lnum < bud->lnum) + p = p->rb_left; + else if (lnum > bud->lnum) + p = p->rb_right; + else { + jhead = bud->jhead; + spin_unlock(&c->buds_lock); + return &c->jheads[jhead].wbuf; + } + } + spin_unlock(&c->buds_lock); + return NULL; +} + +/** + * empty_log_bytes - calculate amount of empty space in the log. + * @c: UBIFS file-system description object + */ +static inline long long empty_log_bytes(const struct ubifs_info *c) +{ + long long h, t; + + h = (long long)c->lhead_lnum * c->leb_size + c->lhead_offs; + t = (long long)c->ltail_lnum * c->leb_size; + + if (h >= t) + return c->log_bytes - h + t; + else + return t - h; +} + +/** * ubifs_add_bud - add bud LEB to the tree of buds and its journal head list. * @c: UBIFS file-system description object * @bud: the bud to add @@ -88,7 +134,7 @@ void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud) jhead = &c->jheads[bud->jhead]; list_add_tail(&bud->list, &jhead->buds_list); } else - ubifs_assert(c->replaying && (c->vfs_sb->s_flags & MS_RDONLY)); + ubifs_assert(c->replaying && c->ro_mount); /* * Note, although this is a new bud, we anyway account this space now, @@ -98,7 +144,594 @@ void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud) */ c->bud_bytes += c->leb_size - bud->start; - dbg_log("LEB %d:%d, jhead %d, bud_bytes %lld", bud->lnum, - bud->start, bud->jhead, c->bud_bytes); + dbg_log("LEB %d:%d, jhead %s, bud_bytes %lld", bud->lnum, + bud->start, dbg_jhead(bud->jhead), c->bud_bytes); + spin_unlock(&c->buds_lock); +} + +/** + * ubifs_add_bud_to_log - add a new bud to the log. + * @c: UBIFS file-system description object + * @jhead: journal head the bud belongs to + * @lnum: LEB number of the bud + * @offs: starting offset of the bud + * + * This function writes reference node for the new bud LEB @lnum it to the log, + * and adds it to the buds tress. It also makes sure that log size does not + * exceed the 'c->max_bud_bytes' limit. Returns zero in case of success, + * %-EAGAIN if commit is required, and a negative error codes in case of + * failure. + */ +int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs) +{ + int err; + struct ubifs_bud *bud; + struct ubifs_ref_node *ref; + + bud = kmalloc(sizeof(struct ubifs_bud), GFP_NOFS); + if (!bud) + return -ENOMEM; + ref = kzalloc(c->ref_node_alsz, GFP_NOFS); + if (!ref) { + kfree(bud); + return -ENOMEM; + } + + mutex_lock(&c->log_mutex); + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->ro_error) { + err = -EROFS; + goto out_unlock; + } + + /* Make sure we have enough space in the log */ + if (empty_log_bytes(c) - c->ref_node_alsz < c->min_log_bytes) { + dbg_log("not enough log space - %lld, required %d", + empty_log_bytes(c), c->min_log_bytes); + ubifs_commit_required(c); + err = -EAGAIN; + goto out_unlock; + } + + /* + * Make sure the amount of space in buds will not exceed the + * 'c->max_bud_bytes' limit, because we want to guarantee mount time + * limits. + * + * It is not necessary to hold @c->buds_lock when reading @c->bud_bytes + * because we are holding @c->log_mutex. All @c->bud_bytes take place + * when both @c->log_mutex and @c->bud_bytes are locked. + */ + if (c->bud_bytes + c->leb_size - offs > c->max_bud_bytes) { + dbg_log("bud bytes %lld (%lld max), require commit", + c->bud_bytes, c->max_bud_bytes); + ubifs_commit_required(c); + err = -EAGAIN; + goto out_unlock; + } + + /* + * If the journal is full enough - start background commit. Note, it is + * OK to read 'c->cmt_state' without spinlock because integer reads + * are atomic in the kernel. + */ + if (c->bud_bytes >= c->bg_bud_bytes && + c->cmt_state == COMMIT_RESTING) { + dbg_log("bud bytes %lld (%lld max), initiate BG commit", + c->bud_bytes, c->max_bud_bytes); + ubifs_request_bg_commit(c); + } + + bud->lnum = lnum; + bud->start = offs; + bud->jhead = jhead; + + ref->ch.node_type = UBIFS_REF_NODE; + ref->lnum = cpu_to_le32(bud->lnum); + ref->offs = cpu_to_le32(bud->start); + ref->jhead = cpu_to_le32(jhead); + + if (c->lhead_offs > c->leb_size - c->ref_node_alsz) { + c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum); + c->lhead_offs = 0; + } + + if (c->lhead_offs == 0) { + /* Must ensure next log LEB has been unmapped */ + err = ubifs_leb_unmap(c, c->lhead_lnum); + if (err) + goto out_unlock; + } + + if (bud->start == 0) { + /* + * Before writing the LEB reference which refers an empty LEB + * to the log, we have to make sure it is mapped, because + * otherwise we'd risk to refer an LEB with garbage in case of + * an unclean reboot, because the target LEB might have been + * unmapped, but not yet physically erased. + */ + err = ubifs_leb_map(c, bud->lnum); + if (err) + goto out_unlock; + } + + dbg_log("write ref LEB %d:%d", + c->lhead_lnum, c->lhead_offs); + err = ubifs_write_node(c, ref, UBIFS_REF_NODE_SZ, c->lhead_lnum, + c->lhead_offs); + if (err) + goto out_unlock; + + c->lhead_offs += c->ref_node_alsz; + + ubifs_add_bud(c, bud); + + mutex_unlock(&c->log_mutex); + kfree(ref); + return 0; + +out_unlock: + mutex_unlock(&c->log_mutex); + kfree(ref); + kfree(bud); + return err; +} + +/** + * remove_buds - remove used buds. + * @c: UBIFS file-system description object + * + * This function removes use buds from the buds tree. It does not remove the + * buds which are pointed to by journal heads. + */ +static void remove_buds(struct ubifs_info *c) +{ + struct rb_node *p; + + ubifs_assert(list_empty(&c->old_buds)); + c->cmt_bud_bytes = 0; + spin_lock(&c->buds_lock); + p = rb_first(&c->buds); + while (p) { + struct rb_node *p1 = p; + struct ubifs_bud *bud; + struct ubifs_wbuf *wbuf; + + p = rb_next(p); + bud = rb_entry(p1, struct ubifs_bud, rb); + wbuf = &c->jheads[bud->jhead].wbuf; + + if (wbuf->lnum == bud->lnum) { + /* + * Do not remove buds which are pointed to by journal + * heads (non-closed buds). + */ + c->cmt_bud_bytes += wbuf->offs - bud->start; + dbg_log("preserve %d:%d, jhead %s, bud bytes %d, cmt_bud_bytes %lld", + bud->lnum, bud->start, dbg_jhead(bud->jhead), + wbuf->offs - bud->start, c->cmt_bud_bytes); + bud->start = wbuf->offs; + } else { + c->cmt_bud_bytes += c->leb_size - bud->start; + dbg_log("remove %d:%d, jhead %s, bud bytes %d, cmt_bud_bytes %lld", + bud->lnum, bud->start, dbg_jhead(bud->jhead), + c->leb_size - bud->start, c->cmt_bud_bytes); + rb_erase(p1, &c->buds); + /* + * If the commit does not finish, the recovery will need + * to replay the journal, in which case the old buds + * must be unchanged. Do not release them until post + * commit i.e. do not allow them to be garbage + * collected. + */ + list_move(&bud->list, &c->old_buds); + } + } + spin_unlock(&c->buds_lock); +} + +/** + * ubifs_log_start_commit - start commit. + * @c: UBIFS file-system description object + * @ltail_lnum: return new log tail LEB number + * + * The commit operation starts with writing "commit start" node to the log and + * reference nodes for all journal heads which will define new journal after + * the commit has been finished. The commit start and reference nodes are + * written in one go to the nearest empty log LEB (hence, when commit is + * finished UBIFS may safely unmap all the previous log LEBs). This function + * returns zero in case of success and a negative error code in case of + * failure. + */ +int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum) +{ + void *buf; + struct ubifs_cs_node *cs; + struct ubifs_ref_node *ref; + int err, i, max_len, len; + + err = dbg_check_bud_bytes(c); + if (err) + return err; + + max_len = UBIFS_CS_NODE_SZ + c->jhead_cnt * UBIFS_REF_NODE_SZ; + max_len = ALIGN(max_len, c->min_io_size); + buf = cs = kmalloc(max_len, GFP_NOFS); + if (!buf) + return -ENOMEM; + + cs->ch.node_type = UBIFS_CS_NODE; + cs->cmt_no = cpu_to_le64(c->cmt_no); + ubifs_prepare_node(c, cs, UBIFS_CS_NODE_SZ, 0); + + /* + * Note, we do not lock 'c->log_mutex' because this is the commit start + * phase and we are exclusively using the log. And we do not lock + * write-buffer because nobody can write to the file-system at this + * phase. + */ + + len = UBIFS_CS_NODE_SZ; + for (i = 0; i < c->jhead_cnt; i++) { + int lnum = c->jheads[i].wbuf.lnum; + int offs = c->jheads[i].wbuf.offs; + + if (lnum == -1 || offs == c->leb_size) + continue; + + dbg_log("add ref to LEB %d:%d for jhead %s", + lnum, offs, dbg_jhead(i)); + ref = buf + len; + ref->ch.node_type = UBIFS_REF_NODE; + ref->lnum = cpu_to_le32(lnum); + ref->offs = cpu_to_le32(offs); + ref->jhead = cpu_to_le32(i); + + ubifs_prepare_node(c, ref, UBIFS_REF_NODE_SZ, 0); + len += UBIFS_REF_NODE_SZ; + } + + ubifs_pad(c, buf + len, ALIGN(len, c->min_io_size) - len); + + /* Switch to the next log LEB */ + if (c->lhead_offs) { + c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum); + c->lhead_offs = 0; + } + + if (c->lhead_offs == 0) { + /* Must ensure next LEB has been unmapped */ + err = ubifs_leb_unmap(c, c->lhead_lnum); + if (err) + goto out; + } + + len = ALIGN(len, c->min_io_size); + dbg_log("writing commit start at LEB %d:0, len %d", c->lhead_lnum, len); + err = ubifs_leb_write(c, c->lhead_lnum, cs, 0, len); + if (err) + goto out; + + *ltail_lnum = c->lhead_lnum; + + c->lhead_offs += len; + if (c->lhead_offs == c->leb_size) { + c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum); + c->lhead_offs = 0; + } + + remove_buds(c); + + /* + * We have started the commit and now users may use the rest of the log + * for new writes. + */ + c->min_log_bytes = 0; + +out: + kfree(buf); + return err; +} + +/** + * ubifs_log_end_commit - end commit. + * @c: UBIFS file-system description object + * @ltail_lnum: new log tail LEB number + * + * This function is called on when the commit operation was finished. It + * moves log tail to new position and unmaps LEBs which contain obsolete data. + * Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubifs_log_end_commit(struct ubifs_info *c, int ltail_lnum) +{ + int err; + + /* + * At this phase we have to lock 'c->log_mutex' because UBIFS allows FS + * writes during commit. Its only short "commit" start phase when + * writers are blocked. + */ + mutex_lock(&c->log_mutex); + + dbg_log("old tail was LEB %d:0, new tail is LEB %d:0", + c->ltail_lnum, ltail_lnum); + + c->ltail_lnum = ltail_lnum; + /* + * The commit is finished and from now on it must be guaranteed that + * there is always enough space for the next commit. + */ + c->min_log_bytes = c->leb_size; + + spin_lock(&c->buds_lock); + c->bud_bytes -= c->cmt_bud_bytes; + spin_unlock(&c->buds_lock); + + err = dbg_check_bud_bytes(c); + + mutex_unlock(&c->log_mutex); + return err; +} + +/** + * ubifs_log_post_commit - things to do after commit is completed. + * @c: UBIFS file-system description object + * @old_ltail_lnum: old log tail LEB number + * + * Release buds only after commit is completed, because they must be unchanged + * if recovery is needed. + * + * Unmap log LEBs only after commit is completed, because they may be needed for + * recovery. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum) +{ + int lnum, err = 0; + + while (!list_empty(&c->old_buds)) { + struct ubifs_bud *bud; + + bud = list_entry(c->old_buds.next, struct ubifs_bud, list); + err = ubifs_return_leb(c, bud->lnum); + if (err) + return err; + list_del(&bud->list); + kfree(bud); + } + mutex_lock(&c->log_mutex); + for (lnum = old_ltail_lnum; lnum != c->ltail_lnum; + lnum = ubifs_next_log_lnum(c, lnum)) { + dbg_log("unmap log LEB %d", lnum); + err = ubifs_leb_unmap(c, lnum); + if (err) + goto out; + } +out: + mutex_unlock(&c->log_mutex); + return err; +} + +/** + * struct done_ref - references that have been done. + * @rb: rb-tree node + * @lnum: LEB number + */ +struct done_ref { + struct rb_node rb; + int lnum; +}; + +/** + * done_already - determine if a reference has been done already. + * @done_tree: rb-tree to store references that have been done + * @lnum: LEB number of reference + * + * This function returns %1 if the reference has been done, %0 if not, otherwise + * a negative error code is returned. + */ +static int done_already(struct rb_root *done_tree, int lnum) +{ + struct rb_node **p = &done_tree->rb_node, *parent = NULL; + struct done_ref *dr; + + while (*p) { + parent = *p; + dr = rb_entry(parent, struct done_ref, rb); + if (lnum < dr->lnum) + p = &(*p)->rb_left; + else if (lnum > dr->lnum) + p = &(*p)->rb_right; + else + return 1; + } + + dr = kzalloc(sizeof(struct done_ref), GFP_NOFS); + if (!dr) + return -ENOMEM; + + dr->lnum = lnum; + + rb_link_node(&dr->rb, parent, p); + rb_insert_color(&dr->rb, done_tree); + + return 0; +} + +/** + * destroy_done_tree - destroy the done tree. + * @done_tree: done tree to destroy + */ +static void destroy_done_tree(struct rb_root *done_tree) +{ + struct done_ref *dr, *n; + + rbtree_postorder_for_each_entry_safe(dr, n, done_tree, rb) + kfree(dr); +} + +/** + * add_node - add a node to the consolidated log. + * @c: UBIFS file-system description object + * @buf: buffer to which to add + * @lnum: LEB number to which to write is passed and returned here + * @offs: offset to where to write is passed and returned here + * @node: node to add + * + * This function returns %0 on success and a negative error code on failure. + */ +static int add_node(struct ubifs_info *c, void *buf, int *lnum, int *offs, + void *node) +{ + struct ubifs_ch *ch = node; + int len = le32_to_cpu(ch->len), remains = c->leb_size - *offs; + + if (len > remains) { + int sz = ALIGN(*offs, c->min_io_size), err; + + ubifs_pad(c, buf + *offs, sz - *offs); + err = ubifs_leb_change(c, *lnum, buf, sz); + if (err) + return err; + *lnum = ubifs_next_log_lnum(c, *lnum); + *offs = 0; + } + memcpy(buf + *offs, node, len); + *offs += ALIGN(len, 8); + return 0; +} + +/** + * ubifs_consolidate_log - consolidate the log. + * @c: UBIFS file-system description object + * + * Repeated failed commits could cause the log to be full, but at least 1 LEB is + * needed for commit. This function rewrites the reference nodes in the log + * omitting duplicates, and failed CS nodes, and leaving no gaps. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_consolidate_log(struct ubifs_info *c) +{ + struct ubifs_scan_leb *sleb; + struct ubifs_scan_node *snod; + struct rb_root done_tree = RB_ROOT; + int lnum, err, first = 1, write_lnum, offs = 0; + void *buf; + + dbg_rcvry("log tail LEB %d, log head LEB %d", c->ltail_lnum, + c->lhead_lnum); + buf = vmalloc(c->leb_size); + if (!buf) + return -ENOMEM; + lnum = c->ltail_lnum; + write_lnum = lnum; + while (1) { + sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); + if (IS_ERR(sleb)) { + err = PTR_ERR(sleb); + goto out_free; + } + list_for_each_entry(snod, &sleb->nodes, list) { + switch (snod->type) { + case UBIFS_REF_NODE: { + struct ubifs_ref_node *ref = snod->node; + int ref_lnum = le32_to_cpu(ref->lnum); + + err = done_already(&done_tree, ref_lnum); + if (err < 0) + goto out_scan; + if (err != 1) { + err = add_node(c, buf, &write_lnum, + &offs, snod->node); + if (err) + goto out_scan; + } + break; + } + case UBIFS_CS_NODE: + if (!first) + break; + err = add_node(c, buf, &write_lnum, &offs, + snod->node); + if (err) + goto out_scan; + first = 0; + break; + } + } + ubifs_scan_destroy(sleb); + if (lnum == c->lhead_lnum) + break; + lnum = ubifs_next_log_lnum(c, lnum); + } + if (offs) { + int sz = ALIGN(offs, c->min_io_size); + + ubifs_pad(c, buf + offs, sz - offs); + err = ubifs_leb_change(c, write_lnum, buf, sz); + if (err) + goto out_free; + offs = ALIGN(offs, c->min_io_size); + } + destroy_done_tree(&done_tree); + vfree(buf); + if (write_lnum == c->lhead_lnum) { + ubifs_err("log is too full"); + return -EINVAL; + } + /* Unmap remaining LEBs */ + lnum = write_lnum; + do { + lnum = ubifs_next_log_lnum(c, lnum); + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } while (lnum != c->lhead_lnum); + c->lhead_lnum = write_lnum; + c->lhead_offs = offs; + dbg_rcvry("new log head at %d:%d", c->lhead_lnum, c->lhead_offs); + return 0; + +out_scan: + ubifs_scan_destroy(sleb); +out_free: + destroy_done_tree(&done_tree); + vfree(buf); + return err; +} + +/** + * dbg_check_bud_bytes - make sure bud bytes calculation are all right. + * @c: UBIFS file-system description object + * + * This function makes sure the amount of flash space used by closed buds + * ('c->bud_bytes' is correct). Returns zero in case of success and %-EINVAL in + * case of failure. + */ +static int dbg_check_bud_bytes(struct ubifs_info *c) +{ + int i, err = 0; + struct ubifs_bud *bud; + long long bud_bytes = 0; + + if (!dbg_is_chk_gen(c)) + return 0; + + spin_lock(&c->buds_lock); + for (i = 0; i < c->jhead_cnt; i++) + list_for_each_entry(bud, &c->jheads[i].buds_list, list) + bud_bytes += c->leb_size - bud->start; + + if (c->bud_bytes != bud_bytes) { + ubifs_err("bad bud_bytes %lld, calculated %lld", + c->bud_bytes, bud_bytes); + err = -EINVAL; + } spin_unlock(&c->buds_lock); + + return err; } diff --git a/fs/ubifs/lprops.c b/fs/ubifs/lprops.c index 8ce4949..fc6686b 100644 --- a/fs/ubifs/lprops.c +++ b/fs/ubifs/lprops.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -28,6 +17,10 @@ * an empty LEB for the journal, or a very dirty LEB for garbage collection. */ +#define __UBOOT__ +#ifdef __UBOOT__ +#include <linux/err.h> +#endif #include "ubifs.h" /** @@ -281,7 +274,7 @@ void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, case LPROPS_FREE: if (add_to_lpt_heap(c, lprops, cat)) break; - /* No more room on heap so make it uncategorized */ + /* No more room on heap so make it un-categorized */ cat = LPROPS_UNCAT; /* Fall through */ case LPROPS_UNCAT: @@ -300,8 +293,11 @@ void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, default: ubifs_assert(0); } + lprops->flags &= ~LPROPS_CAT_MASK; lprops->flags |= cat; + c->in_a_category_cnt += 1; + ubifs_assert(c->in_a_category_cnt <= c->main_lebs); } /** @@ -334,6 +330,9 @@ static void ubifs_remove_from_cat(struct ubifs_info *c, default: ubifs_assert(0); } + + c->in_a_category_cnt -= 1; + ubifs_assert(c->in_a_category_cnt >= 0); } /** @@ -375,8 +374,8 @@ void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, * @lprops: LEB properties * * A LEB may have fallen off of the bottom of a heap, and ended up as - * uncategorized even though it has enough space for us now. If that is the case - * this function will put the LEB back onto a heap. + * un-categorized even though it has enough space for us now. If that is the + * case this function will put the LEB back onto a heap. */ void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) { @@ -436,10 +435,10 @@ int ubifs_categorize_lprops(const struct ubifs_info *c, /** * change_category - change LEB properties category. * @c: UBIFS file-system description object - * @lprops: LEB properties to recategorize + * @lprops: LEB properties to re-categorize * * LEB properties are categorized to enable fast find operations. When the LEB - * properties change they must be recategorized. + * properties change they must be re-categorized. */ static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) { @@ -447,7 +446,7 @@ static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) int new_cat = ubifs_categorize_lprops(c, lprops); if (old_cat == new_cat) { - struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1]; + struct ubifs_lpt_heap *heap; /* lprops on a heap now must be moved up or down */ if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) @@ -461,21 +460,18 @@ static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) } /** - * calc_dark - calculate LEB dark space size. + * ubifs_calc_dark - calculate LEB dark space size. * @c: the UBIFS file-system description object * @spc: amount of free and dirty space in the LEB * - * This function calculates amount of dark space in an LEB which has @spc bytes - * of free and dirty space. Returns the calculations result. + * This function calculates and returns amount of dark space in an LEB which + * has @spc bytes of free and dirty space. * - * Dark space is the space which is not always usable - it depends on which - * nodes are written in which order. E.g., if an LEB has only 512 free bytes, - * it is dark space, because it cannot fit a large data node. So UBIFS cannot - * count on this LEB and treat these 512 bytes as usable because it is not true - * if, for example, only big chunks of uncompressible data will be written to - * the FS. + * UBIFS is trying to account the space which might not be usable, and this + * space is called "dark space". For example, if an LEB has only %512 free + * bytes, it is dark space, because it cannot fit a large data node. */ -static int calc_dark(struct ubifs_info *c, int spc) +int ubifs_calc_dark(const struct ubifs_info *c, int spc) { ubifs_assert(!(spc & 7)); @@ -507,7 +503,7 @@ static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) pnode = (struct ubifs_pnode *)container_of(lprops - pos, struct ubifs_pnode, lprops[0]); - return !test_bit(COW_ZNODE, &pnode->flags) && + return !test_bit(COW_CNODE, &pnode->flags) && test_bit(DIRTY_CNODE, &pnode->flags); } @@ -518,7 +514,7 @@ static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) * @free: new free space amount * @dirty: new dirty space amount * @flags: new flags - * @idx_gc_cnt: change to the count of idx_gc list + * @idx_gc_cnt: change to the count of @idx_gc list * * This function changes LEB properties (@free, @dirty or @flag). However, the * property which has the %LPROPS_NC value is not changed. Returns a pointer to @@ -535,7 +531,7 @@ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, { /* * This is the only function that is allowed to change lprops, so we - * discard the const qualifier. + * discard the "const" qualifier. */ struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; @@ -575,7 +571,7 @@ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, if (old_spc < c->dead_wm) c->lst.total_dead -= old_spc; else - c->lst.total_dark -= calc_dark(c, old_spc); + c->lst.total_dark -= ubifs_calc_dark(c, old_spc); c->lst.total_used -= c->leb_size - old_spc; } @@ -616,7 +612,7 @@ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, if (new_spc < c->dead_wm) c->lst.total_dead += new_spc; else - c->lst.total_dark += calc_dark(c, new_spc); + c->lst.total_dark += ubifs_calc_dark(c, new_spc); c->lst.total_used += c->leb_size - new_spc; } @@ -678,6 +674,9 @@ int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, out: ubifs_release_lprops(c); + if (err) + ubifs_err("cannot change properties of LEB %d, error %d", + lnum, err); return err; } @@ -714,6 +713,9 @@ int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, out: ubifs_release_lprops(c); + if (err) + ubifs_err("cannot update properties of LEB %d, error %d", + lnum, err); return err; } @@ -737,6 +739,8 @@ int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) lpp = ubifs_lpt_lookup(c, lnum); if (IS_ERR(lpp)) { err = PTR_ERR(lpp); + ubifs_err("cannot read properties of LEB %d, error %d", + lnum, err); goto out; } @@ -840,3 +844,471 @@ const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) ubifs_assert(lprops->free + lprops->dirty == c->leb_size); return lprops; } + +/* + * Everything below is related to debugging. + */ + +/** + * dbg_check_cats - check category heaps and lists. + * @c: UBIFS file-system description object + * + * This function returns %0 on success and a negative error code on failure. + */ +int dbg_check_cats(struct ubifs_info *c) +{ + struct ubifs_lprops *lprops; + struct list_head *pos; + int i, cat; + + if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) + return 0; + + list_for_each_entry(lprops, &c->empty_list, list) { + if (lprops->free != c->leb_size) { + ubifs_err("non-empty LEB %d on empty list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + if (lprops->flags & LPROPS_TAKEN) { + ubifs_err("taken LEB %d on empty list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + } + + i = 0; + list_for_each_entry(lprops, &c->freeable_list, list) { + if (lprops->free + lprops->dirty != c->leb_size) { + ubifs_err("non-freeable LEB %d on freeable list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + if (lprops->flags & LPROPS_TAKEN) { + ubifs_err("taken LEB %d on freeable list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + i += 1; + } + if (i != c->freeable_cnt) { + ubifs_err("freeable list count %d expected %d", i, + c->freeable_cnt); + return -EINVAL; + } + + i = 0; + list_for_each(pos, &c->idx_gc) + i += 1; + if (i != c->idx_gc_cnt) { + ubifs_err("idx_gc list count %d expected %d", i, + c->idx_gc_cnt); + return -EINVAL; + } + + list_for_each_entry(lprops, &c->frdi_idx_list, list) { + if (lprops->free + lprops->dirty != c->leb_size) { + ubifs_err("non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + if (lprops->flags & LPROPS_TAKEN) { + ubifs_err("taken LEB %d on frdi_idx list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + if (!(lprops->flags & LPROPS_INDEX)) { + ubifs_err("non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)", + lprops->lnum, lprops->free, lprops->dirty, + lprops->flags); + return -EINVAL; + } + } + + for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { + struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; + + for (i = 0; i < heap->cnt; i++) { + lprops = heap->arr[i]; + if (!lprops) { + ubifs_err("null ptr in LPT heap cat %d", cat); + return -EINVAL; + } + if (lprops->hpos != i) { + ubifs_err("bad ptr in LPT heap cat %d", cat); + return -EINVAL; + } + if (lprops->flags & LPROPS_TAKEN) { + ubifs_err("taken LEB in LPT heap cat %d", cat); + return -EINVAL; + } + } + } + + return 0; +} + +void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, + int add_pos) +{ + int i = 0, j, err = 0; + + if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) + return; + + for (i = 0; i < heap->cnt; i++) { + struct ubifs_lprops *lprops = heap->arr[i]; + struct ubifs_lprops *lp; + + if (i != add_pos) + if ((lprops->flags & LPROPS_CAT_MASK) != cat) { + err = 1; + goto out; + } + if (lprops->hpos != i) { + err = 2; + goto out; + } + lp = ubifs_lpt_lookup(c, lprops->lnum); + if (IS_ERR(lp)) { + err = 3; + goto out; + } + if (lprops != lp) { + ubifs_err("lprops %zx lp %zx lprops->lnum %d lp->lnum %d", + (size_t)lprops, (size_t)lp, lprops->lnum, + lp->lnum); + err = 4; + goto out; + } + for (j = 0; j < i; j++) { + lp = heap->arr[j]; + if (lp == lprops) { + err = 5; + goto out; + } + if (lp->lnum == lprops->lnum) { + err = 6; + goto out; + } + } + } +out: + if (err) { + ubifs_err("failed cat %d hpos %d err %d", cat, i, err); + dump_stack(); + ubifs_dump_heap(c, heap, cat); + } +} + +/** + * scan_check_cb - scan callback. + * @c: the UBIFS file-system description object + * @lp: LEB properties to scan + * @in_tree: whether the LEB properties are in main memory + * @lst: lprops statistics to update + * + * This function returns a code that indicates whether the scan should continue + * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree + * in main memory (%LPT_SCAN_ADD), or whether the scan should stop + * (%LPT_SCAN_STOP). + */ +static int scan_check_cb(struct ubifs_info *c, + const struct ubifs_lprops *lp, int in_tree, + struct ubifs_lp_stats *lst) +{ + struct ubifs_scan_leb *sleb; + struct ubifs_scan_node *snod; + int cat, lnum = lp->lnum, is_idx = 0, used = 0, freef, dirty, ret; + void *buf = NULL; + + cat = lp->flags & LPROPS_CAT_MASK; + if (cat != LPROPS_UNCAT) { + cat = ubifs_categorize_lprops(c, lp); + if (cat != (lp->flags & LPROPS_CAT_MASK)) { + ubifs_err("bad LEB category %d expected %d", + (lp->flags & LPROPS_CAT_MASK), cat); + return -EINVAL; + } + } + + /* Check lp is on its category list (if it has one) */ + if (in_tree) { + struct list_head *list = NULL; + + switch (cat) { + case LPROPS_EMPTY: + list = &c->empty_list; + break; + case LPROPS_FREEABLE: + list = &c->freeable_list; + break; + case LPROPS_FRDI_IDX: + list = &c->frdi_idx_list; + break; + case LPROPS_UNCAT: + list = &c->uncat_list; + break; + } + if (list) { + struct ubifs_lprops *lprops; + int found = 0; + + list_for_each_entry(lprops, list, list) { + if (lprops == lp) { + found = 1; + break; + } + } + if (!found) { + ubifs_err("bad LPT list (category %d)", cat); + return -EINVAL; + } + } + } + + /* Check lp is on its category heap (if it has one) */ + if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { + struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; + + if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || + lp != heap->arr[lp->hpos]) { + ubifs_err("bad LPT heap (category %d)", cat); + return -EINVAL; + } + } + + buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); + if (!buf) + return -ENOMEM; + + /* + * After an unclean unmount, empty and freeable LEBs + * may contain garbage - do not scan them. + */ + if (lp->free == c->leb_size) { + lst->empty_lebs += 1; + lst->total_free += c->leb_size; + lst->total_dark += ubifs_calc_dark(c, c->leb_size); + return LPT_SCAN_CONTINUE; + } + if (lp->free + lp->dirty == c->leb_size && + !(lp->flags & LPROPS_INDEX)) { + lst->total_free += lp->free; + lst->total_dirty += lp->dirty; + lst->total_dark += ubifs_calc_dark(c, c->leb_size); + return LPT_SCAN_CONTINUE; + } + + sleb = ubifs_scan(c, lnum, 0, buf, 0); + if (IS_ERR(sleb)) { + ret = PTR_ERR(sleb); + if (ret == -EUCLEAN) { + ubifs_dump_lprops(c); + ubifs_dump_budg(c, &c->bi); + } + goto out; + } + + is_idx = -1; + list_for_each_entry(snod, &sleb->nodes, list) { + int found, level = 0; + + cond_resched(); + + if (is_idx == -1) + is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; + + if (is_idx && snod->type != UBIFS_IDX_NODE) { + ubifs_err("indexing node in data LEB %d:%d", + lnum, snod->offs); + goto out_destroy; + } + + if (snod->type == UBIFS_IDX_NODE) { + struct ubifs_idx_node *idx = snod->node; + + key_read(c, ubifs_idx_key(c, idx), &snod->key); + level = le16_to_cpu(idx->level); + } + + found = ubifs_tnc_has_node(c, &snod->key, level, lnum, + snod->offs, is_idx); + if (found) { + if (found < 0) + goto out_destroy; + used += ALIGN(snod->len, 8); + } + } + + freef = c->leb_size - sleb->endpt; + dirty = sleb->endpt - used; + + if (freef > c->leb_size || freef < 0 || dirty > c->leb_size || + dirty < 0) { + ubifs_err("bad calculated accounting for LEB %d: free %d, dirty %d", + lnum, freef, dirty); + goto out_destroy; + } + + if (lp->free + lp->dirty == c->leb_size && + freef + dirty == c->leb_size) + if ((is_idx && !(lp->flags & LPROPS_INDEX)) || + (!is_idx && freef == c->leb_size) || + lp->free == c->leb_size) { + /* + * Empty or freeable LEBs could contain index + * nodes from an uncompleted commit due to an + * unclean unmount. Or they could be empty for + * the same reason. Or it may simply not have been + * unmapped. + */ + freef = lp->free; + dirty = lp->dirty; + is_idx = 0; + } + + if (is_idx && lp->free + lp->dirty == freef + dirty && + lnum != c->ihead_lnum) { + /* + * After an unclean unmount, an index LEB could have a different + * amount of free space than the value recorded by lprops. That + * is because the in-the-gaps method may use free space or + * create free space (as a side-effect of using ubi_leb_change + * and not writing the whole LEB). The incorrect free space + * value is not a problem because the index is only ever + * allocated empty LEBs, so there will never be an attempt to + * write to the free space at the end of an index LEB - except + * by the in-the-gaps method for which it is not a problem. + */ + freef = lp->free; + dirty = lp->dirty; + } + + if (lp->free != freef || lp->dirty != dirty) + goto out_print; + + if (is_idx && !(lp->flags & LPROPS_INDEX)) { + if (freef == c->leb_size) + /* Free but not unmapped LEB, it's fine */ + is_idx = 0; + else { + ubifs_err("indexing node without indexing flag"); + goto out_print; + } + } + + if (!is_idx && (lp->flags & LPROPS_INDEX)) { + ubifs_err("data node with indexing flag"); + goto out_print; + } + + if (freef == c->leb_size) + lst->empty_lebs += 1; + + if (is_idx) + lst->idx_lebs += 1; + + if (!(lp->flags & LPROPS_INDEX)) + lst->total_used += c->leb_size - freef - dirty; + lst->total_free += freef; + lst->total_dirty += dirty; + + if (!(lp->flags & LPROPS_INDEX)) { + int spc = freef + dirty; + + if (spc < c->dead_wm) + lst->total_dead += spc; + else + lst->total_dark += ubifs_calc_dark(c, spc); + } + + ubifs_scan_destroy(sleb); + vfree(buf); + return LPT_SCAN_CONTINUE; + +out_print: + ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d", + lnum, lp->free, lp->dirty, lp->flags, freef, dirty); + ubifs_dump_leb(c, lnum); +out_destroy: + ubifs_scan_destroy(sleb); + ret = -EINVAL; +out: + vfree(buf); + return ret; +} + +/** + * dbg_check_lprops - check all LEB properties. + * @c: UBIFS file-system description object + * + * This function checks all LEB properties and makes sure they are all correct. + * It returns zero if everything is fine, %-EINVAL if there is an inconsistency + * and other negative error codes in case of other errors. This function is + * called while the file system is locked (because of commit start), so no + * additional locking is required. Note that locking the LPT mutex would cause + * a circular lock dependency with the TNC mutex. + */ +int dbg_check_lprops(struct ubifs_info *c) +{ + int i, err; + struct ubifs_lp_stats lst; + + if (!dbg_is_chk_lprops(c)) + return 0; + + /* + * As we are going to scan the media, the write buffers have to be + * synchronized. + */ + for (i = 0; i < c->jhead_cnt; i++) { + err = ubifs_wbuf_sync(&c->jheads[i].wbuf); + if (err) + return err; + } + + memset(&lst, 0, sizeof(struct ubifs_lp_stats)); + err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, + (ubifs_lpt_scan_callback)scan_check_cb, + &lst); + if (err && err != -ENOSPC) + goto out; + + if (lst.empty_lebs != c->lst.empty_lebs || + lst.idx_lebs != c->lst.idx_lebs || + lst.total_free != c->lst.total_free || + lst.total_dirty != c->lst.total_dirty || + lst.total_used != c->lst.total_used) { + ubifs_err("bad overall accounting"); + ubifs_err("calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", + lst.empty_lebs, lst.idx_lebs, lst.total_free, + lst.total_dirty, lst.total_used); + ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", + c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, + c->lst.total_dirty, c->lst.total_used); + err = -EINVAL; + goto out; + } + + if (lst.total_dead != c->lst.total_dead || + lst.total_dark != c->lst.total_dark) { + ubifs_err("bad dead/dark space accounting"); + ubifs_err("calculated: total_dead %lld, total_dark %lld", + lst.total_dead, lst.total_dark); + ubifs_err("read from lprops: total_dead %lld, total_dark %lld", + c->lst.total_dead, c->lst.total_dark); + err = -EINVAL; + goto out; + } + + err = dbg_check_cats(c); +out: + return err; +} diff --git a/fs/ubifs/lpt.c b/fs/ubifs/lpt.c index 1a50d4c..c49d3b0 100644 --- a/fs/ubifs/lpt.c +++ b/fs/ubifs/lpt.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -44,8 +33,17 @@ */ #include "ubifs.h" -#include "crc16.h" +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/crc16.h> #include <linux/math64.h> +#include <linux/slab.h> +#else +#include <linux/compat.h> +#include <linux/err.h> +#include <ubi_uboot.h> +#include "crc16.h" +#endif /** * do_calc_lpt_geom - calculate sizes for the LPT area. @@ -159,6 +157,119 @@ int ubifs_calc_lpt_geom(struct ubifs_info *c) } /** + * calc_dflt_lpt_geom - calculate default LPT geometry. + * @c: the UBIFS file-system description object + * @main_lebs: number of main area LEBs is passed and returned here + * @big_lpt: whether the LPT area is "big" is returned here + * + * The size of the LPT area depends on parameters that themselves are dependent + * on the size of the LPT area. This function, successively recalculates the LPT + * area geometry until the parameters and resultant geometry are consistent. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, + int *big_lpt) +{ + int i, lebs_needed; + long long sz; + + /* Start by assuming the minimum number of LPT LEBs */ + c->lpt_lebs = UBIFS_MIN_LPT_LEBS; + c->main_lebs = *main_lebs - c->lpt_lebs; + if (c->main_lebs <= 0) + return -EINVAL; + + /* And assume we will use the small LPT model */ + c->big_lpt = 0; + + /* + * Calculate the geometry based on assumptions above and then see if it + * makes sense + */ + do_calc_lpt_geom(c); + + /* Small LPT model must have lpt_sz < leb_size */ + if (c->lpt_sz > c->leb_size) { + /* Nope, so try again using big LPT model */ + c->big_lpt = 1; + do_calc_lpt_geom(c); + } + + /* Now check there are enough LPT LEBs */ + for (i = 0; i < 64 ; i++) { + sz = c->lpt_sz * 4; /* Allow 4 times the size */ + lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); + if (lebs_needed > c->lpt_lebs) { + /* Not enough LPT LEBs so try again with more */ + c->lpt_lebs = lebs_needed; + c->main_lebs = *main_lebs - c->lpt_lebs; + if (c->main_lebs <= 0) + return -EINVAL; + do_calc_lpt_geom(c); + continue; + } + if (c->ltab_sz > c->leb_size) { + ubifs_err("LPT ltab too big"); + return -EINVAL; + } + *main_lebs = c->main_lebs; + *big_lpt = c->big_lpt; + return 0; + } + return -EINVAL; +} + +/** + * pack_bits - pack bit fields end-to-end. + * @addr: address at which to pack (passed and next address returned) + * @pos: bit position at which to pack (passed and next position returned) + * @val: value to pack + * @nrbits: number of bits of value to pack (1-32) + */ +static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits) +{ + uint8_t *p = *addr; + int b = *pos; + + ubifs_assert(nrbits > 0); + ubifs_assert(nrbits <= 32); + ubifs_assert(*pos >= 0); + ubifs_assert(*pos < 8); + ubifs_assert((val >> nrbits) == 0 || nrbits == 32); + if (b) { + *p |= ((uint8_t)val) << b; + nrbits += b; + if (nrbits > 8) { + *++p = (uint8_t)(val >>= (8 - b)); + if (nrbits > 16) { + *++p = (uint8_t)(val >>= 8); + if (nrbits > 24) { + *++p = (uint8_t)(val >>= 8); + if (nrbits > 32) + *++p = (uint8_t)(val >>= 8); + } + } + } + } else { + *p = (uint8_t)val; + if (nrbits > 8) { + *++p = (uint8_t)(val >>= 8); + if (nrbits > 16) { + *++p = (uint8_t)(val >>= 8); + if (nrbits > 24) + *++p = (uint8_t)(val >>= 8); + } + } + } + b = nrbits & 7; + if (b == 0) + p++; + *addr = p; + *pos = b; +} + +/** * ubifs_unpack_bits - unpack bit fields. * @addr: address at which to unpack (passed and next address returned) * @pos: bit position at which to unpack (passed and next position returned) @@ -228,6 +339,118 @@ uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits) } /** + * ubifs_pack_pnode - pack all the bit fields of a pnode. + * @c: UBIFS file-system description object + * @buf: buffer into which to pack + * @pnode: pnode to pack + */ +void ubifs_pack_pnode(struct ubifs_info *c, void *buf, + struct ubifs_pnode *pnode) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int i, pos = 0; + uint16_t crc; + + pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); + if (c->big_lpt) + pack_bits(&addr, &pos, pnode->num, c->pcnt_bits); + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + pack_bits(&addr, &pos, pnode->lprops[i].free >> 3, + c->space_bits); + pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3, + c->space_bits); + if (pnode->lprops[i].flags & LPROPS_INDEX) + pack_bits(&addr, &pos, 1, 1); + else + pack_bits(&addr, &pos, 0, 1); + } + crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, + c->pnode_sz - UBIFS_LPT_CRC_BYTES); + addr = buf; + pos = 0; + pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); +} + +/** + * ubifs_pack_nnode - pack all the bit fields of a nnode. + * @c: UBIFS file-system description object + * @buf: buffer into which to pack + * @nnode: nnode to pack + */ +void ubifs_pack_nnode(struct ubifs_info *c, void *buf, + struct ubifs_nnode *nnode) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int i, pos = 0; + uint16_t crc; + + pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); + if (c->big_lpt) + pack_bits(&addr, &pos, nnode->num, c->pcnt_bits); + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + int lnum = nnode->nbranch[i].lnum; + + if (lnum == 0) + lnum = c->lpt_last + 1; + pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); + pack_bits(&addr, &pos, nnode->nbranch[i].offs, + c->lpt_offs_bits); + } + crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, + c->nnode_sz - UBIFS_LPT_CRC_BYTES); + addr = buf; + pos = 0; + pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); +} + +/** + * ubifs_pack_ltab - pack the LPT's own lprops table. + * @c: UBIFS file-system description object + * @buf: buffer into which to pack + * @ltab: LPT's own lprops table to pack + */ +void ubifs_pack_ltab(struct ubifs_info *c, void *buf, + struct ubifs_lpt_lprops *ltab) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int i, pos = 0; + uint16_t crc; + + pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); + for (i = 0; i < c->lpt_lebs; i++) { + pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits); + pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits); + } + crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, + c->ltab_sz - UBIFS_LPT_CRC_BYTES); + addr = buf; + pos = 0; + pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); +} + +/** + * ubifs_pack_lsave - pack the LPT's save table. + * @c: UBIFS file-system description object + * @buf: buffer into which to pack + * @lsave: LPT's save table to pack + */ +void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int i, pos = 0; + uint16_t crc; + + pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); + for (i = 0; i < c->lsave_cnt; i++) + pack_bits(&addr, &pos, lsave[i], c->lnum_bits); + crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, + c->lsave_sz - UBIFS_LPT_CRC_BYTES); + addr = buf; + pos = 0; + pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); +} + +/** * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. * @c: UBIFS file-system description object * @lnum: LEB number to which to add dirty space @@ -244,6 +467,23 @@ void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) } /** + * set_ltab - set LPT LEB properties. + * @c: UBIFS file-system description object + * @lnum: LEB number + * @free: amount of free space + * @dirty: amount of dirty space + */ +static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) +{ + dbg_lp("LEB %d free %d dirty %d to %d %d", + lnum, c->ltab[lnum - c->lpt_first].free, + c->ltab[lnum - c->lpt_first].dirty, free, dirty); + ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); + c->ltab[lnum - c->lpt_first].free = free; + c->ltab[lnum - c->lpt_first].dirty = dirty; +} + +/** * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. * @c: UBIFS file-system description object * @nnode: nnode for which to add dirt @@ -276,6 +516,31 @@ static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) } /** + * calc_nnode_num - calculate nnode number. + * @row: the row in the tree (root is zero) + * @col: the column in the row (leftmost is zero) + * + * The nnode number is a number that uniquely identifies a nnode and can be used + * easily to traverse the tree from the root to that nnode. + * + * This function calculates and returns the nnode number for the nnode at @row + * and @col. + */ +static int calc_nnode_num(int row, int col) +{ + int num, bits; + + num = 1; + while (row--) { + bits = (col & (UBIFS_LPT_FANOUT - 1)); + col >>= UBIFS_LPT_FANOUT_SHIFT; + num <<= UBIFS_LPT_FANOUT_SHIFT; + num |= bits; + } + return num; +} + +/** * calc_nnode_num_from_parent - calculate nnode number. * @c: UBIFS file-system description object * @parent: parent nnode @@ -328,6 +593,269 @@ static int calc_pnode_num_from_parent(const struct ubifs_info *c, } /** + * ubifs_create_dflt_lpt - create default LPT. + * @c: UBIFS file-system description object + * @main_lebs: number of main area LEBs is passed and returned here + * @lpt_first: LEB number of first LPT LEB + * @lpt_lebs: number of LEBs for LPT is passed and returned here + * @big_lpt: use big LPT model is passed and returned here + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, + int *lpt_lebs, int *big_lpt) +{ + int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; + int blnum, boffs, bsz, bcnt; + struct ubifs_pnode *pnode = NULL; + struct ubifs_nnode *nnode = NULL; + void *buf = NULL, *p; + struct ubifs_lpt_lprops *ltab = NULL; + int *lsave = NULL; + + err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); + if (err) + return err; + *lpt_lebs = c->lpt_lebs; + + /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ + c->lpt_first = lpt_first; + /* Needed by 'set_ltab()' */ + c->lpt_last = lpt_first + c->lpt_lebs - 1; + /* Needed by 'ubifs_pack_lsave()' */ + c->main_first = c->leb_cnt - *main_lebs; + + lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL); + pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); + nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); + buf = vmalloc(c->leb_size); + ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); + if (!pnode || !nnode || !buf || !ltab || !lsave) { + err = -ENOMEM; + goto out; + } + + ubifs_assert(!c->ltab); + c->ltab = ltab; /* Needed by set_ltab */ + + /* Initialize LPT's own lprops */ + for (i = 0; i < c->lpt_lebs; i++) { + ltab[i].free = c->leb_size; + ltab[i].dirty = 0; + ltab[i].tgc = 0; + ltab[i].cmt = 0; + } + + lnum = lpt_first; + p = buf; + /* Number of leaf nodes (pnodes) */ + cnt = c->pnode_cnt; + + /* + * The first pnode contains the LEB properties for the LEBs that contain + * the root inode node and the root index node of the index tree. + */ + node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); + iopos = ALIGN(node_sz, c->min_io_size); + pnode->lprops[0].free = c->leb_size - iopos; + pnode->lprops[0].dirty = iopos - node_sz; + pnode->lprops[0].flags = LPROPS_INDEX; + + node_sz = UBIFS_INO_NODE_SZ; + iopos = ALIGN(node_sz, c->min_io_size); + pnode->lprops[1].free = c->leb_size - iopos; + pnode->lprops[1].dirty = iopos - node_sz; + + for (i = 2; i < UBIFS_LPT_FANOUT; i++) + pnode->lprops[i].free = c->leb_size; + + /* Add first pnode */ + ubifs_pack_pnode(c, p, pnode); + p += c->pnode_sz; + len = c->pnode_sz; + pnode->num += 1; + + /* Reset pnode values for remaining pnodes */ + pnode->lprops[0].free = c->leb_size; + pnode->lprops[0].dirty = 0; + pnode->lprops[0].flags = 0; + + pnode->lprops[1].free = c->leb_size; + pnode->lprops[1].dirty = 0; + + /* + * To calculate the internal node branches, we keep information about + * the level below. + */ + blnum = lnum; /* LEB number of level below */ + boffs = 0; /* Offset of level below */ + bcnt = cnt; /* Number of nodes in level below */ + bsz = c->pnode_sz; /* Size of nodes in level below */ + + /* Add all remaining pnodes */ + for (i = 1; i < cnt; i++) { + if (len + c->pnode_sz > c->leb_size) { + alen = ALIGN(len, c->min_io_size); + set_ltab(c, lnum, c->leb_size - alen, alen - len); + memset(p, 0xff, alen - len); + err = ubifs_leb_change(c, lnum++, buf, alen); + if (err) + goto out; + p = buf; + len = 0; + } + ubifs_pack_pnode(c, p, pnode); + p += c->pnode_sz; + len += c->pnode_sz; + /* + * pnodes are simply numbered left to right starting at zero, + * which means the pnode number can be used easily to traverse + * down the tree to the corresponding pnode. + */ + pnode->num += 1; + } + + row = 0; + for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) + row += 1; + /* Add all nnodes, one level at a time */ + while (1) { + /* Number of internal nodes (nnodes) at next level */ + cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); + for (i = 0; i < cnt; i++) { + if (len + c->nnode_sz > c->leb_size) { + alen = ALIGN(len, c->min_io_size); + set_ltab(c, lnum, c->leb_size - alen, + alen - len); + memset(p, 0xff, alen - len); + err = ubifs_leb_change(c, lnum++, buf, alen); + if (err) + goto out; + p = buf; + len = 0; + } + /* Only 1 nnode at this level, so it is the root */ + if (cnt == 1) { + c->lpt_lnum = lnum; + c->lpt_offs = len; + } + /* Set branches to the level below */ + for (j = 0; j < UBIFS_LPT_FANOUT; j++) { + if (bcnt) { + if (boffs + bsz > c->leb_size) { + blnum += 1; + boffs = 0; + } + nnode->nbranch[j].lnum = blnum; + nnode->nbranch[j].offs = boffs; + boffs += bsz; + bcnt--; + } else { + nnode->nbranch[j].lnum = 0; + nnode->nbranch[j].offs = 0; + } + } + nnode->num = calc_nnode_num(row, i); + ubifs_pack_nnode(c, p, nnode); + p += c->nnode_sz; + len += c->nnode_sz; + } + /* Only 1 nnode at this level, so it is the root */ + if (cnt == 1) + break; + /* Update the information about the level below */ + bcnt = cnt; + bsz = c->nnode_sz; + row -= 1; + } + + if (*big_lpt) { + /* Need to add LPT's save table */ + if (len + c->lsave_sz > c->leb_size) { + alen = ALIGN(len, c->min_io_size); + set_ltab(c, lnum, c->leb_size - alen, alen - len); + memset(p, 0xff, alen - len); + err = ubifs_leb_change(c, lnum++, buf, alen); + if (err) + goto out; + p = buf; + len = 0; + } + + c->lsave_lnum = lnum; + c->lsave_offs = len; + + for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) + lsave[i] = c->main_first + i; + for (; i < c->lsave_cnt; i++) + lsave[i] = c->main_first; + + ubifs_pack_lsave(c, p, lsave); + p += c->lsave_sz; + len += c->lsave_sz; + } + + /* Need to add LPT's own LEB properties table */ + if (len + c->ltab_sz > c->leb_size) { + alen = ALIGN(len, c->min_io_size); + set_ltab(c, lnum, c->leb_size - alen, alen - len); + memset(p, 0xff, alen - len); + err = ubifs_leb_change(c, lnum++, buf, alen); + if (err) + goto out; + p = buf; + len = 0; + } + + c->ltab_lnum = lnum; + c->ltab_offs = len; + + /* Update ltab before packing it */ + len += c->ltab_sz; + alen = ALIGN(len, c->min_io_size); + set_ltab(c, lnum, c->leb_size - alen, alen - len); + + ubifs_pack_ltab(c, p, ltab); + p += c->ltab_sz; + + /* Write remaining buffer */ + memset(p, 0xff, alen - len); + err = ubifs_leb_change(c, lnum, buf, alen); + if (err) + goto out; + + c->nhead_lnum = lnum; + c->nhead_offs = ALIGN(len, c->min_io_size); + + dbg_lp("space_bits %d", c->space_bits); + dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); + dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); + dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); + dbg_lp("pcnt_bits %d", c->pcnt_bits); + dbg_lp("lnum_bits %d", c->lnum_bits); + dbg_lp("pnode_sz %d", c->pnode_sz); + dbg_lp("nnode_sz %d", c->nnode_sz); + dbg_lp("ltab_sz %d", c->ltab_sz); + dbg_lp("lsave_sz %d", c->lsave_sz); + dbg_lp("lsave_cnt %d", c->lsave_cnt); + dbg_lp("lpt_hght %d", c->lpt_hght); + dbg_lp("big_lpt %d", c->big_lpt); + dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); + dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); + dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); + if (c->big_lpt) + dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); +out: + c->ltab = NULL; + kfree(lsave); + vfree(ltab); + vfree(buf); + kfree(nnode); + kfree(pnode); + return err; +} + +/** * update_cats - add LEB properties of a pnode to LEB category lists and heaps. * @c: UBIFS file-system description object * @pnode: pnode @@ -392,7 +920,7 @@ static int check_lpt_crc(void *buf, int len) if (crc != calc_crc) { ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc, calc_crc); - dbg_dump_stack(); + dump_stack(); return -EINVAL; } return 0; @@ -415,7 +943,7 @@ static int check_lpt_type(uint8_t **addr, int *pos, int type) if (node_type != type) { ubifs_err("invalid type (%d) in LPT node type %d", node_type, type); - dbg_dump_stack(); + dump_stack(); return -EINVAL; } return 0; @@ -524,6 +1052,34 @@ static int unpack_ltab(const struct ubifs_info *c, void *buf) return err; } +#ifndef __UBOOT__ +/** + * unpack_lsave - unpack the LPT's save table. + * @c: UBIFS file-system description object + * @buf: buffer from which to unpack + * + * This function returns %0 on success and a negative error code on failure. + */ +static int unpack_lsave(const struct ubifs_info *c, void *buf) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int i, pos = 0, err; + + err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE); + if (err) + return err; + for (i = 0; i < c->lsave_cnt; i++) { + int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits); + + if (lnum < c->main_first || lnum >= c->leb_cnt) + return -EINVAL; + c->lsave[i] = lnum; + } + err = check_lpt_crc(buf, c->lsave_sz); + return err; +} +#endif + /** * validate_nnode - validate a nnode. * @c: UBIFS file-system description object @@ -662,7 +1218,7 @@ int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) if (c->big_lpt) nnode->num = calc_nnode_num_from_parent(c, parent, iip); } else { - err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz); + err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1); if (err) goto out; err = ubifs_unpack_nnode(c, buf, nnode); @@ -687,6 +1243,7 @@ int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) out: ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs); + dump_stack(); kfree(nnode); return err; } @@ -710,10 +1267,9 @@ static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) lnum = branch->lnum; offs = branch->offs; pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); - if (!pnode) { - err = -ENOMEM; - goto out; - } + if (!pnode) + return -ENOMEM; + if (lnum == 0) { /* * This pnode was not written which just means that the LEB @@ -731,7 +1287,7 @@ static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) lprops->flags = ubifs_categorize_lprops(c, lprops); } } else { - err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz); + err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1); if (err) goto out; err = unpack_pnode(c, buf, pnode); @@ -752,8 +1308,9 @@ static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) out: ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs); - dbg_dump_pnode(c, pnode, parent, iip); - dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); + ubifs_dump_pnode(c, pnode, parent, iip); + dump_stack(); + ubifs_err("calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); kfree(pnode); return err; } @@ -772,7 +1329,7 @@ static int read_ltab(struct ubifs_info *c) buf = vmalloc(c->ltab_sz); if (!buf) return -ENOMEM; - err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz); + err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1); if (err) goto out; err = unpack_ltab(c, buf); @@ -781,6 +1338,50 @@ out: return err; } +#ifndef __UBOOT__ +/** + * read_lsave - read LPT's save table. + * @c: UBIFS file-system description object + * + * This function returns %0 on success and a negative error code on failure. + */ +static int read_lsave(struct ubifs_info *c) +{ + int err, i; + void *buf; + + buf = vmalloc(c->lsave_sz); + if (!buf) + return -ENOMEM; + err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs, + c->lsave_sz, 1); + if (err) + goto out; + err = unpack_lsave(c, buf); + if (err) + goto out; + for (i = 0; i < c->lsave_cnt; i++) { + int lnum = c->lsave[i]; + struct ubifs_lprops *lprops; + + /* + * Due to automatic resizing, the values in the lsave table + * could be beyond the volume size - just ignore them. + */ + if (lnum >= c->leb_cnt) + continue; + lprops = ubifs_lpt_lookup(c, lnum); + if (IS_ERR(lprops)) { + err = PTR_ERR(lprops); + goto out; + } + } +out: + vfree(buf); + return err; +} +#endif + /** * ubifs_get_nnode - get a nnode. * @c: UBIFS file-system description object @@ -861,13 +1462,13 @@ struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) shft -= UBIFS_LPT_FANOUT_SHIFT; nnode = ubifs_get_nnode(c, nnode, iip); if (IS_ERR(nnode)) - return ERR_PTR(PTR_ERR(nnode)); + return ERR_CAST(nnode); } iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); shft -= UBIFS_LPT_FANOUT_SHIFT; pnode = ubifs_get_pnode(c, nnode, iip); if (IS_ERR(pnode)) - return ERR_PTR(PTR_ERR(pnode)); + return ERR_CAST(pnode); iip = (i & (UBIFS_LPT_FANOUT - 1)); dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, pnode->lprops[iip].free, pnode->lprops[iip].dirty, @@ -990,7 +1591,7 @@ struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) nnode = c->nroot; nnode = dirty_cow_nnode(c, nnode); if (IS_ERR(nnode)) - return ERR_PTR(PTR_ERR(nnode)); + return ERR_CAST(nnode); i = lnum - c->main_first; shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; for (h = 1; h < c->lpt_hght; h++) { @@ -998,19 +1599,19 @@ struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) shft -= UBIFS_LPT_FANOUT_SHIFT; nnode = ubifs_get_nnode(c, nnode, iip); if (IS_ERR(nnode)) - return ERR_PTR(PTR_ERR(nnode)); + return ERR_CAST(nnode); nnode = dirty_cow_nnode(c, nnode); if (IS_ERR(nnode)) - return ERR_PTR(PTR_ERR(nnode)); + return ERR_CAST(nnode); } iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); shft -= UBIFS_LPT_FANOUT_SHIFT; pnode = ubifs_get_pnode(c, nnode, iip); if (IS_ERR(pnode)) - return ERR_PTR(PTR_ERR(pnode)); + return ERR_CAST(pnode); pnode = dirty_cow_pnode(c, pnode); if (IS_ERR(pnode)) - return ERR_PTR(PTR_ERR(pnode)); + return ERR_CAST(pnode); iip = (i & (UBIFS_LPT_FANOUT - 1)); dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, pnode->lprops[iip].free, pnode->lprops[iip].dirty, @@ -1079,6 +1680,47 @@ static int lpt_init_rd(struct ubifs_info *c) return 0; } +#ifndef __UBOOT__ +/** + * lpt_init_wr - initialize the LPT for writing. + * @c: UBIFS file-system description object + * + * 'lpt_init_rd()' must have been called already. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int lpt_init_wr(struct ubifs_info *c) +{ + int err, i; + + c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); + if (!c->ltab_cmt) + return -ENOMEM; + + c->lpt_buf = vmalloc(c->leb_size); + if (!c->lpt_buf) + return -ENOMEM; + + if (c->big_lpt) { + c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS); + if (!c->lsave) + return -ENOMEM; + err = read_lsave(c); + if (err) + return err; + } + + for (i = 0; i < c->lpt_lebs; i++) + if (c->ltab[i].free == c->leb_size) { + err = ubifs_leb_unmap(c, i + c->lpt_first); + if (err) + return err; + } + + return 0; +} +#endif + /** * ubifs_lpt_init - initialize the LPT. * @c: UBIFS file-system description object @@ -1098,8 +1740,546 @@ int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) if (rd) { err = lpt_init_rd(c); if (err) + goto out_err; + } + +#ifndef __UBOOT__ + if (wr) { + err = lpt_init_wr(c); + if (err) + goto out_err; + } +#endif + + return 0; + +out_err: +#ifndef __UBOOT__ + if (wr) + ubifs_lpt_free(c, 1); +#endif + if (rd) + ubifs_lpt_free(c, 0); + return err; +} + +/** + * struct lpt_scan_node - somewhere to put nodes while we scan LPT. + * @nnode: where to keep a nnode + * @pnode: where to keep a pnode + * @cnode: where to keep a cnode + * @in_tree: is the node in the tree in memory + * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in + * the tree + * @ptr.pnode: ditto for pnode + * @ptr.cnode: ditto for cnode + */ +struct lpt_scan_node { + union { + struct ubifs_nnode nnode; + struct ubifs_pnode pnode; + struct ubifs_cnode cnode; + }; + int in_tree; + union { + struct ubifs_nnode *nnode; + struct ubifs_pnode *pnode; + struct ubifs_cnode *cnode; + } ptr; +}; + +/** + * scan_get_nnode - for the scan, get a nnode from either the tree or flash. + * @c: the UBIFS file-system description object + * @path: where to put the nnode + * @parent: parent of the nnode + * @iip: index in parent of the nnode + * + * This function returns a pointer to the nnode on success or a negative error + * code on failure. + */ +static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, + struct lpt_scan_node *path, + struct ubifs_nnode *parent, int iip) +{ + struct ubifs_nbranch *branch; + struct ubifs_nnode *nnode; + void *buf = c->lpt_nod_buf; + int err; + + branch = &parent->nbranch[iip]; + nnode = branch->nnode; + if (nnode) { + path->in_tree = 1; + path->ptr.nnode = nnode; + return nnode; + } + nnode = &path->nnode; + path->in_tree = 0; + path->ptr.nnode = nnode; + memset(nnode, 0, sizeof(struct ubifs_nnode)); + if (branch->lnum == 0) { + /* + * This nnode was not written which just means that the LEB + * properties in the subtree below it describe empty LEBs. We + * make the nnode as though we had read it, which in fact means + * doing almost nothing. + */ + if (c->big_lpt) + nnode->num = calc_nnode_num_from_parent(c, parent, iip); + } else { + err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, + c->nnode_sz, 1); + if (err) + return ERR_PTR(err); + err = ubifs_unpack_nnode(c, buf, nnode); + if (err) + return ERR_PTR(err); + } + err = validate_nnode(c, nnode, parent, iip); + if (err) + return ERR_PTR(err); + if (!c->big_lpt) + nnode->num = calc_nnode_num_from_parent(c, parent, iip); + nnode->level = parent->level - 1; + nnode->parent = parent; + nnode->iip = iip; + return nnode; +} + +/** + * scan_get_pnode - for the scan, get a pnode from either the tree or flash. + * @c: the UBIFS file-system description object + * @path: where to put the pnode + * @parent: parent of the pnode + * @iip: index in parent of the pnode + * + * This function returns a pointer to the pnode on success or a negative error + * code on failure. + */ +static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, + struct lpt_scan_node *path, + struct ubifs_nnode *parent, int iip) +{ + struct ubifs_nbranch *branch; + struct ubifs_pnode *pnode; + void *buf = c->lpt_nod_buf; + int err; + + branch = &parent->nbranch[iip]; + pnode = branch->pnode; + if (pnode) { + path->in_tree = 1; + path->ptr.pnode = pnode; + return pnode; + } + pnode = &path->pnode; + path->in_tree = 0; + path->ptr.pnode = pnode; + memset(pnode, 0, sizeof(struct ubifs_pnode)); + if (branch->lnum == 0) { + /* + * This pnode was not written which just means that the LEB + * properties in it describe empty LEBs. We make the pnode as + * though we had read it. + */ + int i; + + if (c->big_lpt) + pnode->num = calc_pnode_num_from_parent(c, parent, iip); + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + struct ubifs_lprops * const lprops = &pnode->lprops[i]; + + lprops->free = c->leb_size; + lprops->flags = ubifs_categorize_lprops(c, lprops); + } + } else { + ubifs_assert(branch->lnum >= c->lpt_first && + branch->lnum <= c->lpt_last); + ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size); + err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, + c->pnode_sz, 1); + if (err) + return ERR_PTR(err); + err = unpack_pnode(c, buf, pnode); + if (err) + return ERR_PTR(err); + } + err = validate_pnode(c, pnode, parent, iip); + if (err) + return ERR_PTR(err); + if (!c->big_lpt) + pnode->num = calc_pnode_num_from_parent(c, parent, iip); + pnode->parent = parent; + pnode->iip = iip; + set_pnode_lnum(c, pnode); + return pnode; +} + +/** + * ubifs_lpt_scan_nolock - scan the LPT. + * @c: the UBIFS file-system description object + * @start_lnum: LEB number from which to start scanning + * @end_lnum: LEB number at which to stop scanning + * @scan_cb: callback function called for each lprops + * @data: data to be passed to the callback function + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, + ubifs_lpt_scan_callback scan_cb, void *data) +{ + int err = 0, i, h, iip, shft; + struct ubifs_nnode *nnode; + struct ubifs_pnode *pnode; + struct lpt_scan_node *path; + + if (start_lnum == -1) { + start_lnum = end_lnum + 1; + if (start_lnum >= c->leb_cnt) + start_lnum = c->main_first; + } + + ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt); + ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt); + + if (!c->nroot) { + err = ubifs_read_nnode(c, NULL, 0); + if (err) return err; } + path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1), + GFP_NOFS); + if (!path) + return -ENOMEM; + + path[0].ptr.nnode = c->nroot; + path[0].in_tree = 1; +again: + /* Descend to the pnode containing start_lnum */ + nnode = c->nroot; + i = start_lnum - c->main_first; + shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; + for (h = 1; h < c->lpt_hght; h++) { + iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); + shft -= UBIFS_LPT_FANOUT_SHIFT; + nnode = scan_get_nnode(c, path + h, nnode, iip); + if (IS_ERR(nnode)) { + err = PTR_ERR(nnode); + goto out; + } + } + iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); + shft -= UBIFS_LPT_FANOUT_SHIFT; + pnode = scan_get_pnode(c, path + h, nnode, iip); + if (IS_ERR(pnode)) { + err = PTR_ERR(pnode); + goto out; + } + iip = (i & (UBIFS_LPT_FANOUT - 1)); + + /* Loop for each lprops */ + while (1) { + struct ubifs_lprops *lprops = &pnode->lprops[iip]; + int ret, lnum = lprops->lnum; + + ret = scan_cb(c, lprops, path[h].in_tree, data); + if (ret < 0) { + err = ret; + goto out; + } + if (ret & LPT_SCAN_ADD) { + /* Add all the nodes in path to the tree in memory */ + for (h = 1; h < c->lpt_hght; h++) { + const size_t sz = sizeof(struct ubifs_nnode); + struct ubifs_nnode *parent; + + if (path[h].in_tree) + continue; + nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS); + if (!nnode) { + err = -ENOMEM; + goto out; + } + parent = nnode->parent; + parent->nbranch[nnode->iip].nnode = nnode; + path[h].ptr.nnode = nnode; + path[h].in_tree = 1; + path[h + 1].cnode.parent = nnode; + } + if (path[h].in_tree) + ubifs_ensure_cat(c, lprops); + else { + const size_t sz = sizeof(struct ubifs_pnode); + struct ubifs_nnode *parent; + + pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS); + if (!pnode) { + err = -ENOMEM; + goto out; + } + parent = pnode->parent; + parent->nbranch[pnode->iip].pnode = pnode; + path[h].ptr.pnode = pnode; + path[h].in_tree = 1; + update_cats(c, pnode); + c->pnodes_have += 1; + } + err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) + c->nroot, 0, 0); + if (err) + goto out; + err = dbg_check_cats(c); + if (err) + goto out; + } + if (ret & LPT_SCAN_STOP) { + err = 0; + break; + } + /* Get the next lprops */ + if (lnum == end_lnum) { + /* + * We got to the end without finding what we were + * looking for + */ + err = -ENOSPC; + goto out; + } + if (lnum + 1 >= c->leb_cnt) { + /* Wrap-around to the beginning */ + start_lnum = c->main_first; + goto again; + } + if (iip + 1 < UBIFS_LPT_FANOUT) { + /* Next lprops is in the same pnode */ + iip += 1; + continue; + } + /* We need to get the next pnode. Go up until we can go right */ + iip = pnode->iip; + while (1) { + h -= 1; + ubifs_assert(h >= 0); + nnode = path[h].ptr.nnode; + if (iip + 1 < UBIFS_LPT_FANOUT) + break; + iip = nnode->iip; + } + /* Go right */ + iip += 1; + /* Descend to the pnode */ + h += 1; + for (; h < c->lpt_hght; h++) { + nnode = scan_get_nnode(c, path + h, nnode, iip); + if (IS_ERR(nnode)) { + err = PTR_ERR(nnode); + goto out; + } + iip = 0; + } + pnode = scan_get_pnode(c, path + h, nnode, iip); + if (IS_ERR(pnode)) { + err = PTR_ERR(pnode); + goto out; + } + iip = 0; + } +out: + kfree(path); + return err; +} + +/** + * dbg_chk_pnode - check a pnode. + * @c: the UBIFS file-system description object + * @pnode: pnode to check + * @col: pnode column + * + * This function returns %0 on success and a negative error code on failure. + */ +static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, + int col) +{ + int i; + + if (pnode->num != col) { + ubifs_err("pnode num %d expected %d parent num %d iip %d", + pnode->num, col, pnode->parent->num, pnode->iip); + return -EINVAL; + } + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; + int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + + c->main_first; + int found, cat = lprops->flags & LPROPS_CAT_MASK; + struct ubifs_lpt_heap *heap; + struct list_head *list = NULL; + + if (lnum >= c->leb_cnt) + continue; + if (lprops->lnum != lnum) { + ubifs_err("bad LEB number %d expected %d", + lprops->lnum, lnum); + return -EINVAL; + } + if (lprops->flags & LPROPS_TAKEN) { + if (cat != LPROPS_UNCAT) { + ubifs_err("LEB %d taken but not uncat %d", + lprops->lnum, cat); + return -EINVAL; + } + continue; + } + if (lprops->flags & LPROPS_INDEX) { + switch (cat) { + case LPROPS_UNCAT: + case LPROPS_DIRTY_IDX: + case LPROPS_FRDI_IDX: + break; + default: + ubifs_err("LEB %d index but cat %d", + lprops->lnum, cat); + return -EINVAL; + } + } else { + switch (cat) { + case LPROPS_UNCAT: + case LPROPS_DIRTY: + case LPROPS_FREE: + case LPROPS_EMPTY: + case LPROPS_FREEABLE: + break; + default: + ubifs_err("LEB %d not index but cat %d", + lprops->lnum, cat); + return -EINVAL; + } + } + switch (cat) { + case LPROPS_UNCAT: + list = &c->uncat_list; + break; + case LPROPS_EMPTY: + list = &c->empty_list; + break; + case LPROPS_FREEABLE: + list = &c->freeable_list; + break; + case LPROPS_FRDI_IDX: + list = &c->frdi_idx_list; + break; + } + found = 0; + switch (cat) { + case LPROPS_DIRTY: + case LPROPS_DIRTY_IDX: + case LPROPS_FREE: + heap = &c->lpt_heap[cat - 1]; + if (lprops->hpos < heap->cnt && + heap->arr[lprops->hpos] == lprops) + found = 1; + break; + case LPROPS_UNCAT: + case LPROPS_EMPTY: + case LPROPS_FREEABLE: + case LPROPS_FRDI_IDX: + list_for_each_entry(lp, list, list) + if (lprops == lp) { + found = 1; + break; + } + break; + } + if (!found) { + ubifs_err("LEB %d cat %d not found in cat heap/list", + lprops->lnum, cat); + return -EINVAL; + } + switch (cat) { + case LPROPS_EMPTY: + if (lprops->free != c->leb_size) { + ubifs_err("LEB %d cat %d free %d dirty %d", + lprops->lnum, cat, lprops->free, + lprops->dirty); + return -EINVAL; + } + case LPROPS_FREEABLE: + case LPROPS_FRDI_IDX: + if (lprops->free + lprops->dirty != c->leb_size) { + ubifs_err("LEB %d cat %d free %d dirty %d", + lprops->lnum, cat, lprops->free, + lprops->dirty); + return -EINVAL; + } + } + } + return 0; +} + +/** + * dbg_check_lpt_nodes - check nnodes and pnodes. + * @c: the UBIFS file-system description object + * @cnode: next cnode (nnode or pnode) to check + * @row: row of cnode (root is zero) + * @col: column of cnode (leftmost is zero) + * + * This function returns %0 on success and a negative error code on failure. + */ +int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, + int row, int col) +{ + struct ubifs_nnode *nnode, *nn; + struct ubifs_cnode *cn; + int num, iip = 0, err; + + if (!dbg_is_chk_lprops(c)) + return 0; + + while (cnode) { + ubifs_assert(row >= 0); + nnode = cnode->parent; + if (cnode->level) { + /* cnode is a nnode */ + num = calc_nnode_num(row, col); + if (cnode->num != num) { + ubifs_err("nnode num %d expected %d parent num %d iip %d", + cnode->num, num, + (nnode ? nnode->num : 0), cnode->iip); + return -EINVAL; + } + nn = (struct ubifs_nnode *)cnode; + while (iip < UBIFS_LPT_FANOUT) { + cn = nn->nbranch[iip].cnode; + if (cn) { + /* Go down */ + row += 1; + col <<= UBIFS_LPT_FANOUT_SHIFT; + col += iip; + iip = 0; + cnode = cn; + break; + } + /* Go right */ + iip += 1; + } + if (iip < UBIFS_LPT_FANOUT) + continue; + } else { + struct ubifs_pnode *pnode; + + /* cnode is a pnode */ + pnode = (struct ubifs_pnode *)cnode; + err = dbg_chk_pnode(c, pnode, col); + if (err) + return err; + } + /* Go up and to the right */ + row -= 1; + col >>= UBIFS_LPT_FANOUT_SHIFT; + iip = cnode->iip + 1; + cnode = (struct ubifs_cnode *)nnode; + } return 0; } diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c index c0af818..cad422e 100644 --- a/fs/ubifs/lpt_commit.c +++ b/fs/ubifs/lpt_commit.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -25,9 +14,1284 @@ * subsystem. */ +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/crc16.h> +#include <linux/slab.h> +#include <linux/random.h> +#else +#include <linux/compat.h> +#include <linux/err.h> #include "crc16.h" +#endif #include "ubifs.h" +#ifndef __UBOOT__ +static int dbg_populate_lsave(struct ubifs_info *c); +#endif + +/** + * first_dirty_cnode - find first dirty cnode. + * @c: UBIFS file-system description object + * @nnode: nnode at which to start + * + * This function returns the first dirty cnode or %NULL if there is not one. + */ +static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode) +{ + ubifs_assert(nnode); + while (1) { + int i, cont = 0; + + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + struct ubifs_cnode *cnode; + + cnode = nnode->nbranch[i].cnode; + if (cnode && + test_bit(DIRTY_CNODE, &cnode->flags)) { + if (cnode->level == 0) + return cnode; + nnode = (struct ubifs_nnode *)cnode; + cont = 1; + break; + } + } + if (!cont) + return (struct ubifs_cnode *)nnode; + } +} + +/** + * next_dirty_cnode - find next dirty cnode. + * @cnode: cnode from which to begin searching + * + * This function returns the next dirty cnode or %NULL if there is not one. + */ +static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode) +{ + struct ubifs_nnode *nnode; + int i; + + ubifs_assert(cnode); + nnode = cnode->parent; + if (!nnode) + return NULL; + for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { + cnode = nnode->nbranch[i].cnode; + if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { + if (cnode->level == 0) + return cnode; /* cnode is a pnode */ + /* cnode is a nnode */ + return first_dirty_cnode((struct ubifs_nnode *)cnode); + } + } + return (struct ubifs_cnode *)nnode; +} + +/** + * get_cnodes_to_commit - create list of dirty cnodes to commit. + * @c: UBIFS file-system description object + * + * This function returns the number of cnodes to commit. + */ +static int get_cnodes_to_commit(struct ubifs_info *c) +{ + struct ubifs_cnode *cnode, *cnext; + int cnt = 0; + + if (!c->nroot) + return 0; + + if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) + return 0; + + c->lpt_cnext = first_dirty_cnode(c->nroot); + cnode = c->lpt_cnext; + if (!cnode) + return 0; + cnt += 1; + while (1) { + ubifs_assert(!test_bit(COW_CNODE, &cnode->flags)); + __set_bit(COW_CNODE, &cnode->flags); + cnext = next_dirty_cnode(cnode); + if (!cnext) { + cnode->cnext = c->lpt_cnext; + break; + } + cnode->cnext = cnext; + cnode = cnext; + cnt += 1; + } + dbg_cmt("committing %d cnodes", cnt); + dbg_lp("committing %d cnodes", cnt); + ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); + return cnt; +} + +/** + * upd_ltab - update LPT LEB properties. + * @c: UBIFS file-system description object + * @lnum: LEB number + * @free: amount of free space + * @dirty: amount of dirty space to add + */ +static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) +{ + dbg_lp("LEB %d free %d dirty %d to %d +%d", + lnum, c->ltab[lnum - c->lpt_first].free, + c->ltab[lnum - c->lpt_first].dirty, free, dirty); + ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); + c->ltab[lnum - c->lpt_first].free = free; + c->ltab[lnum - c->lpt_first].dirty += dirty; +} + +/** + * alloc_lpt_leb - allocate an LPT LEB that is empty. + * @c: UBIFS file-system description object + * @lnum: LEB number is passed and returned here + * + * This function finds the next empty LEB in the ltab starting from @lnum. If a + * an empty LEB is found it is returned in @lnum and the function returns %0. + * Otherwise the function returns -ENOSPC. Note however, that LPT is designed + * never to run out of space. + */ +static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) +{ + int i, n; + + n = *lnum - c->lpt_first + 1; + for (i = n; i < c->lpt_lebs; i++) { + if (c->ltab[i].tgc || c->ltab[i].cmt) + continue; + if (c->ltab[i].free == c->leb_size) { + c->ltab[i].cmt = 1; + *lnum = i + c->lpt_first; + return 0; + } + } + + for (i = 0; i < n; i++) { + if (c->ltab[i].tgc || c->ltab[i].cmt) + continue; + if (c->ltab[i].free == c->leb_size) { + c->ltab[i].cmt = 1; + *lnum = i + c->lpt_first; + return 0; + } + } + return -ENOSPC; +} + +/** + * layout_cnodes - layout cnodes for commit. + * @c: UBIFS file-system description object + * + * This function returns %0 on success and a negative error code on failure. + */ +static int layout_cnodes(struct ubifs_info *c) +{ + int lnum, offs, len, alen, done_lsave, done_ltab, err; + struct ubifs_cnode *cnode; + + err = dbg_chk_lpt_sz(c, 0, 0); + if (err) + return err; + cnode = c->lpt_cnext; + if (!cnode) + return 0; + lnum = c->nhead_lnum; + offs = c->nhead_offs; + /* Try to place lsave and ltab nicely */ + done_lsave = !c->big_lpt; + done_ltab = 0; + if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { + done_lsave = 1; + c->lsave_lnum = lnum; + c->lsave_offs = offs; + offs += c->lsave_sz; + dbg_chk_lpt_sz(c, 1, c->lsave_sz); + } + + if (offs + c->ltab_sz <= c->leb_size) { + done_ltab = 1; + c->ltab_lnum = lnum; + c->ltab_offs = offs; + offs += c->ltab_sz; + dbg_chk_lpt_sz(c, 1, c->ltab_sz); + } + + do { + if (cnode->level) { + len = c->nnode_sz; + c->dirty_nn_cnt -= 1; + } else { + len = c->pnode_sz; + c->dirty_pn_cnt -= 1; + } + while (offs + len > c->leb_size) { + alen = ALIGN(offs, c->min_io_size); + upd_ltab(c, lnum, c->leb_size - alen, alen - offs); + dbg_chk_lpt_sz(c, 2, c->leb_size - offs); + err = alloc_lpt_leb(c, &lnum); + if (err) + goto no_space; + offs = 0; + ubifs_assert(lnum >= c->lpt_first && + lnum <= c->lpt_last); + /* Try to place lsave and ltab nicely */ + if (!done_lsave) { + done_lsave = 1; + c->lsave_lnum = lnum; + c->lsave_offs = offs; + offs += c->lsave_sz; + dbg_chk_lpt_sz(c, 1, c->lsave_sz); + continue; + } + if (!done_ltab) { + done_ltab = 1; + c->ltab_lnum = lnum; + c->ltab_offs = offs; + offs += c->ltab_sz; + dbg_chk_lpt_sz(c, 1, c->ltab_sz); + continue; + } + break; + } + if (cnode->parent) { + cnode->parent->nbranch[cnode->iip].lnum = lnum; + cnode->parent->nbranch[cnode->iip].offs = offs; + } else { + c->lpt_lnum = lnum; + c->lpt_offs = offs; + } + offs += len; + dbg_chk_lpt_sz(c, 1, len); + cnode = cnode->cnext; + } while (cnode && cnode != c->lpt_cnext); + + /* Make sure to place LPT's save table */ + if (!done_lsave) { + if (offs + c->lsave_sz > c->leb_size) { + alen = ALIGN(offs, c->min_io_size); + upd_ltab(c, lnum, c->leb_size - alen, alen - offs); + dbg_chk_lpt_sz(c, 2, c->leb_size - offs); + err = alloc_lpt_leb(c, &lnum); + if (err) + goto no_space; + offs = 0; + ubifs_assert(lnum >= c->lpt_first && + lnum <= c->lpt_last); + } + done_lsave = 1; + c->lsave_lnum = lnum; + c->lsave_offs = offs; + offs += c->lsave_sz; + dbg_chk_lpt_sz(c, 1, c->lsave_sz); + } + + /* Make sure to place LPT's own lprops table */ + if (!done_ltab) { + if (offs + c->ltab_sz > c->leb_size) { + alen = ALIGN(offs, c->min_io_size); + upd_ltab(c, lnum, c->leb_size - alen, alen - offs); + dbg_chk_lpt_sz(c, 2, c->leb_size - offs); + err = alloc_lpt_leb(c, &lnum); + if (err) + goto no_space; + offs = 0; + ubifs_assert(lnum >= c->lpt_first && + lnum <= c->lpt_last); + } + done_ltab = 1; + c->ltab_lnum = lnum; + c->ltab_offs = offs; + offs += c->ltab_sz; + dbg_chk_lpt_sz(c, 1, c->ltab_sz); + } + + alen = ALIGN(offs, c->min_io_size); + upd_ltab(c, lnum, c->leb_size - alen, alen - offs); + dbg_chk_lpt_sz(c, 4, alen - offs); + err = dbg_chk_lpt_sz(c, 3, alen); + if (err) + return err; + return 0; + +no_space: + ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", + lnum, offs, len, done_ltab, done_lsave); + ubifs_dump_lpt_info(c); + ubifs_dump_lpt_lebs(c); + dump_stack(); + return err; +} + +#ifndef __UBOOT__ +/** + * realloc_lpt_leb - allocate an LPT LEB that is empty. + * @c: UBIFS file-system description object + * @lnum: LEB number is passed and returned here + * + * This function duplicates exactly the results of the function alloc_lpt_leb. + * It is used during end commit to reallocate the same LEB numbers that were + * allocated by alloc_lpt_leb during start commit. + * + * This function finds the next LEB that was allocated by the alloc_lpt_leb + * function starting from @lnum. If a LEB is found it is returned in @lnum and + * the function returns %0. Otherwise the function returns -ENOSPC. + * Note however, that LPT is designed never to run out of space. + */ +static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) +{ + int i, n; + + n = *lnum - c->lpt_first + 1; + for (i = n; i < c->lpt_lebs; i++) + if (c->ltab[i].cmt) { + c->ltab[i].cmt = 0; + *lnum = i + c->lpt_first; + return 0; + } + + for (i = 0; i < n; i++) + if (c->ltab[i].cmt) { + c->ltab[i].cmt = 0; + *lnum = i + c->lpt_first; + return 0; + } + return -ENOSPC; +} + +/** + * write_cnodes - write cnodes for commit. + * @c: UBIFS file-system description object + * + * This function returns %0 on success and a negative error code on failure. + */ +static int write_cnodes(struct ubifs_info *c) +{ + int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; + struct ubifs_cnode *cnode; + void *buf = c->lpt_buf; + + cnode = c->lpt_cnext; + if (!cnode) + return 0; + lnum = c->nhead_lnum; + offs = c->nhead_offs; + from = offs; + /* Ensure empty LEB is unmapped */ + if (offs == 0) { + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } + /* Try to place lsave and ltab nicely */ + done_lsave = !c->big_lpt; + done_ltab = 0; + if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { + done_lsave = 1; + ubifs_pack_lsave(c, buf + offs, c->lsave); + offs += c->lsave_sz; + dbg_chk_lpt_sz(c, 1, c->lsave_sz); + } + + if (offs + c->ltab_sz <= c->leb_size) { + done_ltab = 1; + ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); + offs += c->ltab_sz; + dbg_chk_lpt_sz(c, 1, c->ltab_sz); + } + + /* Loop for each cnode */ + do { + if (cnode->level) + len = c->nnode_sz; + else + len = c->pnode_sz; + while (offs + len > c->leb_size) { + wlen = offs - from; + if (wlen) { + alen = ALIGN(wlen, c->min_io_size); + memset(buf + offs, 0xff, alen - wlen); + err = ubifs_leb_write(c, lnum, buf + from, from, + alen); + if (err) + return err; + } + dbg_chk_lpt_sz(c, 2, c->leb_size - offs); + err = realloc_lpt_leb(c, &lnum); + if (err) + goto no_space; + offs = from = 0; + ubifs_assert(lnum >= c->lpt_first && + lnum <= c->lpt_last); + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + /* Try to place lsave and ltab nicely */ + if (!done_lsave) { + done_lsave = 1; + ubifs_pack_lsave(c, buf + offs, c->lsave); + offs += c->lsave_sz; + dbg_chk_lpt_sz(c, 1, c->lsave_sz); + continue; + } + if (!done_ltab) { + done_ltab = 1; + ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); + offs += c->ltab_sz; + dbg_chk_lpt_sz(c, 1, c->ltab_sz); + continue; + } + break; + } + if (cnode->level) + ubifs_pack_nnode(c, buf + offs, + (struct ubifs_nnode *)cnode); + else + ubifs_pack_pnode(c, buf + offs, + (struct ubifs_pnode *)cnode); + /* + * The reason for the barriers is the same as in case of TNC. + * See comment in 'write_index()'. 'dirty_cow_nnode()' and + * 'dirty_cow_pnode()' are the functions for which this is + * important. + */ + clear_bit(DIRTY_CNODE, &cnode->flags); + smp_mb__before_clear_bit(); + clear_bit(COW_CNODE, &cnode->flags); + smp_mb__after_clear_bit(); + offs += len; + dbg_chk_lpt_sz(c, 1, len); + cnode = cnode->cnext; + } while (cnode && cnode != c->lpt_cnext); + + /* Make sure to place LPT's save table */ + if (!done_lsave) { + if (offs + c->lsave_sz > c->leb_size) { + wlen = offs - from; + alen = ALIGN(wlen, c->min_io_size); + memset(buf + offs, 0xff, alen - wlen); + err = ubifs_leb_write(c, lnum, buf + from, from, alen); + if (err) + return err; + dbg_chk_lpt_sz(c, 2, c->leb_size - offs); + err = realloc_lpt_leb(c, &lnum); + if (err) + goto no_space; + offs = from = 0; + ubifs_assert(lnum >= c->lpt_first && + lnum <= c->lpt_last); + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } + done_lsave = 1; + ubifs_pack_lsave(c, buf + offs, c->lsave); + offs += c->lsave_sz; + dbg_chk_lpt_sz(c, 1, c->lsave_sz); + } + + /* Make sure to place LPT's own lprops table */ + if (!done_ltab) { + if (offs + c->ltab_sz > c->leb_size) { + wlen = offs - from; + alen = ALIGN(wlen, c->min_io_size); + memset(buf + offs, 0xff, alen - wlen); + err = ubifs_leb_write(c, lnum, buf + from, from, alen); + if (err) + return err; + dbg_chk_lpt_sz(c, 2, c->leb_size - offs); + err = realloc_lpt_leb(c, &lnum); + if (err) + goto no_space; + offs = from = 0; + ubifs_assert(lnum >= c->lpt_first && + lnum <= c->lpt_last); + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } + done_ltab = 1; + ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); + offs += c->ltab_sz; + dbg_chk_lpt_sz(c, 1, c->ltab_sz); + } + + /* Write remaining data in buffer */ + wlen = offs - from; + alen = ALIGN(wlen, c->min_io_size); + memset(buf + offs, 0xff, alen - wlen); + err = ubifs_leb_write(c, lnum, buf + from, from, alen); + if (err) + return err; + + dbg_chk_lpt_sz(c, 4, alen - wlen); + err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size)); + if (err) + return err; + + c->nhead_lnum = lnum; + c->nhead_offs = ALIGN(offs, c->min_io_size); + + dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); + dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); + dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); + if (c->big_lpt) + dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); + + return 0; + +no_space: + ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", + lnum, offs, len, done_ltab, done_lsave); + ubifs_dump_lpt_info(c); + ubifs_dump_lpt_lebs(c); + dump_stack(); + return err; +} +#endif + +/** + * next_pnode_to_dirty - find next pnode to dirty. + * @c: UBIFS file-system description object + * @pnode: pnode + * + * This function returns the next pnode to dirty or %NULL if there are no more + * pnodes. Note that pnodes that have never been written (lnum == 0) are + * skipped. + */ +static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c, + struct ubifs_pnode *pnode) +{ + struct ubifs_nnode *nnode; + int iip; + + /* Try to go right */ + nnode = pnode->parent; + for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { + if (nnode->nbranch[iip].lnum) + return ubifs_get_pnode(c, nnode, iip); + } + + /* Go up while can't go right */ + do { + iip = nnode->iip + 1; + nnode = nnode->parent; + if (!nnode) + return NULL; + for (; iip < UBIFS_LPT_FANOUT; iip++) { + if (nnode->nbranch[iip].lnum) + break; + } + } while (iip >= UBIFS_LPT_FANOUT); + + /* Go right */ + nnode = ubifs_get_nnode(c, nnode, iip); + if (IS_ERR(nnode)) + return (void *)nnode; + + /* Go down to level 1 */ + while (nnode->level > 1) { + for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) { + if (nnode->nbranch[iip].lnum) + break; + } + if (iip >= UBIFS_LPT_FANOUT) { + /* + * Should not happen, but we need to keep going + * if it does. + */ + iip = 0; + } + nnode = ubifs_get_nnode(c, nnode, iip); + if (IS_ERR(nnode)) + return (void *)nnode; + } + + for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) + if (nnode->nbranch[iip].lnum) + break; + if (iip >= UBIFS_LPT_FANOUT) + /* Should not happen, but we need to keep going if it does */ + iip = 0; + return ubifs_get_pnode(c, nnode, iip); +} + +/** + * pnode_lookup - lookup a pnode in the LPT. + * @c: UBIFS file-system description object + * @i: pnode number (0 to main_lebs - 1) + * + * This function returns a pointer to the pnode on success or a negative + * error code on failure. + */ +static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) +{ + int err, h, iip, shft; + struct ubifs_nnode *nnode; + + if (!c->nroot) { + err = ubifs_read_nnode(c, NULL, 0); + if (err) + return ERR_PTR(err); + } + i <<= UBIFS_LPT_FANOUT_SHIFT; + nnode = c->nroot; + shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; + for (h = 1; h < c->lpt_hght; h++) { + iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); + shft -= UBIFS_LPT_FANOUT_SHIFT; + nnode = ubifs_get_nnode(c, nnode, iip); + if (IS_ERR(nnode)) + return ERR_CAST(nnode); + } + iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); + return ubifs_get_pnode(c, nnode, iip); +} + +/** + * add_pnode_dirt - add dirty space to LPT LEB properties. + * @c: UBIFS file-system description object + * @pnode: pnode for which to add dirt + */ +static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) +{ + ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, + c->pnode_sz); +} + +/** + * do_make_pnode_dirty - mark a pnode dirty. + * @c: UBIFS file-system description object + * @pnode: pnode to mark dirty + */ +static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) +{ + /* Assumes cnext list is empty i.e. not called during commit */ + if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { + struct ubifs_nnode *nnode; + + c->dirty_pn_cnt += 1; + add_pnode_dirt(c, pnode); + /* Mark parent and ancestors dirty too */ + nnode = pnode->parent; + while (nnode) { + if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { + c->dirty_nn_cnt += 1; + ubifs_add_nnode_dirt(c, nnode); + nnode = nnode->parent; + } else + break; + } + } +} + +/** + * make_tree_dirty - mark the entire LEB properties tree dirty. + * @c: UBIFS file-system description object + * + * This function is used by the "small" LPT model to cause the entire LEB + * properties tree to be written. The "small" LPT model does not use LPT + * garbage collection because it is more efficient to write the entire tree + * (because it is small). + * + * This function returns %0 on success and a negative error code on failure. + */ +static int make_tree_dirty(struct ubifs_info *c) +{ + struct ubifs_pnode *pnode; + + pnode = pnode_lookup(c, 0); + if (IS_ERR(pnode)) + return PTR_ERR(pnode); + + while (pnode) { + do_make_pnode_dirty(c, pnode); + pnode = next_pnode_to_dirty(c, pnode); + if (IS_ERR(pnode)) + return PTR_ERR(pnode); + } + return 0; +} + +/** + * need_write_all - determine if the LPT area is running out of free space. + * @c: UBIFS file-system description object + * + * This function returns %1 if the LPT area is running out of free space and %0 + * if it is not. + */ +static int need_write_all(struct ubifs_info *c) +{ + long long free = 0; + int i; + + for (i = 0; i < c->lpt_lebs; i++) { + if (i + c->lpt_first == c->nhead_lnum) + free += c->leb_size - c->nhead_offs; + else if (c->ltab[i].free == c->leb_size) + free += c->leb_size; + else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) + free += c->leb_size; + } + /* Less than twice the size left */ + if (free <= c->lpt_sz * 2) + return 1; + return 0; +} + +/** + * lpt_tgc_start - start trivial garbage collection of LPT LEBs. + * @c: UBIFS file-system description object + * + * LPT trivial garbage collection is where a LPT LEB contains only dirty and + * free space and so may be reused as soon as the next commit is completed. + * This function is called during start commit to mark LPT LEBs for trivial GC. + */ +static void lpt_tgc_start(struct ubifs_info *c) +{ + int i; + + for (i = 0; i < c->lpt_lebs; i++) { + if (i + c->lpt_first == c->nhead_lnum) + continue; + if (c->ltab[i].dirty > 0 && + c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { + c->ltab[i].tgc = 1; + c->ltab[i].free = c->leb_size; + c->ltab[i].dirty = 0; + dbg_lp("LEB %d", i + c->lpt_first); + } + } +} + +/** + * lpt_tgc_end - end trivial garbage collection of LPT LEBs. + * @c: UBIFS file-system description object + * + * LPT trivial garbage collection is where a LPT LEB contains only dirty and + * free space and so may be reused as soon as the next commit is completed. + * This function is called after the commit is completed (master node has been + * written) and un-maps LPT LEBs that were marked for trivial GC. + */ +static int lpt_tgc_end(struct ubifs_info *c) +{ + int i, err; + + for (i = 0; i < c->lpt_lebs; i++) + if (c->ltab[i].tgc) { + err = ubifs_leb_unmap(c, i + c->lpt_first); + if (err) + return err; + c->ltab[i].tgc = 0; + dbg_lp("LEB %d", i + c->lpt_first); + } + return 0; +} + +/** + * populate_lsave - fill the lsave array with important LEB numbers. + * @c: the UBIFS file-system description object + * + * This function is only called for the "big" model. It records a small number + * of LEB numbers of important LEBs. Important LEBs are ones that are (from + * most important to least important): empty, freeable, freeable index, dirty + * index, dirty or free. Upon mount, we read this list of LEB numbers and bring + * their pnodes into memory. That will stop us from having to scan the LPT + * straight away. For the "small" model we assume that scanning the LPT is no + * big deal. + */ +static void populate_lsave(struct ubifs_info *c) +{ + struct ubifs_lprops *lprops; + struct ubifs_lpt_heap *heap; + int i, cnt = 0; + + ubifs_assert(c->big_lpt); + if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { + c->lpt_drty_flgs |= LSAVE_DIRTY; + ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); + } + +#ifndef __UBOOT__ + if (dbg_populate_lsave(c)) + return; +#endif + + list_for_each_entry(lprops, &c->empty_list, list) { + c->lsave[cnt++] = lprops->lnum; + if (cnt >= c->lsave_cnt) + return; + } + list_for_each_entry(lprops, &c->freeable_list, list) { + c->lsave[cnt++] = lprops->lnum; + if (cnt >= c->lsave_cnt) + return; + } + list_for_each_entry(lprops, &c->frdi_idx_list, list) { + c->lsave[cnt++] = lprops->lnum; + if (cnt >= c->lsave_cnt) + return; + } + heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; + for (i = 0; i < heap->cnt; i++) { + c->lsave[cnt++] = heap->arr[i]->lnum; + if (cnt >= c->lsave_cnt) + return; + } + heap = &c->lpt_heap[LPROPS_DIRTY - 1]; + for (i = 0; i < heap->cnt; i++) { + c->lsave[cnt++] = heap->arr[i]->lnum; + if (cnt >= c->lsave_cnt) + return; + } + heap = &c->lpt_heap[LPROPS_FREE - 1]; + for (i = 0; i < heap->cnt; i++) { + c->lsave[cnt++] = heap->arr[i]->lnum; + if (cnt >= c->lsave_cnt) + return; + } + /* Fill it up completely */ + while (cnt < c->lsave_cnt) + c->lsave[cnt++] = c->main_first; +} + +/** + * nnode_lookup - lookup a nnode in the LPT. + * @c: UBIFS file-system description object + * @i: nnode number + * + * This function returns a pointer to the nnode on success or a negative + * error code on failure. + */ +static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) +{ + int err, iip; + struct ubifs_nnode *nnode; + + if (!c->nroot) { + err = ubifs_read_nnode(c, NULL, 0); + if (err) + return ERR_PTR(err); + } + nnode = c->nroot; + while (1) { + iip = i & (UBIFS_LPT_FANOUT - 1); + i >>= UBIFS_LPT_FANOUT_SHIFT; + if (!i) + break; + nnode = ubifs_get_nnode(c, nnode, iip); + if (IS_ERR(nnode)) + return nnode; + } + return nnode; +} + +/** + * make_nnode_dirty - find a nnode and, if found, make it dirty. + * @c: UBIFS file-system description object + * @node_num: nnode number of nnode to make dirty + * @lnum: LEB number where nnode was written + * @offs: offset where nnode was written + * + * This function is used by LPT garbage collection. LPT garbage collection is + * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection + * simply involves marking all the nodes in the LEB being garbage-collected as + * dirty. The dirty nodes are written next commit, after which the LEB is free + * to be reused. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, + int offs) +{ + struct ubifs_nnode *nnode; + + nnode = nnode_lookup(c, node_num); + if (IS_ERR(nnode)) + return PTR_ERR(nnode); + if (nnode->parent) { + struct ubifs_nbranch *branch; + + branch = &nnode->parent->nbranch[nnode->iip]; + if (branch->lnum != lnum || branch->offs != offs) + return 0; /* nnode is obsolete */ + } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) + return 0; /* nnode is obsolete */ + /* Assumes cnext list is empty i.e. not called during commit */ + if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { + c->dirty_nn_cnt += 1; + ubifs_add_nnode_dirt(c, nnode); + /* Mark parent and ancestors dirty too */ + nnode = nnode->parent; + while (nnode) { + if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { + c->dirty_nn_cnt += 1; + ubifs_add_nnode_dirt(c, nnode); + nnode = nnode->parent; + } else + break; + } + } + return 0; +} + +/** + * make_pnode_dirty - find a pnode and, if found, make it dirty. + * @c: UBIFS file-system description object + * @node_num: pnode number of pnode to make dirty + * @lnum: LEB number where pnode was written + * @offs: offset where pnode was written + * + * This function is used by LPT garbage collection. LPT garbage collection is + * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection + * simply involves marking all the nodes in the LEB being garbage-collected as + * dirty. The dirty nodes are written next commit, after which the LEB is free + * to be reused. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, + int offs) +{ + struct ubifs_pnode *pnode; + struct ubifs_nbranch *branch; + + pnode = pnode_lookup(c, node_num); + if (IS_ERR(pnode)) + return PTR_ERR(pnode); + branch = &pnode->parent->nbranch[pnode->iip]; + if (branch->lnum != lnum || branch->offs != offs) + return 0; + do_make_pnode_dirty(c, pnode); + return 0; +} + +/** + * make_ltab_dirty - make ltab node dirty. + * @c: UBIFS file-system description object + * @lnum: LEB number where ltab was written + * @offs: offset where ltab was written + * + * This function is used by LPT garbage collection. LPT garbage collection is + * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection + * simply involves marking all the nodes in the LEB being garbage-collected as + * dirty. The dirty nodes are written next commit, after which the LEB is free + * to be reused. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) +{ + if (lnum != c->ltab_lnum || offs != c->ltab_offs) + return 0; /* This ltab node is obsolete */ + if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { + c->lpt_drty_flgs |= LTAB_DIRTY; + ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); + } + return 0; +} + +/** + * make_lsave_dirty - make lsave node dirty. + * @c: UBIFS file-system description object + * @lnum: LEB number where lsave was written + * @offs: offset where lsave was written + * + * This function is used by LPT garbage collection. LPT garbage collection is + * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection + * simply involves marking all the nodes in the LEB being garbage-collected as + * dirty. The dirty nodes are written next commit, after which the LEB is free + * to be reused. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) +{ + if (lnum != c->lsave_lnum || offs != c->lsave_offs) + return 0; /* This lsave node is obsolete */ + if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { + c->lpt_drty_flgs |= LSAVE_DIRTY; + ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); + } + return 0; +} + +/** + * make_node_dirty - make node dirty. + * @c: UBIFS file-system description object + * @node_type: LPT node type + * @node_num: node number + * @lnum: LEB number where node was written + * @offs: offset where node was written + * + * This function is used by LPT garbage collection. LPT garbage collection is + * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection + * simply involves marking all the nodes in the LEB being garbage-collected as + * dirty. The dirty nodes are written next commit, after which the LEB is free + * to be reused. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, + int lnum, int offs) +{ + switch (node_type) { + case UBIFS_LPT_NNODE: + return make_nnode_dirty(c, node_num, lnum, offs); + case UBIFS_LPT_PNODE: + return make_pnode_dirty(c, node_num, lnum, offs); + case UBIFS_LPT_LTAB: + return make_ltab_dirty(c, lnum, offs); + case UBIFS_LPT_LSAVE: + return make_lsave_dirty(c, lnum, offs); + } + return -EINVAL; +} + +/** + * get_lpt_node_len - return the length of a node based on its type. + * @c: UBIFS file-system description object + * @node_type: LPT node type + */ +static int get_lpt_node_len(const struct ubifs_info *c, int node_type) +{ + switch (node_type) { + case UBIFS_LPT_NNODE: + return c->nnode_sz; + case UBIFS_LPT_PNODE: + return c->pnode_sz; + case UBIFS_LPT_LTAB: + return c->ltab_sz; + case UBIFS_LPT_LSAVE: + return c->lsave_sz; + } + return 0; +} + +/** + * get_pad_len - return the length of padding in a buffer. + * @c: UBIFS file-system description object + * @buf: buffer + * @len: length of buffer + */ +static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len) +{ + int offs, pad_len; + + if (c->min_io_size == 1) + return 0; + offs = c->leb_size - len; + pad_len = ALIGN(offs, c->min_io_size) - offs; + return pad_len; +} + +/** + * get_lpt_node_type - return type (and node number) of a node in a buffer. + * @c: UBIFS file-system description object + * @buf: buffer + * @node_num: node number is returned here + */ +static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf, + int *node_num) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int pos = 0, node_type; + + node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); + *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); + return node_type; +} + +/** + * is_a_node - determine if a buffer contains a node. + * @c: UBIFS file-system description object + * @buf: buffer + * @len: length of buffer + * + * This function returns %1 if the buffer contains a node or %0 if it does not. + */ +static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len) +{ + uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; + int pos = 0, node_type, node_len; + uint16_t crc, calc_crc; + + if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8) + return 0; + node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); + if (node_type == UBIFS_LPT_NOT_A_NODE) + return 0; + node_len = get_lpt_node_len(c, node_type); + if (!node_len || node_len > len) + return 0; + pos = 0; + addr = buf; + crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); + calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, + node_len - UBIFS_LPT_CRC_BYTES); + if (crc != calc_crc) + return 0; + return 1; +} + +/** + * lpt_gc_lnum - garbage collect a LPT LEB. + * @c: UBIFS file-system description object + * @lnum: LEB number to garbage collect + * + * LPT garbage collection is used only for the "big" LPT model + * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes + * in the LEB being garbage-collected as dirty. The dirty nodes are written + * next commit, after which the LEB is free to be reused. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int lpt_gc_lnum(struct ubifs_info *c, int lnum) +{ + int err, len = c->leb_size, node_type, node_num, node_len, offs; + void *buf = c->lpt_buf; + + dbg_lp("LEB %d", lnum); + + err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); + if (err) + return err; + + while (1) { + if (!is_a_node(c, buf, len)) { + int pad_len; + + pad_len = get_pad_len(c, buf, len); + if (pad_len) { + buf += pad_len; + len -= pad_len; + continue; + } + return 0; + } + node_type = get_lpt_node_type(c, buf, &node_num); + node_len = get_lpt_node_len(c, node_type); + offs = c->leb_size - len; + ubifs_assert(node_len != 0); + mutex_lock(&c->lp_mutex); + err = make_node_dirty(c, node_type, node_num, lnum, offs); + mutex_unlock(&c->lp_mutex); + if (err) + return err; + buf += node_len; + len -= node_len; + } + return 0; +} + +/** + * lpt_gc - LPT garbage collection. + * @c: UBIFS file-system description object + * + * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. + * Returns %0 on success and a negative error code on failure. + */ +static int lpt_gc(struct ubifs_info *c) +{ + int i, lnum = -1, dirty = 0; + + mutex_lock(&c->lp_mutex); + for (i = 0; i < c->lpt_lebs; i++) { + ubifs_assert(!c->ltab[i].tgc); + if (i + c->lpt_first == c->nhead_lnum || + c->ltab[i].free + c->ltab[i].dirty == c->leb_size) + continue; + if (c->ltab[i].dirty > dirty) { + dirty = c->ltab[i].dirty; + lnum = i + c->lpt_first; + } + } + mutex_unlock(&c->lp_mutex); + if (lnum == -1) + return -ENOSPC; + return lpt_gc_lnum(c, lnum); +} + +/** + * ubifs_lpt_start_commit - UBIFS commit starts. + * @c: the UBIFS file-system description object + * + * This function has to be called when UBIFS starts the commit operation. + * This function "freezes" all currently dirty LEB properties and does not + * change them anymore. Further changes are saved and tracked separately + * because they are not part of this commit. This function returns zero in case + * of success and a negative error code in case of failure. + */ +int ubifs_lpt_start_commit(struct ubifs_info *c) +{ + int err, cnt; + + dbg_lp(""); + + mutex_lock(&c->lp_mutex); + err = dbg_chk_lpt_free_spc(c); + if (err) + goto out; + err = dbg_check_ltab(c); + if (err) + goto out; + + if (c->check_lpt_free) { + /* + * We ensure there is enough free space in + * ubifs_lpt_post_commit() by marking nodes dirty. That + * information is lost when we unmount, so we also need + * to check free space once after mounting also. + */ + c->check_lpt_free = 0; + while (need_write_all(c)) { + mutex_unlock(&c->lp_mutex); + err = lpt_gc(c); + if (err) + return err; + mutex_lock(&c->lp_mutex); + } + } + + lpt_tgc_start(c); + + if (!c->dirty_pn_cnt) { + dbg_cmt("no cnodes to commit"); + err = 0; + goto out; + } + + if (!c->big_lpt && need_write_all(c)) { + /* If needed, write everything */ + err = make_tree_dirty(c); + if (err) + goto out; + lpt_tgc_start(c); + } + + if (c->big_lpt) + populate_lsave(c); + + cnt = get_cnodes_to_commit(c); + ubifs_assert(cnt != 0); + + err = layout_cnodes(c); + if (err) + goto out; + + /* Copy the LPT's own lprops for end commit to write */ + memcpy(c->ltab_cmt, c->ltab, + sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); + c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); + +out: + mutex_unlock(&c->lp_mutex); + return err; +} + /** * free_obsolete_cnodes - free obsolete cnodes for commit end. * @c: UBIFS file-system description object @@ -50,6 +1314,65 @@ static void free_obsolete_cnodes(struct ubifs_info *c) c->lpt_cnext = NULL; } +#ifndef __UBOOT__ +/** + * ubifs_lpt_end_commit - finish the commit operation. + * @c: the UBIFS file-system description object + * + * This function has to be called when the commit operation finishes. It + * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to + * the media. Returns zero in case of success and a negative error code in case + * of failure. + */ +int ubifs_lpt_end_commit(struct ubifs_info *c) +{ + int err; + + dbg_lp(""); + + if (!c->lpt_cnext) + return 0; + + err = write_cnodes(c); + if (err) + return err; + + mutex_lock(&c->lp_mutex); + free_obsolete_cnodes(c); + mutex_unlock(&c->lp_mutex); + + return 0; +} +#endif + +/** + * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. + * @c: UBIFS file-system description object + * + * LPT trivial GC is completed after a commit. Also LPT GC is done after a + * commit for the "big" LPT model. + */ +int ubifs_lpt_post_commit(struct ubifs_info *c) +{ + int err; + + mutex_lock(&c->lp_mutex); + err = lpt_tgc_end(c); + if (err) + goto out; + if (c->big_lpt) + while (need_write_all(c)) { + mutex_unlock(&c->lp_mutex); + err = lpt_gc(c); + if (err) + return err; + mutex_lock(&c->lp_mutex); + } +out: + mutex_unlock(&c->lp_mutex); + return err; +} + /** * first_nnode - find the first nnode in memory. * @c: UBIFS file-system description object @@ -169,3 +1492,549 @@ void ubifs_lpt_free(struct ubifs_info *c, int wr_only) vfree(c->ltab); kfree(c->lpt_nod_buf); } + +#ifndef __UBOOT__ +/* + * Everything below is related to debugging. + */ + +/** + * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes. + * @buf: buffer + * @len: buffer length + */ +static int dbg_is_all_ff(uint8_t *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + if (buf[i] != 0xff) + return 0; + return 1; +} + +/** + * dbg_is_nnode_dirty - determine if a nnode is dirty. + * @c: the UBIFS file-system description object + * @lnum: LEB number where nnode was written + * @offs: offset where nnode was written + */ +static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) +{ + struct ubifs_nnode *nnode; + int hght; + + /* Entire tree is in memory so first_nnode / next_nnode are OK */ + nnode = first_nnode(c, &hght); + for (; nnode; nnode = next_nnode(c, nnode, &hght)) { + struct ubifs_nbranch *branch; + + cond_resched(); + if (nnode->parent) { + branch = &nnode->parent->nbranch[nnode->iip]; + if (branch->lnum != lnum || branch->offs != offs) + continue; + if (test_bit(DIRTY_CNODE, &nnode->flags)) + return 1; + return 0; + } else { + if (c->lpt_lnum != lnum || c->lpt_offs != offs) + continue; + if (test_bit(DIRTY_CNODE, &nnode->flags)) + return 1; + return 0; + } + } + return 1; +} + +/** + * dbg_is_pnode_dirty - determine if a pnode is dirty. + * @c: the UBIFS file-system description object + * @lnum: LEB number where pnode was written + * @offs: offset where pnode was written + */ +static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) +{ + int i, cnt; + + cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); + for (i = 0; i < cnt; i++) { + struct ubifs_pnode *pnode; + struct ubifs_nbranch *branch; + + cond_resched(); + pnode = pnode_lookup(c, i); + if (IS_ERR(pnode)) + return PTR_ERR(pnode); + branch = &pnode->parent->nbranch[pnode->iip]; + if (branch->lnum != lnum || branch->offs != offs) + continue; + if (test_bit(DIRTY_CNODE, &pnode->flags)) + return 1; + return 0; + } + return 1; +} + +/** + * dbg_is_ltab_dirty - determine if a ltab node is dirty. + * @c: the UBIFS file-system description object + * @lnum: LEB number where ltab node was written + * @offs: offset where ltab node was written + */ +static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) +{ + if (lnum != c->ltab_lnum || offs != c->ltab_offs) + return 1; + return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; +} + +/** + * dbg_is_lsave_dirty - determine if a lsave node is dirty. + * @c: the UBIFS file-system description object + * @lnum: LEB number where lsave node was written + * @offs: offset where lsave node was written + */ +static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) +{ + if (lnum != c->lsave_lnum || offs != c->lsave_offs) + return 1; + return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; +} + +/** + * dbg_is_node_dirty - determine if a node is dirty. + * @c: the UBIFS file-system description object + * @node_type: node type + * @lnum: LEB number where node was written + * @offs: offset where node was written + */ +static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, + int offs) +{ + switch (node_type) { + case UBIFS_LPT_NNODE: + return dbg_is_nnode_dirty(c, lnum, offs); + case UBIFS_LPT_PNODE: + return dbg_is_pnode_dirty(c, lnum, offs); + case UBIFS_LPT_LTAB: + return dbg_is_ltab_dirty(c, lnum, offs); + case UBIFS_LPT_LSAVE: + return dbg_is_lsave_dirty(c, lnum, offs); + } + return 1; +} + +/** + * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. + * @c: the UBIFS file-system description object + * @lnum: LEB number where node was written + * @offs: offset where node was written + * + * This function returns %0 on success and a negative error code on failure. + */ +static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) +{ + int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; + int ret; + void *buf, *p; + + if (!dbg_is_chk_lprops(c)) + return 0; + + buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory for ltab checking"); + return 0; + } + + dbg_lp("LEB %d", lnum); + + err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); + if (err) + goto out; + + while (1) { + if (!is_a_node(c, p, len)) { + int i, pad_len; + + pad_len = get_pad_len(c, p, len); + if (pad_len) { + p += pad_len; + len -= pad_len; + dirty += pad_len; + continue; + } + if (!dbg_is_all_ff(p, len)) { + ubifs_err("invalid empty space in LEB %d at %d", + lnum, c->leb_size - len); + err = -EINVAL; + } + i = lnum - c->lpt_first; + if (len != c->ltab[i].free) { + ubifs_err("invalid free space in LEB %d (free %d, expected %d)", + lnum, len, c->ltab[i].free); + err = -EINVAL; + } + if (dirty != c->ltab[i].dirty) { + ubifs_err("invalid dirty space in LEB %d (dirty %d, expected %d)", + lnum, dirty, c->ltab[i].dirty); + err = -EINVAL; + } + goto out; + } + node_type = get_lpt_node_type(c, p, &node_num); + node_len = get_lpt_node_len(c, node_type); + ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); + if (ret == 1) + dirty += node_len; + p += node_len; + len -= node_len; + } + + err = 0; +out: + vfree(buf); + return err; +} + +/** + * dbg_check_ltab - check the free and dirty space in the ltab. + * @c: the UBIFS file-system description object + * + * This function returns %0 on success and a negative error code on failure. + */ +int dbg_check_ltab(struct ubifs_info *c) +{ + int lnum, err, i, cnt; + + if (!dbg_is_chk_lprops(c)) + return 0; + + /* Bring the entire tree into memory */ + cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); + for (i = 0; i < cnt; i++) { + struct ubifs_pnode *pnode; + + pnode = pnode_lookup(c, i); + if (IS_ERR(pnode)) + return PTR_ERR(pnode); + cond_resched(); + } + + /* Check nodes */ + err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); + if (err) + return err; + + /* Check each LEB */ + for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { + err = dbg_check_ltab_lnum(c, lnum); + if (err) { + ubifs_err("failed at LEB %d", lnum); + return err; + } + } + + dbg_lp("succeeded"); + return 0; +} + +/** + * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT. + * @c: the UBIFS file-system description object + * + * This function returns %0 on success and a negative error code on failure. + */ +int dbg_chk_lpt_free_spc(struct ubifs_info *c) +{ + long long free = 0; + int i; + + if (!dbg_is_chk_lprops(c)) + return 0; + + for (i = 0; i < c->lpt_lebs; i++) { + if (c->ltab[i].tgc || c->ltab[i].cmt) + continue; + if (i + c->lpt_first == c->nhead_lnum) + free += c->leb_size - c->nhead_offs; + else if (c->ltab[i].free == c->leb_size) + free += c->leb_size; + } + if (free < c->lpt_sz) { + ubifs_err("LPT space error: free %lld lpt_sz %lld", + free, c->lpt_sz); + ubifs_dump_lpt_info(c); + ubifs_dump_lpt_lebs(c); + dump_stack(); + return -EINVAL; + } + return 0; +} + +/** + * dbg_chk_lpt_sz - check LPT does not write more than LPT size. + * @c: the UBIFS file-system description object + * @action: what to do + * @len: length written + * + * This function returns %0 on success and a negative error code on failure. + * The @action argument may be one of: + * o %0 - LPT debugging checking starts, initialize debugging variables; + * o %1 - wrote an LPT node, increase LPT size by @len bytes; + * o %2 - switched to a different LEB and wasted @len bytes; + * o %3 - check that we've written the right number of bytes. + * o %4 - wasted @len bytes; + */ +int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) +{ + struct ubifs_debug_info *d = c->dbg; + long long chk_lpt_sz, lpt_sz; + int err = 0; + + if (!dbg_is_chk_lprops(c)) + return 0; + + switch (action) { + case 0: + d->chk_lpt_sz = 0; + d->chk_lpt_sz2 = 0; + d->chk_lpt_lebs = 0; + d->chk_lpt_wastage = 0; + if (c->dirty_pn_cnt > c->pnode_cnt) { + ubifs_err("dirty pnodes %d exceed max %d", + c->dirty_pn_cnt, c->pnode_cnt); + err = -EINVAL; + } + if (c->dirty_nn_cnt > c->nnode_cnt) { + ubifs_err("dirty nnodes %d exceed max %d", + c->dirty_nn_cnt, c->nnode_cnt); + err = -EINVAL; + } + return err; + case 1: + d->chk_lpt_sz += len; + return 0; + case 2: + d->chk_lpt_sz += len; + d->chk_lpt_wastage += len; + d->chk_lpt_lebs += 1; + return 0; + case 3: + chk_lpt_sz = c->leb_size; + chk_lpt_sz *= d->chk_lpt_lebs; + chk_lpt_sz += len - c->nhead_offs; + if (d->chk_lpt_sz != chk_lpt_sz) { + ubifs_err("LPT wrote %lld but space used was %lld", + d->chk_lpt_sz, chk_lpt_sz); + err = -EINVAL; + } + if (d->chk_lpt_sz > c->lpt_sz) { + ubifs_err("LPT wrote %lld but lpt_sz is %lld", + d->chk_lpt_sz, c->lpt_sz); + err = -EINVAL; + } + if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) { + ubifs_err("LPT layout size %lld but wrote %lld", + d->chk_lpt_sz, d->chk_lpt_sz2); + err = -EINVAL; + } + if (d->chk_lpt_sz2 && d->new_nhead_offs != len) { + ubifs_err("LPT new nhead offs: expected %d was %d", + d->new_nhead_offs, len); + err = -EINVAL; + } + lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; + lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; + lpt_sz += c->ltab_sz; + if (c->big_lpt) + lpt_sz += c->lsave_sz; + if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) { + ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld", + d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz); + err = -EINVAL; + } + if (err) { + ubifs_dump_lpt_info(c); + ubifs_dump_lpt_lebs(c); + dump_stack(); + } + d->chk_lpt_sz2 = d->chk_lpt_sz; + d->chk_lpt_sz = 0; + d->chk_lpt_wastage = 0; + d->chk_lpt_lebs = 0; + d->new_nhead_offs = len; + return err; + case 4: + d->chk_lpt_sz += len; + d->chk_lpt_wastage += len; + return 0; + default: + return -EINVAL; + } +} + +/** + * ubifs_dump_lpt_leb - dump an LPT LEB. + * @c: UBIFS file-system description object + * @lnum: LEB number to dump + * + * This function dumps an LEB from LPT area. Nodes in this area are very + * different to nodes in the main area (e.g., they do not have common headers, + * they do not have 8-byte alignments, etc), so we have a separate function to + * dump LPT area LEBs. Note, LPT has to be locked by the caller. + */ +static void dump_lpt_leb(const struct ubifs_info *c, int lnum) +{ + int err, len = c->leb_size, node_type, node_num, node_len, offs; + void *buf, *p; + + pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); + buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory to dump LPT"); + return; + } + + err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); + if (err) + goto out; + + while (1) { + offs = c->leb_size - len; + if (!is_a_node(c, p, len)) { + int pad_len; + + pad_len = get_pad_len(c, p, len); + if (pad_len) { + pr_err("LEB %d:%d, pad %d bytes\n", + lnum, offs, pad_len); + p += pad_len; + len -= pad_len; + continue; + } + if (len) + pr_err("LEB %d:%d, free %d bytes\n", + lnum, offs, len); + break; + } + + node_type = get_lpt_node_type(c, p, &node_num); + switch (node_type) { + case UBIFS_LPT_PNODE: + { + node_len = c->pnode_sz; + if (c->big_lpt) + pr_err("LEB %d:%d, pnode num %d\n", + lnum, offs, node_num); + else + pr_err("LEB %d:%d, pnode\n", lnum, offs); + break; + } + case UBIFS_LPT_NNODE: + { + int i; + struct ubifs_nnode nnode; + + node_len = c->nnode_sz; + if (c->big_lpt) + pr_err("LEB %d:%d, nnode num %d, ", + lnum, offs, node_num); + else + pr_err("LEB %d:%d, nnode, ", + lnum, offs); + err = ubifs_unpack_nnode(c, p, &nnode); + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + pr_cont("%d:%d", nnode.nbranch[i].lnum, + nnode.nbranch[i].offs); + if (i != UBIFS_LPT_FANOUT - 1) + pr_cont(", "); + } + pr_cont("\n"); + break; + } + case UBIFS_LPT_LTAB: + node_len = c->ltab_sz; + pr_err("LEB %d:%d, ltab\n", lnum, offs); + break; + case UBIFS_LPT_LSAVE: + node_len = c->lsave_sz; + pr_err("LEB %d:%d, lsave len\n", lnum, offs); + break; + default: + ubifs_err("LPT node type %d not recognized", node_type); + goto out; + } + + p += node_len; + len -= node_len; + } + + pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); +out: + vfree(buf); + return; +} + +/** + * ubifs_dump_lpt_lebs - dump LPT lebs. + * @c: UBIFS file-system description object + * + * This function dumps all LPT LEBs. The caller has to make sure the LPT is + * locked. + */ +void ubifs_dump_lpt_lebs(const struct ubifs_info *c) +{ + int i; + + pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid); + for (i = 0; i < c->lpt_lebs; i++) + dump_lpt_leb(c, i + c->lpt_first); + pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid); +} + +/** + * dbg_populate_lsave - debugging version of 'populate_lsave()' + * @c: UBIFS file-system description object + * + * This is a debugging version for 'populate_lsave()' which populates lsave + * with random LEBs instead of useful LEBs, which is good for test coverage. + * Returns zero if lsave has not been populated (this debugging feature is + * disabled) an non-zero if lsave has been populated. + */ +static int dbg_populate_lsave(struct ubifs_info *c) +{ + struct ubifs_lprops *lprops; + struct ubifs_lpt_heap *heap; + int i; + + if (!dbg_is_chk_gen(c)) + return 0; + if (prandom_u32() & 3) + return 0; + + for (i = 0; i < c->lsave_cnt; i++) + c->lsave[i] = c->main_first; + + list_for_each_entry(lprops, &c->empty_list, list) + c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; + list_for_each_entry(lprops, &c->freeable_list, list) + c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; + list_for_each_entry(lprops, &c->frdi_idx_list, list) + c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; + + heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; + for (i = 0; i < heap->cnt; i++) + c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; + heap = &c->lpt_heap[LPROPS_DIRTY - 1]; + for (i = 0; i < heap->cnt; i++) + c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; + heap = &c->lpt_heap[LPROPS_FREE - 1]; + for (i = 0; i < heap->cnt; i++) + c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; + + return 1; +} +#endif diff --git a/fs/ubifs/master.c b/fs/ubifs/master.c index 3f2926e..00ca855 100644 --- a/fs/ubifs/master.c +++ b/fs/ubifs/master.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -22,14 +11,21 @@ /* This file implements reading and writing the master node */ +#define __UBOOT__ #include "ubifs.h" +#ifdef __UBOOT__ +#include <linux/compat.h> +#include <linux/err.h> +#include <ubi_uboot.h> +#endif /** * scan_for_master - search the valid master node. * @c: UBIFS file-system description object * * This function scans the master node LEBs and search for the latest master - * node. Returns zero in case of success and a negative error code in case of + * node. Returns zero in case of success, %-EUCLEAN if there master area is + * corrupted and requires recovery, and a negative error code in case of * failure. */ static int scan_for_master(struct ubifs_info *c) @@ -40,7 +36,7 @@ static int scan_for_master(struct ubifs_info *c) lnum = UBIFS_MST_LNUM; - sleb = ubifs_scan(c, lnum, 0, c->sbuf); + sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); if (IS_ERR(sleb)) return PTR_ERR(sleb); nodes_cnt = sleb->nodes_cnt; @@ -48,7 +44,7 @@ static int scan_for_master(struct ubifs_info *c) snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list); if (snod->type != UBIFS_MST_NODE) - goto out; + goto out_dump; memcpy(c->mst_node, snod->node, snod->len); offs = snod->offs; } @@ -56,7 +52,7 @@ static int scan_for_master(struct ubifs_info *c) lnum += 1; - sleb = ubifs_scan(c, lnum, 0, c->sbuf); + sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); if (IS_ERR(sleb)) return PTR_ERR(sleb); if (sleb->nodes_cnt != nodes_cnt) @@ -65,7 +61,7 @@ static int scan_for_master(struct ubifs_info *c) goto out; snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list); if (snod->type != UBIFS_MST_NODE) - goto out; + goto out_dump; if (snod->offs != offs) goto out; if (memcmp((void *)c->mst_node + UBIFS_CH_SZ, @@ -78,6 +74,12 @@ static int scan_for_master(struct ubifs_info *c) out: ubifs_scan_destroy(sleb); + return -EUCLEAN; + +out_dump: + ubifs_err("unexpected node type %d master LEB %d:%d", + snod->type, lnum, snod->offs); + ubifs_scan_destroy(sleb); return -EINVAL; } @@ -141,7 +143,7 @@ static int validate_master(const struct ubifs_info *c) } main_sz = (long long)c->main_lebs * c->leb_size; - if (c->old_idx_sz & 7 || c->old_idx_sz >= main_sz) { + if (c->bi.old_idx_sz & 7 || c->bi.old_idx_sz >= main_sz) { err = 9; goto out; } @@ -211,7 +213,7 @@ static int validate_master(const struct ubifs_info *c) } if (c->lst.total_dead + c->lst.total_dark + - c->lst.total_used + c->old_idx_sz > main_sz) { + c->lst.total_used + c->bi.old_idx_sz > main_sz) { err = 21; goto out; } @@ -234,7 +236,7 @@ static int validate_master(const struct ubifs_info *c) out: ubifs_err("bad master node at offset %d error %d", c->mst_offs, err); - dbg_dump_node(c, c->mst_node); + ubifs_dump_node(c, c->mst_node); return -EINVAL; } @@ -256,7 +258,8 @@ int ubifs_read_master(struct ubifs_info *c) err = scan_for_master(c); if (err) { - err = ubifs_recover_master_node(c); + if (err == -EUCLEAN) + err = ubifs_recover_master_node(c); if (err) /* * Note, we do not free 'c->mst_node' here because the @@ -278,7 +281,7 @@ int ubifs_read_master(struct ubifs_info *c) c->gc_lnum = le32_to_cpu(c->mst_node->gc_lnum); c->ihead_lnum = le32_to_cpu(c->mst_node->ihead_lnum); c->ihead_offs = le32_to_cpu(c->mst_node->ihead_offs); - c->old_idx_sz = le64_to_cpu(c->mst_node->index_size); + c->bi.old_idx_sz = le64_to_cpu(c->mst_node->index_size); c->lpt_lnum = le32_to_cpu(c->mst_node->lpt_lnum); c->lpt_offs = le32_to_cpu(c->mst_node->lpt_offs); c->nhead_lnum = le32_to_cpu(c->mst_node->nhead_lnum); @@ -297,7 +300,7 @@ int ubifs_read_master(struct ubifs_info *c) c->lst.total_dead = le64_to_cpu(c->mst_node->total_dead); c->lst.total_dark = le64_to_cpu(c->mst_node->total_dark); - c->calc_idx_sz = c->old_idx_sz; + c->calc_idx_sz = c->bi.old_idx_sz; if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS)) c->no_orphs = 1; @@ -309,7 +312,7 @@ int ubifs_read_master(struct ubifs_info *c) if (c->leb_cnt < old_leb_cnt || c->leb_cnt < UBIFS_MIN_LEB_CNT) { ubifs_err("bad leb_cnt on master node"); - dbg_dump_node(c, c->mst_node); + ubifs_dump_node(c, c->mst_node); return -EINVAL; } @@ -335,7 +338,58 @@ int ubifs_read_master(struct ubifs_info *c) if (err) return err; +#ifndef __UBOOT__ err = dbg_old_index_check_init(c, &c->zroot); +#endif + + return err; +} + +#ifndef __UBOOT__ +/** + * ubifs_write_master - write master node. + * @c: UBIFS file-system description object + * + * This function writes the master node. The caller has to take the + * @c->mst_mutex lock before calling this function. Returns zero in case of + * success and a negative error code in case of failure. The master node is + * written twice to enable recovery. + */ +int ubifs_write_master(struct ubifs_info *c) +{ + int err, lnum, offs, len; + + ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->ro_error) + return -EROFS; + + lnum = UBIFS_MST_LNUM; + offs = c->mst_offs + c->mst_node_alsz; + len = UBIFS_MST_NODE_SZ; + + if (offs + UBIFS_MST_NODE_SZ > c->leb_size) { + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + offs = 0; + } + + c->mst_offs = offs; + c->mst_node->highest_inum = cpu_to_le64(c->highest_inum); + + err = ubifs_write_node(c, c->mst_node, len, lnum, offs); + if (err) + return err; + + lnum += 1; + + if (offs == 0) { + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } + err = ubifs_write_node(c, c->mst_node, len, lnum, offs); return err; } +#endif diff --git a/fs/ubifs/misc.h b/fs/ubifs/misc.h index 609232e..4316d3c 100644 --- a/fs/ubifs/misc.h +++ b/fs/ubifs/misc.h @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -27,6 +16,7 @@ #ifndef __UBIFS_MISC_H__ #define __UBIFS_MISC_H__ +#define __UBOOT__ /** * ubifs_zn_dirty - check if znode is dirty. * @znode: znode to check @@ -39,6 +29,29 @@ static inline int ubifs_zn_dirty(const struct ubifs_znode *znode) } /** + * ubifs_zn_obsolete - check if znode is obsolete. + * @znode: znode to check + * + * This helper function returns %1 if @znode is obsolete and %0 otherwise. + */ +static inline int ubifs_zn_obsolete(const struct ubifs_znode *znode) +{ + return !!test_bit(OBSOLETE_ZNODE, &znode->flags); +} + +/** + * ubifs_zn_cow - check if znode has to be copied on write. + * @znode: znode to check + * + * This helper function returns %1 if @znode is has COW flag set and %0 + * otherwise. + */ +static inline int ubifs_zn_cow(const struct ubifs_znode *znode) +{ + return !!test_bit(COW_ZNODE, &znode->flags); +} + +/** * ubifs_wake_up_bgt - wake up background thread. * @c: UBIFS file-system description object */ @@ -121,82 +134,27 @@ static inline int ubifs_wbuf_sync(struct ubifs_wbuf *wbuf) return err; } +#ifndef __UBOOT__ /** - * ubifs_leb_unmap - unmap an LEB. - * @c: UBIFS file-system description object - * @lnum: LEB number to unmap - * - * This function returns %0 on success and a negative error code on failure. - */ -static inline int ubifs_leb_unmap(const struct ubifs_info *c, int lnum) -{ - int err; - - if (c->ro_media) - return -EROFS; - err = ubi_leb_unmap(c->ubi, lnum); - if (err) { - ubifs_err("unmap LEB %d failed, error %d", lnum, err); - return err; - } - - return 0; -} - -/** - * ubifs_leb_write - write to a LEB. - * @c: UBIFS file-system description object - * @lnum: LEB number to write - * @buf: buffer to write from - * @offs: offset within LEB to write to - * @len: length to write - * @dtype: data type - * - * This function returns %0 on success and a negative error code on failure. - */ -static inline int ubifs_leb_write(const struct ubifs_info *c, int lnum, - const void *buf, int offs, int len, int dtype) -{ - int err; - - if (c->ro_media) - return -EROFS; - err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype); - if (err) { - ubifs_err("writing %d bytes at %d:%d, error %d", - len, lnum, offs, err); - return err; - } - - return 0; -} - -/** - * ubifs_leb_change - atomic LEB change. - * @c: UBIFS file-system description object - * @lnum: LEB number to write - * @buf: buffer to write from - * @len: length to write - * @dtype: data type + * ubifs_encode_dev - encode device node IDs. + * @dev: UBIFS device node information + * @rdev: device IDs to encode * - * This function returns %0 on success and a negative error code on failure. + * This is a helper function which encodes major/minor numbers of a device node + * into UBIFS device node description. We use standard Linux "new" and "huge" + * encodings. */ -static inline int ubifs_leb_change(const struct ubifs_info *c, int lnum, - const void *buf, int len, int dtype) +static inline int ubifs_encode_dev(union ubifs_dev_desc *dev, dev_t rdev) { - int err; - - if (c->ro_media) - return -EROFS; - err = ubi_leb_change(c->ubi, lnum, buf, len, dtype); - if (err) { - ubifs_err("changing %d bytes in LEB %d, error %d", - len, lnum, err); - return err; + if (new_valid_dev(rdev)) { + dev->new = cpu_to_le32(new_encode_dev(rdev)); + return sizeof(dev->new); + } else { + dev->huge = cpu_to_le64(huge_encode_dev(rdev)); + return sizeof(dev->huge); } - - return 0; } +#endif /** * ubifs_add_dirt - add dirty space to LEB properties. @@ -260,8 +218,24 @@ struct ubifs_branch *ubifs_idx_branch(const struct ubifs_info *c, static inline void *ubifs_idx_key(const struct ubifs_info *c, const struct ubifs_idx_node *idx) { - const __u8 *branch = idx->branches; - return (void *)((struct ubifs_branch *)branch)->key; +#ifndef __UBOOT__ + return (void *)((struct ubifs_branch *)idx->branches)->key; +#else + struct ubifs_branch *tmp; + + tmp = (struct ubifs_branch *)idx->branches; + return (void *)tmp->key; +#endif +} + +/** + * ubifs_current_time - round current time to time granularity. + * @inode: inode + */ +static inline struct timespec ubifs_current_time(struct inode *inode) +{ + return (inode->i_sb->s_time_gran < NSEC_PER_SEC) ? + current_fs_time(inode->i_sb) : CURRENT_TIME_SEC; } /** @@ -308,4 +282,21 @@ static inline void ubifs_release_lprops(struct ubifs_info *c) mutex_unlock(&c->lp_mutex); } +/** + * ubifs_next_log_lnum - switch to the next log LEB. + * @c: UBIFS file-system description object + * @lnum: current log LEB + * + * This helper function returns the log LEB number which goes next after LEB + * 'lnum'. + */ +static inline int ubifs_next_log_lnum(const struct ubifs_info *c, int lnum) +{ + lnum += 1; + if (lnum > c->log_last) + lnum = UBIFS_LOG_LNUM; + + return lnum; +} + #endif /* __UBIFS_MISC_H__ */ diff --git a/fs/ubifs/orphan.c b/fs/ubifs/orphan.c index d091031..4e42879 100644 --- a/fs/ubifs/orphan.c +++ b/fs/ubifs/orphan.c @@ -3,22 +3,12 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Author: Adrian Hunter */ +#include <linux/err.h> #include "ubifs.h" /* @@ -52,6 +42,166 @@ * than the maximum number of orphans allowed. */ +static int dbg_check_orphans(struct ubifs_info *c); + +/** + * ubifs_add_orphan - add an orphan. + * @c: UBIFS file-system description object + * @inum: orphan inode number + * + * Add an orphan. This function is called when an inodes link count drops to + * zero. + */ +int ubifs_add_orphan(struct ubifs_info *c, ino_t inum) +{ + struct ubifs_orphan *orphan, *o; + struct rb_node **p, *parent = NULL; + + orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS); + if (!orphan) + return -ENOMEM; + orphan->inum = inum; + orphan->new = 1; + + spin_lock(&c->orphan_lock); + if (c->tot_orphans >= c->max_orphans) { + spin_unlock(&c->orphan_lock); + kfree(orphan); + return -ENFILE; + } + p = &c->orph_tree.rb_node; + while (*p) { + parent = *p; + o = rb_entry(parent, struct ubifs_orphan, rb); + if (inum < o->inum) + p = &(*p)->rb_left; + else if (inum > o->inum) + p = &(*p)->rb_right; + else { + ubifs_err("orphaned twice"); + spin_unlock(&c->orphan_lock); + kfree(orphan); + return 0; + } + } + c->tot_orphans += 1; + c->new_orphans += 1; + rb_link_node(&orphan->rb, parent, p); + rb_insert_color(&orphan->rb, &c->orph_tree); + list_add_tail(&orphan->list, &c->orph_list); + list_add_tail(&orphan->new_list, &c->orph_new); + spin_unlock(&c->orphan_lock); + dbg_gen("ino %lu", (unsigned long)inum); + return 0; +} + +/** + * ubifs_delete_orphan - delete an orphan. + * @c: UBIFS file-system description object + * @inum: orphan inode number + * + * Delete an orphan. This function is called when an inode is deleted. + */ +void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum) +{ + struct ubifs_orphan *o; + struct rb_node *p; + + spin_lock(&c->orphan_lock); + p = c->orph_tree.rb_node; + while (p) { + o = rb_entry(p, struct ubifs_orphan, rb); + if (inum < o->inum) + p = p->rb_left; + else if (inum > o->inum) + p = p->rb_right; + else { + if (o->del) { + spin_unlock(&c->orphan_lock); + dbg_gen("deleted twice ino %lu", + (unsigned long)inum); + return; + } + if (o->cmt) { + o->del = 1; + o->dnext = c->orph_dnext; + c->orph_dnext = o; + spin_unlock(&c->orphan_lock); + dbg_gen("delete later ino %lu", + (unsigned long)inum); + return; + } + rb_erase(p, &c->orph_tree); + list_del(&o->list); + c->tot_orphans -= 1; + if (o->new) { + list_del(&o->new_list); + c->new_orphans -= 1; + } + spin_unlock(&c->orphan_lock); + kfree(o); + dbg_gen("inum %lu", (unsigned long)inum); + return; + } + } + spin_unlock(&c->orphan_lock); + ubifs_err("missing orphan ino %lu", (unsigned long)inum); + dump_stack(); +} + +/** + * ubifs_orphan_start_commit - start commit of orphans. + * @c: UBIFS file-system description object + * + * Start commit of orphans. + */ +int ubifs_orphan_start_commit(struct ubifs_info *c) +{ + struct ubifs_orphan *orphan, **last; + + spin_lock(&c->orphan_lock); + last = &c->orph_cnext; + list_for_each_entry(orphan, &c->orph_new, new_list) { + ubifs_assert(orphan->new); + ubifs_assert(!orphan->cmt); + orphan->new = 0; + orphan->cmt = 1; + *last = orphan; + last = &orphan->cnext; + } + *last = NULL; + c->cmt_orphans = c->new_orphans; + c->new_orphans = 0; + dbg_cmt("%d orphans to commit", c->cmt_orphans); + INIT_LIST_HEAD(&c->orph_new); + if (c->tot_orphans == 0) + c->no_orphs = 1; + else + c->no_orphs = 0; + spin_unlock(&c->orphan_lock); + return 0; +} + +/** + * avail_orphs - calculate available space. + * @c: UBIFS file-system description object + * + * This function returns the number of orphans that can be written in the + * available space. + */ +static int avail_orphs(struct ubifs_info *c) +{ + int avail_lebs, avail, gap; + + avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1; + avail = avail_lebs * + ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); + gap = c->leb_size - c->ohead_offs; + if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64)) + avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); + return avail; +} + /** * tot_avail_orphs - calculate total space. * @c: UBIFS file-system description object @@ -70,6 +220,256 @@ static int tot_avail_orphs(struct ubifs_info *c) } /** + * do_write_orph_node - write a node to the orphan head. + * @c: UBIFS file-system description object + * @len: length of node + * @atomic: write atomically + * + * This function writes a node to the orphan head from the orphan buffer. If + * %atomic is not zero, then the write is done atomically. On success, %0 is + * returned, otherwise a negative error code is returned. + */ +static int do_write_orph_node(struct ubifs_info *c, int len, int atomic) +{ + int err = 0; + + if (atomic) { + ubifs_assert(c->ohead_offs == 0); + ubifs_prepare_node(c, c->orph_buf, len, 1); + len = ALIGN(len, c->min_io_size); + err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len); + } else { + if (c->ohead_offs == 0) { + /* Ensure LEB has been unmapped */ + err = ubifs_leb_unmap(c, c->ohead_lnum); + if (err) + return err; + } + err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum, + c->ohead_offs); + } + return err; +} + +/** + * write_orph_node - write an orphan node. + * @c: UBIFS file-system description object + * @atomic: write atomically + * + * This function builds an orphan node from the cnext list and writes it to the + * orphan head. On success, %0 is returned, otherwise a negative error code + * is returned. + */ +static int write_orph_node(struct ubifs_info *c, int atomic) +{ + struct ubifs_orphan *orphan, *cnext; + struct ubifs_orph_node *orph; + int gap, err, len, cnt, i; + + ubifs_assert(c->cmt_orphans > 0); + gap = c->leb_size - c->ohead_offs; + if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) { + c->ohead_lnum += 1; + c->ohead_offs = 0; + gap = c->leb_size; + if (c->ohead_lnum > c->orph_last) { + /* + * We limit the number of orphans so that this should + * never happen. + */ + ubifs_err("out of space in orphan area"); + return -EINVAL; + } + } + cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); + if (cnt > c->cmt_orphans) + cnt = c->cmt_orphans; + len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64); + ubifs_assert(c->orph_buf); + orph = c->orph_buf; + orph->ch.node_type = UBIFS_ORPH_NODE; + spin_lock(&c->orphan_lock); + cnext = c->orph_cnext; + for (i = 0; i < cnt; i++) { + orphan = cnext; + ubifs_assert(orphan->cmt); + orph->inos[i] = cpu_to_le64(orphan->inum); + orphan->cmt = 0; + cnext = orphan->cnext; + orphan->cnext = NULL; + } + c->orph_cnext = cnext; + c->cmt_orphans -= cnt; + spin_unlock(&c->orphan_lock); + if (c->cmt_orphans) + orph->cmt_no = cpu_to_le64(c->cmt_no); + else + /* Mark the last node of the commit */ + orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63)); + ubifs_assert(c->ohead_offs + len <= c->leb_size); + ubifs_assert(c->ohead_lnum >= c->orph_first); + ubifs_assert(c->ohead_lnum <= c->orph_last); + err = do_write_orph_node(c, len, atomic); + c->ohead_offs += ALIGN(len, c->min_io_size); + c->ohead_offs = ALIGN(c->ohead_offs, 8); + return err; +} + +/** + * write_orph_nodes - write orphan nodes until there are no more to commit. + * @c: UBIFS file-system description object + * @atomic: write atomically + * + * This function writes orphan nodes for all the orphans to commit. On success, + * %0 is returned, otherwise a negative error code is returned. + */ +static int write_orph_nodes(struct ubifs_info *c, int atomic) +{ + int err; + + while (c->cmt_orphans > 0) { + err = write_orph_node(c, atomic); + if (err) + return err; + } + if (atomic) { + int lnum; + + /* Unmap any unused LEBs after consolidation */ + lnum = c->ohead_lnum + 1; + for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) { + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } + } + return 0; +} + +/** + * consolidate - consolidate the orphan area. + * @c: UBIFS file-system description object + * + * This function enables consolidation by putting all the orphans into the list + * to commit. The list is in the order that the orphans were added, and the + * LEBs are written atomically in order, so at no time can orphans be lost by + * an unclean unmount. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int consolidate(struct ubifs_info *c) +{ + int tot_avail = tot_avail_orphs(c), err = 0; + + spin_lock(&c->orphan_lock); + dbg_cmt("there is space for %d orphans and there are %d", + tot_avail, c->tot_orphans); + if (c->tot_orphans - c->new_orphans <= tot_avail) { + struct ubifs_orphan *orphan, **last; + int cnt = 0; + + /* Change the cnext list to include all non-new orphans */ + last = &c->orph_cnext; + list_for_each_entry(orphan, &c->orph_list, list) { + if (orphan->new) + continue; + orphan->cmt = 1; + *last = orphan; + last = &orphan->cnext; + cnt += 1; + } + *last = NULL; + ubifs_assert(cnt == c->tot_orphans - c->new_orphans); + c->cmt_orphans = cnt; + c->ohead_lnum = c->orph_first; + c->ohead_offs = 0; + } else { + /* + * We limit the number of orphans so that this should + * never happen. + */ + ubifs_err("out of space in orphan area"); + err = -EINVAL; + } + spin_unlock(&c->orphan_lock); + return err; +} + +/** + * commit_orphans - commit orphans. + * @c: UBIFS file-system description object + * + * This function commits orphans to flash. On success, %0 is returned, + * otherwise a negative error code is returned. + */ +static int commit_orphans(struct ubifs_info *c) +{ + int avail, atomic = 0, err; + + ubifs_assert(c->cmt_orphans > 0); + avail = avail_orphs(c); + if (avail < c->cmt_orphans) { + /* Not enough space to write new orphans, so consolidate */ + err = consolidate(c); + if (err) + return err; + atomic = 1; + } + err = write_orph_nodes(c, atomic); + return err; +} + +/** + * erase_deleted - erase the orphans marked for deletion. + * @c: UBIFS file-system description object + * + * During commit, the orphans being committed cannot be deleted, so they are + * marked for deletion and deleted by this function. Also, the recovery + * adds killed orphans to the deletion list, and therefore they are deleted + * here too. + */ +static void erase_deleted(struct ubifs_info *c) +{ + struct ubifs_orphan *orphan, *dnext; + + spin_lock(&c->orphan_lock); + dnext = c->orph_dnext; + while (dnext) { + orphan = dnext; + dnext = orphan->dnext; + ubifs_assert(!orphan->new); + ubifs_assert(orphan->del); + rb_erase(&orphan->rb, &c->orph_tree); + list_del(&orphan->list); + c->tot_orphans -= 1; + dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum); + kfree(orphan); + } + c->orph_dnext = NULL; + spin_unlock(&c->orphan_lock); +} + +/** + * ubifs_orphan_end_commit - end commit of orphans. + * @c: UBIFS file-system description object + * + * End commit of orphans. + */ +int ubifs_orphan_end_commit(struct ubifs_info *c) +{ + int err; + + if (c->cmt_orphans != 0) { + err = commit_orphans(c); + if (err) + return err; + } + erase_deleted(c); + err = dbg_check_orphans(c); + return err; +} + +/** * ubifs_clear_orphans - erase all LEBs used for orphans. * @c: UBIFS file-system description object * @@ -128,6 +528,7 @@ static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) rb_link_node(&orphan->rb, parent, p); rb_insert_color(&orphan->rb, &c->orph_tree); list_add_tail(&orphan->list, &c->orph_list); + orphan->del = 1; orphan->dnext = c->orph_dnext; c->orph_dnext = orphan; dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, @@ -159,9 +560,9 @@ static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, list_for_each_entry(snod, &sleb->nodes, list) { if (snod->type != UBIFS_ORPH_NODE) { - ubifs_err("invalid node type %d in orphan area at " - "%d:%d", snod->type, sleb->lnum, snod->offs); - dbg_dump_node(c, snod->node); + ubifs_err("invalid node type %d in orphan area at %d:%d", + snod->type, sleb->lnum, snod->offs); + ubifs_dump_node(c, snod->node); return -EINVAL; } @@ -186,10 +587,9 @@ static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, * number. That makes this orphan node, out of date. */ if (!first) { - ubifs_err("out of order commit number %llu in " - "orphan node at %d:%d", + ubifs_err("out of order commit number %llu in orphan node at %d:%d", cmt_no, sleb->lnum, snod->offs); - dbg_dump_node(c, snod->node); + ubifs_dump_node(c, snod->node); return -EINVAL; } dbg_rcvry("out of date LEB %d", sleb->lnum); @@ -262,9 +662,11 @@ static int kill_orphans(struct ubifs_info *c) struct ubifs_scan_leb *sleb; dbg_rcvry("LEB %d", lnum); - sleb = ubifs_scan(c, lnum, 0, c->sbuf); + sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); if (IS_ERR(sleb)) { - sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0); + if (PTR_ERR(sleb) == -EUCLEAN) + sleb = ubifs_recover_leb(c, lnum, 0, + c->sbuf, -1); if (IS_ERR(sleb)) { err = PTR_ERR(sleb); break; @@ -314,3 +716,232 @@ int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) return err; } + +/* + * Everything below is related to debugging. + */ + +struct check_orphan { + struct rb_node rb; + ino_t inum; +}; + +struct check_info { + unsigned long last_ino; + unsigned long tot_inos; + unsigned long missing; + unsigned long long leaf_cnt; + struct ubifs_ino_node *node; + struct rb_root root; +}; + +static int dbg_find_orphan(struct ubifs_info *c, ino_t inum) +{ + struct ubifs_orphan *o; + struct rb_node *p; + + spin_lock(&c->orphan_lock); + p = c->orph_tree.rb_node; + while (p) { + o = rb_entry(p, struct ubifs_orphan, rb); + if (inum < o->inum) + p = p->rb_left; + else if (inum > o->inum) + p = p->rb_right; + else { + spin_unlock(&c->orphan_lock); + return 1; + } + } + spin_unlock(&c->orphan_lock); + return 0; +} + +static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum) +{ + struct check_orphan *orphan, *o; + struct rb_node **p, *parent = NULL; + + orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS); + if (!orphan) + return -ENOMEM; + orphan->inum = inum; + + p = &root->rb_node; + while (*p) { + parent = *p; + o = rb_entry(parent, struct check_orphan, rb); + if (inum < o->inum) + p = &(*p)->rb_left; + else if (inum > o->inum) + p = &(*p)->rb_right; + else { + kfree(orphan); + return 0; + } + } + rb_link_node(&orphan->rb, parent, p); + rb_insert_color(&orphan->rb, root); + return 0; +} + +static int dbg_find_check_orphan(struct rb_root *root, ino_t inum) +{ + struct check_orphan *o; + struct rb_node *p; + + p = root->rb_node; + while (p) { + o = rb_entry(p, struct check_orphan, rb); + if (inum < o->inum) + p = p->rb_left; + else if (inum > o->inum) + p = p->rb_right; + else + return 1; + } + return 0; +} + +static void dbg_free_check_tree(struct rb_root *root) +{ + struct check_orphan *o, *n; + + rbtree_postorder_for_each_entry_safe(o, n, root, rb) + kfree(o); +} + +static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr, + void *priv) +{ + struct check_info *ci = priv; + ino_t inum; + int err; + + inum = key_inum(c, &zbr->key); + if (inum != ci->last_ino) { + /* Lowest node type is the inode node, so it comes first */ + if (key_type(c, &zbr->key) != UBIFS_INO_KEY) + ubifs_err("found orphan node ino %lu, type %d", + (unsigned long)inum, key_type(c, &zbr->key)); + ci->last_ino = inum; + ci->tot_inos += 1; + err = ubifs_tnc_read_node(c, zbr, ci->node); + if (err) { + ubifs_err("node read failed, error %d", err); + return err; + } + if (ci->node->nlink == 0) + /* Must be recorded as an orphan */ + if (!dbg_find_check_orphan(&ci->root, inum) && + !dbg_find_orphan(c, inum)) { + ubifs_err("missing orphan, ino %lu", + (unsigned long)inum); + ci->missing += 1; + } + } + ci->leaf_cnt += 1; + return 0; +} + +static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) +{ + struct ubifs_scan_node *snod; + struct ubifs_orph_node *orph; + ino_t inum; + int i, n, err; + + list_for_each_entry(snod, &sleb->nodes, list) { + cond_resched(); + if (snod->type != UBIFS_ORPH_NODE) + continue; + orph = snod->node; + n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; + for (i = 0; i < n; i++) { + inum = le64_to_cpu(orph->inos[i]); + err = dbg_ins_check_orphan(&ci->root, inum); + if (err) + return err; + } + } + return 0; +} + +static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) +{ + int lnum, err = 0; + void *buf; + + /* Check no-orphans flag and skip this if no orphans */ + if (c->no_orphs) + return 0; + + buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory to check orphans"); + return 0; + } + + for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { + struct ubifs_scan_leb *sleb; + + sleb = ubifs_scan(c, lnum, 0, buf, 0); + if (IS_ERR(sleb)) { + err = PTR_ERR(sleb); + break; + } + + err = dbg_read_orphans(ci, sleb); + ubifs_scan_destroy(sleb); + if (err) + break; + } + + vfree(buf); + return err; +} + +static int dbg_check_orphans(struct ubifs_info *c) +{ + struct check_info ci; + int err; + + if (!dbg_is_chk_orph(c)) + return 0; + + ci.last_ino = 0; + ci.tot_inos = 0; + ci.missing = 0; + ci.leaf_cnt = 0; + ci.root = RB_ROOT; + ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); + if (!ci.node) { + ubifs_err("out of memory"); + return -ENOMEM; + } + + err = dbg_scan_orphans(c, &ci); + if (err) + goto out; + + err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci); + if (err) { + ubifs_err("cannot scan TNC, error %d", err); + goto out; + } + + if (ci.missing) { + ubifs_err("%lu missing orphan(s)", ci.missing); + err = -EINVAL; + goto out; + } + + dbg_cmt("last inode number is %lu", ci.last_ino); + dbg_cmt("total number of inodes is %lu", ci.tot_inos); + dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt); + +out: + dbg_free_check_tree(&ci.root); + kfree(ci.node); + return err; +} diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c index 7444650..f54a440 100644 --- a/fs/ubifs/recovery.c +++ b/fs/ubifs/recovery.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -23,13 +12,37 @@ /* * This file implements functions needed to recover from unclean un-mounts. * When UBIFS is mounted, it checks a flag on the master node to determine if - * an un-mount was completed sucessfully. If not, the process of mounting - * incorparates additional checking and fixing of on-flash data structures. + * an un-mount was completed successfully. If not, the process of mounting + * incorporates additional checking and fixing of on-flash data structures. * UBIFS always cleans away all remnants of an unclean un-mount, so that * errors do not accumulate. However UBIFS defers recovery if it is mounted * read-only, and the flash is not modified in that case. + * + * The general UBIFS approach to the recovery is that it recovers from + * corruptions which could be caused by power cuts, but it refuses to recover + * from corruption caused by other reasons. And UBIFS tries to distinguish + * between these 2 reasons of corruptions and silently recover in the former + * case and loudly complain in the latter case. + * + * UBIFS writes only to erased LEBs, so it writes only to the flash space + * containing only 0xFFs. UBIFS also always writes strictly from the beginning + * of the LEB to the end. And UBIFS assumes that the underlying flash media + * writes in @c->max_write_size bytes at a time. + * + * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. + * I/O unit corresponding to offset X to contain corrupted data, all the + * following min. I/O units have to contain empty space (all 0xFFs). If this is + * not true, the corruption cannot be the result of a power cut, and UBIFS + * refuses to mount. */ +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/crc32.h> +#include <linux/slab.h> +#else +#include <linux/err.h> +#endif #include "ubifs.h" /** @@ -52,6 +65,25 @@ static int is_empty(void *buf, int len) } /** + * first_non_ff - find offset of the first non-0xff byte. + * @buf: buffer to search in + * @len: length of buffer + * + * This function returns offset of the first non-0xff byte in @buf or %-1 if + * the buffer contains only 0xff bytes. + */ +static int first_non_ff(void *buf, int len) +{ + uint8_t *p = buf; + int i; + + for (i = 0; i < len; i++) + if (*p++ != 0xff) + return i; + return -1; +} + +/** * get_master_node - get the last valid master node allowing for corruption. * @c: UBIFS file-system description object * @lnum: LEB number @@ -79,7 +111,7 @@ static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, if (!sbuf) return -ENOMEM; - err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); + err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); if (err && err != -EBADMSG) goto out_free; @@ -175,10 +207,10 @@ static int write_rcvrd_mst_node(struct ubifs_info *c, mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); - err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); + err = ubifs_leb_change(c, lnum, mst, sz); if (err) goto out; - err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); + err = ubifs_leb_change(c, lnum + 1, mst, sz); if (err) goto out; out: @@ -236,7 +268,8 @@ int ubifs_recover_master_node(struct ubifs_info *c) if (cor1) goto out_err; mst = mst1; - } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { + } else if (offs1 == 0 && + c->leb_size - offs2 - sz < sz) { /* 1st LEB was unmapped and written, 2nd not */ if (cor1) goto out_err; @@ -266,12 +299,12 @@ int ubifs_recover_master_node(struct ubifs_info *c) mst = mst2; } - dbg_rcvry("recovered master node from LEB %d", + ubifs_msg("recovered master node from LEB %d", (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); - if ((c->vfs_sb->s_flags & MS_RDONLY)) { + if (c->ro_mount) { /* Read-only mode. Keep a copy for switching to rw mode */ c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); if (!c->rcvrd_mst_node) { @@ -279,6 +312,40 @@ int ubifs_recover_master_node(struct ubifs_info *c) goto out_free; } memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); + + /* + * We had to recover the master node, which means there was an + * unclean reboot. However, it is possible that the master node + * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. + * E.g., consider the following chain of events: + * + * 1. UBIFS was cleanly unmounted, so the master node is clean + * 2. UBIFS is being mounted R/W and starts changing the master + * node in the first (%UBIFS_MST_LNUM). A power cut happens, + * so this LEB ends up with some amount of garbage at the + * end. + * 3. UBIFS is being mounted R/O. We reach this place and + * recover the master node from the second LEB + * (%UBIFS_MST_LNUM + 1). But we cannot update the media + * because we are being mounted R/O. We have to defer the + * operation. + * 4. However, this master node (@c->mst_node) is marked as + * clean (since the step 1). And if we just return, the + * mount code will be confused and won't recover the master + * node when it is re-mounter R/W later. + * + * Thus, to force the recovery by marking the master node as + * dirty. + */ + c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); +#ifndef __UBOOT__ + } else { + /* Write the recovered master node */ + c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; + err = write_rcvrd_mst_node(c, c->mst_node); + if (err) + goto out_free; +#endif } vfree(buf2); @@ -291,12 +358,12 @@ out_err: out_free: ubifs_err("failed to recover master node"); if (mst1) { - dbg_err("dumping first master node"); - dbg_dump_node(c, mst1); + ubifs_err("dumping first master node"); + ubifs_dump_node(c, mst1); } if (mst2) { - dbg_err("dumping second master node"); - dbg_dump_node(c, mst2); + ubifs_err("dumping second master node"); + ubifs_dump_node(c, mst2); } vfree(buf2); vfree(buf1); @@ -335,44 +402,23 @@ int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) * @offs: offset to check * * This function returns %1 if @offs was in the last write to the LEB whose data - * is in @buf, otherwise %0 is returned. The determination is made by checking - * for subsequent empty space starting from the next min_io_size boundary (or a - * bit less than the common header size if min_io_size is one). + * is in @buf, otherwise %0 is returned. The determination is made by checking + * for subsequent empty space starting from the next @c->max_write_size + * boundary. */ static int is_last_write(const struct ubifs_info *c, void *buf, int offs) { - int empty_offs; - int check_len; + int empty_offs, check_len; uint8_t *p; - if (c->min_io_size == 1) { - check_len = c->leb_size - offs; - p = buf + check_len; - for (; check_len > 0; check_len--) - if (*--p != 0xff) - break; - /* - * 'check_len' is the size of the corruption which cannot be - * more than the size of 1 node if it was caused by an unclean - * unmount. - */ - if (check_len > UBIFS_MAX_NODE_SZ) - return 0; - return 1; - } - /* - * Round up to the next c->min_io_size boundary i.e. 'offs' is in the - * last wbuf written. After that should be empty space. + * Round up to the next @c->max_write_size boundary i.e. @offs is in + * the last wbuf written. After that should be empty space. */ - empty_offs = ALIGN(offs + 1, c->min_io_size); + empty_offs = ALIGN(offs + 1, c->max_write_size); check_len = c->leb_size - empty_offs; p = buf + empty_offs - offs; - - for (; check_len > 0; check_len--) - if (*p++ != 0xff) - return 0; - return 1; + return is_empty(p, check_len); } /** @@ -385,7 +431,7 @@ static int is_last_write(const struct ubifs_info *c, void *buf, int offs) * * This function pads up to the next min_io_size boundary (if there is one) and * sets empty space to all 0xff. @buf, @offs and @len are updated to the next - * min_io_size boundary (if there is one). + * @c->min_io_size boundary. */ static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, int *offs, int *len) @@ -395,11 +441,6 @@ static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, lnum = lnum; dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); - if (c->min_io_size == 1) { - memset(*buf, 0xff, c->leb_size - *offs); - return; - } - ubifs_assert(!(*offs & 7)); empty_offs = ALIGN(*offs, c->min_io_size); pad_len = empty_offs - *offs; @@ -429,7 +470,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, int skip, dlen = le32_to_cpu(ch->len); /* Check for empty space after the corrupt node's common header */ - skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs; + skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; if (is_empty(buf + skip, len - skip)) return 1; /* @@ -441,7 +482,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, return 0; } /* Now we know the corrupt node's length we can skip over it */ - skip = ALIGN(offs + dlen, c->min_io_size) - offs; + skip = ALIGN(offs + dlen, c->max_write_size) - offs; /* After which there should be empty space */ if (is_empty(buf + skip, len - skip)) return 1; @@ -469,7 +510,7 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, endpt = snod->offs + snod->len; } - if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { + if (c->ro_mount && !c->remounting_rw) { /* Add to recovery list */ struct ubifs_unclean_leb *ucleb; @@ -481,21 +522,55 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, ucleb->lnum = lnum; ucleb->endpt = endpt; list_add_tail(&ucleb->list, &c->unclean_leb_list); +#ifndef __UBOOT__ + } else { + /* Write the fixed LEB back to flash */ + int err; + + dbg_rcvry("fixing LEB %d start %d endpt %d", + lnum, start, sleb->endpt); + if (endpt == 0) { + err = ubifs_leb_unmap(c, lnum); + if (err) + return err; + } else { + int len = ALIGN(endpt, c->min_io_size); + + if (start) { + err = ubifs_leb_read(c, lnum, sleb->buf, 0, + start, 1); + if (err) + return err; + } + /* Pad to min_io_size */ + if (len > endpt) { + int pad_len = len - ALIGN(endpt, 8); + + if (pad_len > 0) { + void *buf = sleb->buf + len - pad_len; + + ubifs_pad(c, buf, pad_len); + } + } + err = ubifs_leb_change(c, lnum, sleb->buf, len); + if (err) + return err; + } +#endif } return 0; } /** - * drop_incomplete_group - drop nodes from an incomplete group. + * drop_last_group - drop the last group of nodes. * @sleb: scanned LEB information * @offs: offset of dropped nodes is returned here * - * This function returns %1 if nodes are dropped and %0 otherwise. + * This is a helper function for 'ubifs_recover_leb()' which drops the last + * group of nodes of the scanned LEB. */ -static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) +static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) { - int dropped = 0; - while (!list_empty(&sleb->nodes)) { struct ubifs_scan_node *snod; struct ubifs_ch *ch; @@ -504,15 +579,41 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) list); ch = snod->node; if (ch->group_type != UBIFS_IN_NODE_GROUP) - return dropped; - dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); + break; + + dbg_rcvry("dropping grouped node at %d:%d", + sleb->lnum, snod->offs); + *offs = snod->offs; + list_del(&snod->list); + kfree(snod); + sleb->nodes_cnt -= 1; + } +} + +/** + * drop_last_node - drop the last node. + * @sleb: scanned LEB information + * @offs: offset of dropped nodes is returned here + * @grouped: non-zero if whole group of nodes have to be dropped + * + * This is a helper function for 'ubifs_recover_leb()' which drops the last + * node of the scanned LEB. + */ +static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) +{ + struct ubifs_scan_node *snod; + + if (!list_empty(&sleb->nodes)) { + snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, + list); + + dbg_rcvry("dropping last node at %d:%d", + sleb->lnum, snod->offs); *offs = snod->offs; list_del(&snod->list); kfree(snod); sleb->nodes_cnt -= 1; - dropped = 1; } - return dropped; } /** @@ -521,33 +622,30 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) * @lnum: LEB number * @offs: offset * @sbuf: LEB-sized buffer to use - * @grouped: nodes may be grouped for recovery + * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not + * belong to any journal head) * * This function does a scan of a LEB, but caters for errors that might have * been caused by the unclean unmount from which we are attempting to recover. - * - * This function returns %0 on success and a negative error code on failure. + * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is + * found, and a negative error code in case of failure. */ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, - int offs, void *sbuf, int grouped) + int offs, void *sbuf, int jhead) { - int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; - int empty_chkd = 0, start = offs; + int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; + int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; struct ubifs_scan_leb *sleb; void *buf = sbuf + offs; - dbg_rcvry("%d:%d", lnum, offs); + dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); sleb = ubifs_start_scan(c, lnum, offs, sbuf); if (IS_ERR(sleb)) return sleb; - if (sleb->ecc) - need_clean = 1; - + ubifs_assert(len >= 8); while (len >= 8) { - int ret; - dbg_scan("look at LEB %d:%d (%d bytes left)", lnum, offs, len); @@ -557,8 +655,7 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, * Scan quietly until there is an error from which we cannot * recover */ - ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); - + ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); if (ret == SCANNED_A_NODE) { /* A valid node, and not a padding node */ struct ubifs_ch *ch = buf; @@ -571,98 +668,127 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, offs += node_len; buf += node_len; len -= node_len; - continue; - } - - if (ret > 0) { + } else if (ret > 0) { /* Padding bytes or a valid padding node */ offs += ret; buf += ret; len -= ret; - continue; - } - - if (ret == SCANNED_EMPTY_SPACE) { - if (!is_empty(buf, len)) { - if (!is_last_write(c, buf, offs)) - break; - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - } - empty_chkd = 1; + } else if (ret == SCANNED_EMPTY_SPACE || + ret == SCANNED_GARBAGE || + ret == SCANNED_A_BAD_PAD_NODE || + ret == SCANNED_A_CORRUPT_NODE) { + dbg_rcvry("found corruption (%d) at %d:%d", + ret, lnum, offs); break; + } else { + ubifs_err("unexpected return value %d", ret); + err = -EINVAL; + goto error; } + } - if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) - if (is_last_write(c, buf, offs)) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - empty_chkd = 1; - break; - } - - if (ret == SCANNED_A_CORRUPT_NODE) - if (no_more_nodes(c, buf, len, lnum, offs)) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - empty_chkd = 1; - break; - } - - if (quiet) { - /* Redo the last scan but noisily */ - quiet = 0; - continue; - } + if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { + if (!is_last_write(c, buf, offs)) + goto corrupted_rescan; + } else if (ret == SCANNED_A_CORRUPT_NODE) { + if (!no_more_nodes(c, buf, len, lnum, offs)) + goto corrupted_rescan; + } else if (!is_empty(buf, len)) { + if (!is_last_write(c, buf, offs)) { + int corruption = first_non_ff(buf, len); - switch (ret) { - case SCANNED_GARBAGE: - dbg_err("garbage"); - goto corrupted; - case SCANNED_A_CORRUPT_NODE: - case SCANNED_A_BAD_PAD_NODE: - dbg_err("bad node"); - goto corrupted; - default: - dbg_err("unknown"); + /* + * See header comment for this file for more + * explanations about the reasons we have this check. + */ + ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d", + lnum, offs, corruption); + /* Make sure we dump interesting non-0xFF data */ + offs += corruption; + buf += corruption; goto corrupted; } } - if (!empty_chkd && !is_empty(buf, len)) { - if (is_last_write(c, buf, offs)) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - } else { - ubifs_err("corrupt empty space at LEB %d:%d", - lnum, offs); - goto corrupted; - } - } + min_io_unit = round_down(offs, c->min_io_size); + if (grouped) + /* + * If nodes are grouped, always drop the incomplete group at + * the end. + */ + drop_last_group(sleb, &offs); - /* Drop nodes from incomplete group */ - if (grouped && drop_incomplete_group(sleb, &offs)) { - buf = sbuf + offs; - len = c->leb_size - offs; - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; + if (jhead == GCHD) { + /* + * If this LEB belongs to the GC head then while we are in the + * middle of the same min. I/O unit keep dropping nodes. So + * basically, what we want is to make sure that the last min. + * I/O unit where we saw the corruption is dropped completely + * with all the uncorrupted nodes which may possibly sit there. + * + * In other words, let's name the min. I/O unit where the + * corruption starts B, and the previous min. I/O unit A. The + * below code tries to deal with a situation when half of B + * contains valid nodes or the end of a valid node, and the + * second half of B contains corrupted data or garbage. This + * means that UBIFS had been writing to B just before the power + * cut happened. I do not know how realistic is this scenario + * that half of the min. I/O unit had been written successfully + * and the other half not, but this is possible in our 'failure + * mode emulation' infrastructure at least. + * + * So what is the problem, why we need to drop those nodes? Why + * can't we just clean-up the second half of B by putting a + * padding node there? We can, and this works fine with one + * exception which was reproduced with power cut emulation + * testing and happens extremely rarely. + * + * Imagine the file-system is full, we run GC which starts + * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is + * the current GC head LEB). The @c->gc_lnum is -1, which means + * that GC will retain LEB X and will try to continue. Imagine + * that LEB X is currently the dirtiest LEB, and the amount of + * used space in LEB Y is exactly the same as amount of free + * space in LEB X. + * + * And a power cut happens when nodes are moved from LEB X to + * LEB Y. We are here trying to recover LEB Y which is the GC + * head LEB. We find the min. I/O unit B as described above. + * Then we clean-up LEB Y by padding min. I/O unit. And later + * 'ubifs_rcvry_gc_commit()' function fails, because it cannot + * find a dirty LEB which could be GC'd into LEB Y! Even LEB X + * does not match because the amount of valid nodes there does + * not fit the free space in LEB Y any more! And this is + * because of the padding node which we added to LEB Y. The + * user-visible effect of this which I once observed and + * analysed is that we cannot mount the file-system with + * -ENOSPC error. + * + * So obviously, to make sure that situation does not happen we + * should free min. I/O unit B in LEB Y completely and the last + * used min. I/O unit in LEB Y should be A. This is basically + * what the below code tries to do. + */ + while (offs > min_io_unit) + drop_last_node(sleb, &offs); } - if (offs % c->min_io_size) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - } + buf = sbuf + offs; + len = c->leb_size - offs; + clean_buf(c, &buf, lnum, &offs, &len); ubifs_end_scan(c, sleb, lnum, offs); - if (need_clean) { - err = fix_unclean_leb(c, sleb, start); - if (err) - goto error; - } + err = fix_unclean_leb(c, sleb, start); + if (err) + goto error; return sleb; +corrupted_rescan: + /* Re-scan the corrupted data with verbose messages */ + ubifs_err("corruption %d", ret); + ubifs_scan_a_node(c, buf, len, lnum, offs, 1); corrupted: ubifs_scanned_corruption(c, lnum, offs, buf); err = -EUCLEAN; @@ -693,22 +819,23 @@ static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, return -ENOMEM; if (c->leb_size - offs < UBIFS_CS_NODE_SZ) goto out_err; - err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); + err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, + UBIFS_CS_NODE_SZ, 0); if (err && err != -EBADMSG) goto out_free; ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); if (ret != SCANNED_A_NODE) { - dbg_err("Not a valid node"); + ubifs_err("Not a valid node"); goto out_err; } if (cs_node->ch.node_type != UBIFS_CS_NODE) { - dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); + ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type); goto out_err; } if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { - dbg_err("CS node cmt_no %llu != current cmt_no %llu", - (unsigned long long)le64_to_cpu(cs_node->cmt_no), - c->cmt_no); + ubifs_err("CS node cmt_no %llu != current cmt_no %llu", + (unsigned long long)le64_to_cpu(cs_node->cmt_no), + c->cmt_no); goto out_err; } *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); @@ -732,7 +859,8 @@ out_free: * @sbuf: LEB-sized buffer to use * * This function does a scan of a LEB, but caters for errors that might have - * been caused by the unclean unmount from which we are attempting to recover. + * been caused by unclean reboots from which we are attempting to recover + * (assume that only the last log LEB can be corrupted by an unclean reboot). * * This function returns %0 on success and a negative error code on failure. */ @@ -751,7 +879,7 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, * We can only recover at the end of the log, so check that the * next log LEB is empty or out of date. */ - sleb = ubifs_scan(c, next_lnum, 0, sbuf); + sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); if (IS_ERR(sleb)) return sleb; if (sleb->nodes_cnt) { @@ -770,15 +898,15 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, } } if (snod->sqnum > cs_sqnum) { - ubifs_err("unrecoverable log corruption " - "in LEB %d", lnum); + ubifs_err("unrecoverable log corruption in LEB %d", + lnum); ubifs_scan_destroy(sleb); return ERR_PTR(-EUCLEAN); } } ubifs_scan_destroy(sleb); } - return ubifs_recover_leb(c, lnum, offs, sbuf, 0); + return ubifs_recover_leb(c, lnum, offs, sbuf, -1); } /** @@ -792,15 +920,10 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, * * This function returns %0 on success and a negative error code on failure. */ -static int recover_head(const struct ubifs_info *c, int lnum, int offs, - void *sbuf) +static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) { - int len, err, need_clean = 0; + int len = c->max_write_size, err; - if (c->min_io_size > 1) - len = c->min_io_size; - else - len = 512; if (offs + len > c->leb_size) len = c->leb_size - offs; @@ -808,27 +931,15 @@ static int recover_head(const struct ubifs_info *c, int lnum, int offs, return 0; /* Read at the head location and check it is empty flash */ - err = ubi_read(c->ubi, lnum, sbuf, offs, len); - if (err) - need_clean = 1; - else { - uint8_t *p = sbuf; - - while (len--) - if (*p++ != 0xff) { - need_clean = 1; - break; - } - } - - if (need_clean) { + err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); + if (err || !is_empty(sbuf, len)) { dbg_rcvry("cleaning head at %d:%d", lnum, offs); if (offs == 0) return ubifs_leb_unmap(c, lnum); - err = ubi_read(c->ubi, lnum, sbuf, 0, offs); + err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); if (err) return err; - return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); + return ubifs_leb_change(c, lnum, sbuf, offs); } return 0; @@ -851,11 +962,11 @@ static int recover_head(const struct ubifs_info *c, int lnum, int offs, * * This function returns %0 on success and a negative error code on failure. */ -int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) +int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) { int err; - ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); + ubifs_assert(!c->ro_mount || c->remounting_rw); dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); @@ -871,7 +982,7 @@ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) } /** - * clean_an_unclean_leb - read and write a LEB to remove corruption. + * clean_an_unclean_leb - read and write a LEB to remove corruption. * @c: UBIFS file-system description object * @ucleb: unclean LEB information * @sbuf: LEB-sized buffer to use @@ -882,7 +993,7 @@ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) * * This function returns %0 on success and a negative error code on failure. */ -static int clean_an_unclean_leb(const struct ubifs_info *c, +static int clean_an_unclean_leb(struct ubifs_info *c, struct ubifs_unclean_leb *ucleb, void *sbuf) { int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; @@ -898,7 +1009,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c, return 0; } - err = ubi_read(c->ubi, lnum, buf, offs, len); + err = ubifs_leb_read(c, lnum, buf, offs, len, 0); if (err && err != -EBADMSG) return err; @@ -958,7 +1069,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c, } /* Write back the LEB atomically */ - err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); + err = ubifs_leb_change(c, lnum, sbuf, len); if (err) return err; @@ -978,7 +1089,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c, * * This function returns %0 on success and a negative error code on failure. */ -int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) +int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) { dbg_rcvry("recovery"); while (!list_empty(&c->unclean_leb_list)) { @@ -996,6 +1107,140 @@ int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) return 0; } +#ifndef __UBOOT__ +/** + * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. + * @c: UBIFS file-system description object + * + * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty + * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns + * zero in case of success and a negative error code in case of failure. + */ +static int grab_empty_leb(struct ubifs_info *c) +{ + int lnum, err; + + /* + * Note, it is very important to first search for an empty LEB and then + * run the commit, not vice-versa. The reason is that there might be + * only one empty LEB at the moment, the one which has been the + * @c->gc_lnum just before the power cut happened. During the regular + * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no + * one but GC can grab it. But at this moment this single empty LEB is + * not marked as taken, so if we run commit - what happens? Right, the + * commit will grab it and write the index there. Remember that the + * index always expands as long as there is free space, and it only + * starts consolidating when we run out of space. + * + * IOW, if we run commit now, we might not be able to find a free LEB + * after this. + */ + lnum = ubifs_find_free_leb_for_idx(c); + if (lnum < 0) { + ubifs_err("could not find an empty LEB"); + ubifs_dump_lprops(c); + ubifs_dump_budg(c, &c->bi); + return lnum; + } + + /* Reset the index flag */ + err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, + LPROPS_INDEX, 0); + if (err) + return err; + + c->gc_lnum = lnum; + dbg_rcvry("found empty LEB %d, run commit", lnum); + + return ubifs_run_commit(c); +} + +/** + * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. + * @c: UBIFS file-system description object + * + * Out-of-place garbage collection requires always one empty LEB with which to + * start garbage collection. The LEB number is recorded in c->gc_lnum and is + * written to the master node on unmounting. In the case of an unclean unmount + * the value of gc_lnum recorded in the master node is out of date and cannot + * be used. Instead, recovery must allocate an empty LEB for this purpose. + * However, there may not be enough empty space, in which case it must be + * possible to GC the dirtiest LEB into the GC head LEB. + * + * This function also runs the commit which causes the TNC updates from + * size-recovery and orphans to be written to the flash. That is important to + * ensure correct replay order for subsequent mounts. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_rcvry_gc_commit(struct ubifs_info *c) +{ + struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; + struct ubifs_lprops lp; + int err; + + dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); + + c->gc_lnum = -1; + if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) + return grab_empty_leb(c); + + err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); + if (err) { + if (err != -ENOSPC) + return err; + + dbg_rcvry("could not find a dirty LEB"); + return grab_empty_leb(c); + } + + ubifs_assert(!(lp.flags & LPROPS_INDEX)); + ubifs_assert(lp.free + lp.dirty >= wbuf->offs); + + /* + * We run the commit before garbage collection otherwise subsequent + * mounts will see the GC and orphan deletion in a different order. + */ + dbg_rcvry("committing"); + err = ubifs_run_commit(c); + if (err) + return err; + + dbg_rcvry("GC'ing LEB %d", lp.lnum); + mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); + err = ubifs_garbage_collect_leb(c, &lp); + if (err >= 0) { + int err2 = ubifs_wbuf_sync_nolock(wbuf); + + if (err2) + err = err2; + } + mutex_unlock(&wbuf->io_mutex); + if (err < 0) { + ubifs_err("GC failed, error %d", err); + if (err == -EAGAIN) + err = -EINVAL; + return err; + } + + ubifs_assert(err == LEB_RETAINED); + if (err != LEB_RETAINED) + return -EINVAL; + + err = ubifs_leb_unmap(c, c->gc_lnum); + if (err) + return err; + + dbg_rcvry("allocated LEB %d for GC", lp.lnum); + return 0; +} +#else +int ubifs_rcvry_gc_commit(struct ubifs_info *c) +{ + return 0; +} +#endif + /** * struct size_entry - inode size information for recovery. * @rb: link in the RB-tree of sizes @@ -1090,6 +1335,23 @@ static void remove_ino(struct ubifs_info *c, ino_t inum) } /** + * ubifs_destroy_size_tree - free resources related to the size tree. + * @c: UBIFS file-system description object + */ +void ubifs_destroy_size_tree(struct ubifs_info *c) +{ + struct size_entry *e, *n; + + rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { + if (e->inode) + iput(e->inode); + kfree(e); + } + + c->size_tree = RB_ROOT; +} + +/** * ubifs_recover_size_accum - accumulate inode sizes for recovery. * @c: UBIFS file-system description object * @key: node key @@ -1157,6 +1419,64 @@ int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, return 0; } +#ifndef __UBOOT__ +/** + * fix_size_in_place - fix inode size in place on flash. + * @c: UBIFS file-system description object + * @e: inode size information for recovery + */ +static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) +{ + struct ubifs_ino_node *ino = c->sbuf; + unsigned char *p; + union ubifs_key key; + int err, lnum, offs, len; + loff_t i_size; + uint32_t crc; + + /* Locate the inode node LEB number and offset */ + ino_key_init(c, &key, e->inum); + err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); + if (err) + goto out; + /* + * If the size recorded on the inode node is greater than the size that + * was calculated from nodes in the journal then don't change the inode. + */ + i_size = le64_to_cpu(ino->size); + if (i_size >= e->d_size) + return 0; + /* Read the LEB */ + err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); + if (err) + goto out; + /* Change the size field and recalculate the CRC */ + ino = c->sbuf + offs; + ino->size = cpu_to_le64(e->d_size); + len = le32_to_cpu(ino->ch.len); + crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); + ino->ch.crc = cpu_to_le32(crc); + /* Work out where data in the LEB ends and free space begins */ + p = c->sbuf; + len = c->leb_size - 1; + while (p[len] == 0xff) + len -= 1; + len = ALIGN(len + 1, c->min_io_size); + /* Atomically write the fixed LEB back again */ + err = ubifs_leb_change(c, lnum, c->sbuf, len); + if (err) + goto out; + dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", + (unsigned long)e->inum, lnum, offs, i_size, e->d_size); + return 0; + +out: + ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", + (unsigned long)e->inum, e->i_size, e->d_size, err); + return err; +} +#endif + /** * ubifs_recover_size - recover inode size. * @c: UBIFS file-system description object @@ -1196,30 +1516,48 @@ int ubifs_recover_size(struct ubifs_info *c) e->i_size = le64_to_cpu(ino->size); } } + if (e->exists && e->i_size < e->d_size) { - if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { + if (c->ro_mount) { /* Fix the inode size and pin it in memory */ struct inode *inode; + struct ubifs_inode *ui; + + ubifs_assert(!e->inode); inode = ubifs_iget(c->vfs_sb, e->inum); if (IS_ERR(inode)) return PTR_ERR(inode); + + ui = ubifs_inode(inode); if (inode->i_size < e->d_size) { dbg_rcvry("ino %lu size %lld -> %lld", (unsigned long)e->inum, - e->d_size, inode->i_size); + inode->i_size, e->d_size); inode->i_size = e->d_size; - ubifs_inode(inode)->ui_size = e->d_size; + ui->ui_size = e->d_size; + ui->synced_i_size = e->d_size; e->inode = inode; this = rb_next(this); continue; } iput(inode); +#ifndef __UBOOT__ + } else { + /* Fix the size in place */ + err = fix_size_in_place(c, e); + if (err) + return err; + if (e->inode) + iput(e->inode); +#endif } } + this = rb_next(this); rb_erase(&e->rb, &c->size_tree); kfree(e); } + return 0; } diff --git a/fs/ubifs/replay.c b/fs/ubifs/replay.c index da33a14..6393b15 100644 --- a/fs/ubifs/replay.c +++ b/fs/ubifs/replay.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -32,44 +21,38 @@ * larger is the journal, the more memory its index may consume. */ +#define __UBOOT__ +#ifdef __UBOOT__ +#include <linux/compat.h> +#include <linux/err.h> +#endif #include "ubifs.h" - -/* - * Replay flags. - * - * REPLAY_DELETION: node was deleted - * REPLAY_REF: node is a reference node - */ -enum { - REPLAY_DELETION = 1, - REPLAY_REF = 2, -}; +#include <linux/list_sort.h> /** - * struct replay_entry - replay tree entry. + * struct replay_entry - replay list entry. * @lnum: logical eraseblock number of the node * @offs: node offset * @len: node length + * @deletion: non-zero if this entry corresponds to a node deletion * @sqnum: node sequence number - * @flags: replay flags - * @rb: links the replay tree + * @list: links the replay list * @key: node key * @nm: directory entry name * @old_size: truncation old size * @new_size: truncation new size - * @free: amount of free space in a bud - * @dirty: amount of dirty space in a bud from padding and deletion nodes * - * UBIFS journal replay must compare node sequence numbers, which means it must - * build a tree of node information to insert into the TNC. + * The replay process first scans all buds and builds the replay list, then + * sorts the replay list in nodes sequence number order, and then inserts all + * the replay entries to the TNC. */ struct replay_entry { int lnum; int offs; int len; + unsigned int deletion:1; unsigned long long sqnum; - int flags; - struct rb_node rb; + struct list_head list; union ubifs_key key; union { struct qstr nm; @@ -77,10 +60,6 @@ struct replay_entry { loff_t old_size; loff_t new_size; }; - struct { - int free; - int dirty; - }; }; }; @@ -88,83 +67,117 @@ struct replay_entry { * struct bud_entry - entry in the list of buds to replay. * @list: next bud in the list * @bud: bud description object - * @free: free bytes in the bud * @sqnum: reference node sequence number + * @free: free bytes in the bud + * @dirty: dirty bytes in the bud */ struct bud_entry { struct list_head list; struct ubifs_bud *bud; - int free; unsigned long long sqnum; + int free; + int dirty; }; +#ifndef __UBOOT__ /** * set_bud_lprops - set free and dirty space used by a bud. * @c: UBIFS file-system description object - * @r: replay entry of bud + * @b: bud entry which describes the bud + * + * This function makes sure the LEB properties of bud @b are set correctly + * after the replay. Returns zero in case of success and a negative error code + * in case of failure. */ -static int set_bud_lprops(struct ubifs_info *c, struct replay_entry *r) +static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) { const struct ubifs_lprops *lp; int err = 0, dirty; ubifs_get_lprops(c); - lp = ubifs_lpt_lookup_dirty(c, r->lnum); + lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } dirty = lp->dirty; - if (r->offs == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { + if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { /* * The LEB was added to the journal with a starting offset of * zero which means the LEB must have been empty. The LEB - * property values should be lp->free == c->leb_size and - * lp->dirty == 0, but that is not the case. The reason is that - * the LEB was garbage collected. The garbage collector resets - * the free and dirty space without recording it anywhere except - * lprops, so if there is not a commit then lprops does not have - * that information next time the file system is mounted. + * property values should be @lp->free == @c->leb_size and + * @lp->dirty == 0, but that is not the case. The reason is that + * the LEB had been garbage collected before it became the bud, + * and there was not commit inbetween. The garbage collector + * resets the free and dirty space without recording it + * anywhere except lprops, so if there was no commit then + * lprops does not have that information. * * We do not need to adjust free space because the scan has told * us the exact value which is recorded in the replay entry as - * r->free. + * @b->free. * * However we do need to subtract from the dirty space the * amount of space that the garbage collector reclaimed, which * is the whole LEB minus the amount of space that was free. */ - dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum, + dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, lp->free, lp->dirty); - dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum, + dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, lp->free, lp->dirty); dirty -= c->leb_size - lp->free; /* * If the replay order was perfect the dirty space would now be - * zero. The order is not perfect because the the journal heads + * zero. The order is not perfect because the journal heads * race with each other. This is not a problem but is does mean * that the dirty space may temporarily exceed c->leb_size * during the replay. */ if (dirty != 0) - dbg_msg("LEB %d lp: %d free %d dirty " - "replay: %d free %d dirty", r->lnum, lp->free, - lp->dirty, r->free, r->dirty); + dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", + b->bud->lnum, lp->free, lp->dirty, b->free, + b->dirty); } - lp = ubifs_change_lp(c, lp, r->free, dirty + r->dirty, + lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, lp->flags | LPROPS_TAKEN, 0); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out; } + + /* Make sure the journal head points to the latest bud */ + err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, + b->bud->lnum, c->leb_size - b->free); + out: ubifs_release_lprops(c); return err; } /** + * set_buds_lprops - set free and dirty space for all replayed buds. + * @c: UBIFS file-system description object + * + * This function sets LEB properties for all replayed buds. Returns zero in + * case of success and a negative error code in case of failure. + */ +static int set_buds_lprops(struct ubifs_info *c) +{ + struct bud_entry *b; + int err; + + list_for_each_entry(b, &c->replay_buds, list) { + err = set_bud_lprops(c, b); + if (err) + return err; + } + + return 0; +} + +/** * trun_remove_range - apply a replay entry for a truncation to the TNC. * @c: UBIFS file-system description object * @r: replay entry of truncation @@ -200,24 +213,22 @@ static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) */ static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) { - int err, deletion = ((r->flags & REPLAY_DELETION) != 0); + int err; - dbg_mnt("LEB %d:%d len %d flgs %d sqnum %llu %s", r->lnum, - r->offs, r->len, r->flags, r->sqnum, DBGKEY(&r->key)); + dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", + r->lnum, r->offs, r->len, r->deletion, r->sqnum); /* Set c->replay_sqnum to help deal with dangling branches. */ c->replay_sqnum = r->sqnum; - if (r->flags & REPLAY_REF) - err = set_bud_lprops(c, r); - else if (is_hash_key(c, &r->key)) { - if (deletion) + if (is_hash_key(c, &r->key)) { + if (r->deletion) err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); else err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, r->len, &r->nm); } else { - if (deletion) + if (r->deletion) switch (key_type(c, &r->key)) { case UBIFS_INO_KEY: { @@ -240,7 +251,7 @@ static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) return err; if (c->need_recovery) - err = ubifs_recover_size_accum(c, &r->key, deletion, + err = ubifs_recover_size_accum(c, &r->key, r->deletion, r->new_size); } @@ -248,68 +259,77 @@ static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) } /** - * destroy_replay_tree - destroy the replay. - * @c: UBIFS file-system description object + * replay_entries_cmp - compare 2 replay entries. + * @priv: UBIFS file-system description object + * @a: first replay entry + * @a: second replay entry * - * Destroy the replay tree. + * This is a comparios function for 'list_sort()' which compares 2 replay + * entries @a and @b by comparing their sequence numer. Returns %1 if @a has + * greater sequence number and %-1 otherwise. */ -static void destroy_replay_tree(struct ubifs_info *c) +static int replay_entries_cmp(void *priv, struct list_head *a, + struct list_head *b) { - struct rb_node *this = c->replay_tree.rb_node; - struct replay_entry *r; - - while (this) { - if (this->rb_left) { - this = this->rb_left; - continue; - } else if (this->rb_right) { - this = this->rb_right; - continue; - } - r = rb_entry(this, struct replay_entry, rb); - this = rb_parent(this); - if (this) { - if (this->rb_left == &r->rb) - this->rb_left = NULL; - else - this->rb_right = NULL; - } - if (is_hash_key(c, &r->key)) - kfree((void *)r->nm.name); - kfree(r); - } - c->replay_tree = RB_ROOT; + struct replay_entry *ra, *rb; + + cond_resched(); + if (a == b) + return 0; + + ra = list_entry(a, struct replay_entry, list); + rb = list_entry(b, struct replay_entry, list); + ubifs_assert(ra->sqnum != rb->sqnum); + if (ra->sqnum > rb->sqnum) + return 1; + return -1; } /** - * apply_replay_tree - apply the replay tree to the TNC. + * apply_replay_list - apply the replay list to the TNC. * @c: UBIFS file-system description object * - * Apply the replay tree. - * Returns zero in case of success and a negative error code in case of - * failure. + * Apply all entries in the replay list to the TNC. Returns zero in case of + * success and a negative error code in case of failure. */ -static int apply_replay_tree(struct ubifs_info *c) +static int apply_replay_list(struct ubifs_info *c) { - struct rb_node *this = rb_first(&c->replay_tree); + struct replay_entry *r; + int err; - while (this) { - struct replay_entry *r; - int err; + list_sort(c, &c->replay_list, &replay_entries_cmp); + list_for_each_entry(r, &c->replay_list, list) { cond_resched(); - r = rb_entry(this, struct replay_entry, rb); err = apply_replay_entry(c, r); if (err) return err; - this = rb_next(this); } + return 0; } /** - * insert_node - insert a node to the replay tree. + * destroy_replay_list - destroy the replay. + * @c: UBIFS file-system description object + * + * Destroy the replay list. + */ +static void destroy_replay_list(struct ubifs_info *c) +{ + struct replay_entry *r, *tmp; + + list_for_each_entry_safe(r, tmp, &c->replay_list, list) { + if (is_hash_key(c, &r->key)) + kfree(r->nm.name); + list_del(&r->list); + kfree(r); + } +} + +/** + * insert_node - insert a node to the replay list * @c: UBIFS file-system description object * @lnum: node logical eraseblock number * @offs: node offset @@ -321,39 +341,25 @@ static int apply_replay_tree(struct ubifs_info *c) * @old_size: truncation old size * @new_size: truncation new size * - * This function inserts a scanned non-direntry node to the replay tree. The - * replay tree is an RB-tree containing @struct replay_entry elements which are - * indexed by the sequence number. The replay tree is applied at the very end - * of the replay process. Since the tree is sorted in sequence number order, - * the older modifications are applied first. This function returns zero in - * case of success and a negative error code in case of failure. + * This function inserts a scanned non-direntry node to the replay list. The + * replay list contains @struct replay_entry elements, and we sort this list in + * sequence number order before applying it. The replay list is applied at the + * very end of the replay process. Since the list is sorted in sequence number + * order, the older modifications are applied first. This function returns zero + * in case of success and a negative error code in case of failure. */ static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, union ubifs_key *key, unsigned long long sqnum, int deletion, int *used, loff_t old_size, loff_t new_size) { - struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL; struct replay_entry *r; + dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); + if (key_inum(c, key) >= c->highest_inum) c->highest_inum = key_inum(c, key); - dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key)); - while (*p) { - parent = *p; - r = rb_entry(parent, struct replay_entry, rb); - if (sqnum < r->sqnum) { - p = &(*p)->rb_left; - continue; - } else if (sqnum > r->sqnum) { - p = &(*p)->rb_right; - continue; - } - ubifs_err("duplicate sqnum in replay"); - return -EINVAL; - } - r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); if (!r) return -ENOMEM; @@ -363,19 +369,18 @@ static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, r->lnum = lnum; r->offs = offs; r->len = len; + r->deletion = !!deletion; r->sqnum = sqnum; - r->flags = (deletion ? REPLAY_DELETION : 0); + key_copy(c, key, &r->key); r->old_size = old_size; r->new_size = new_size; - key_copy(c, key, &r->key); - rb_link_node(&r->rb, parent, p); - rb_insert_color(&r->rb, &c->replay_tree); + list_add_tail(&r->list, &c->replay_list); return 0; } /** - * insert_dent - insert a directory entry node into the replay tree. + * insert_dent - insert a directory entry node into the replay list. * @c: UBIFS file-system description object * @lnum: node logical eraseblock number * @offs: node offset @@ -387,43 +392,25 @@ static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, * @deletion: non-zero if this is a deletion * @used: number of bytes in use in a LEB * - * This function inserts a scanned directory entry node to the replay tree. - * Returns zero in case of success and a negative error code in case of - * failure. - * - * This function is also used for extended attribute entries because they are - * implemented as directory entry nodes. + * This function inserts a scanned directory entry node or an extended + * attribute entry to the replay list. Returns zero in case of success and a + * negative error code in case of failure. */ static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, union ubifs_key *key, const char *name, int nlen, unsigned long long sqnum, int deletion, int *used) { - struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL; struct replay_entry *r; char *nbuf; + dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); if (key_inum(c, key) >= c->highest_inum) c->highest_inum = key_inum(c, key); - dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key)); - while (*p) { - parent = *p; - r = rb_entry(parent, struct replay_entry, rb); - if (sqnum < r->sqnum) { - p = &(*p)->rb_left; - continue; - } - if (sqnum > r->sqnum) { - p = &(*p)->rb_right; - continue; - } - ubifs_err("duplicate sqnum in replay"); - return -EINVAL; - } - r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); if (!r) return -ENOMEM; + nbuf = kmalloc(nlen + 1, GFP_KERNEL); if (!nbuf) { kfree(r); @@ -435,19 +422,18 @@ static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, r->lnum = lnum; r->offs = offs; r->len = len; + r->deletion = !!deletion; r->sqnum = sqnum; + key_copy(c, key, &r->key); r->nm.len = nlen; memcpy(nbuf, name, nlen); nbuf[nlen] = '\0'; r->nm.name = nbuf; - r->flags = (deletion ? REPLAY_DELETION : 0); - key_copy(c, key, &r->key); - ubifs_assert(!*p); - rb_link_node(&r->rb, parent, p); - rb_insert_color(&r->rb, &c->replay_tree); + list_add_tail(&r->list, &c->replay_list); return 0; } +#endif /** * ubifs_validate_entry - validate directory or extended attribute entry node. @@ -466,7 +452,7 @@ int ubifs_validate_entry(struct ubifs_info *c, if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || dent->type >= UBIFS_ITYPES_CNT || nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || - strnlen((char *)dent->name, nlen) != nlen || + strnlen(dent->name, nlen) != nlen || le64_to_cpu(dent->inum) > MAX_INUM) { ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ? "directory entry" : "extended attribute entry"); @@ -481,32 +467,94 @@ int ubifs_validate_entry(struct ubifs_info *c, return 0; } +#ifndef __UBOOT__ +/** + * is_last_bud - check if the bud is the last in the journal head. + * @c: UBIFS file-system description object + * @bud: bud description object + * + * This function checks if bud @bud is the last bud in its journal head. This + * information is then used by 'replay_bud()' to decide whether the bud can + * have corruptions or not. Indeed, only last buds can be corrupted by power + * cuts. Returns %1 if this is the last bud, and %0 if not. + */ +static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) +{ + struct ubifs_jhead *jh = &c->jheads[bud->jhead]; + struct ubifs_bud *next; + uint32_t data; + int err; + + if (list_is_last(&bud->list, &jh->buds_list)) + return 1; + + /* + * The following is a quirk to make sure we work correctly with UBIFS + * images used with older UBIFS. + * + * Normally, the last bud will be the last in the journal head's list + * of bud. However, there is one exception if the UBIFS image belongs + * to older UBIFS. This is fairly unlikely: one would need to use old + * UBIFS, then have a power cut exactly at the right point, and then + * try to mount this image with new UBIFS. + * + * The exception is: it is possible to have 2 buds A and B, A goes + * before B, and B is the last, bud B is contains no data, and bud A is + * corrupted at the end. The reason is that in older versions when the + * journal code switched the next bud (from A to B), it first added a + * log reference node for the new bud (B), and only after this it + * synchronized the write-buffer of current bud (A). But later this was + * changed and UBIFS started to always synchronize the write-buffer of + * the bud (A) before writing the log reference for the new bud (B). + * + * But because older UBIFS always synchronized A's write-buffer before + * writing to B, we can recognize this exceptional situation but + * checking the contents of bud B - if it is empty, then A can be + * treated as the last and we can recover it. + * + * TODO: remove this piece of code in a couple of years (today it is + * 16.05.2011). + */ + next = list_entry(bud->list.next, struct ubifs_bud, list); + if (!list_is_last(&next->list, &jh->buds_list)) + return 0; + + err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); + if (err) + return 0; + + return data == 0xFFFFFFFF; +} + /** * replay_bud - replay a bud logical eraseblock. * @c: UBIFS file-system description object - * @lnum: bud logical eraseblock number to replay - * @offs: bud start offset - * @jhead: journal head to which this bud belongs - * @free: amount of free space in the bud is returned here - * @dirty: amount of dirty space from padding and deletion nodes is returned - * here + * @b: bud entry which describes the bud * - * This function returns zero in case of success and a negative error code in - * case of failure. + * This function replays bud @bud, recovers it if needed, and adds all nodes + * from this bud to the replay list. Returns zero in case of success and a + * negative error code in case of failure. */ -static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, - int *free, int *dirty) +static int replay_bud(struct ubifs_info *c, struct bud_entry *b) { - int err = 0, used = 0; + int is_last = is_last_bud(c, b->bud); + int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; - struct ubifs_bud *bud; - dbg_mnt("replay bud LEB %d, head %d", lnum, jhead); - if (c->need_recovery) - sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, jhead != GCHD); + dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", + lnum, b->bud->jhead, offs, is_last); + + if (c->need_recovery && is_last) + /* + * Recover only last LEBs in the journal heads, because power + * cuts may cause corruptions only in these LEBs, because only + * these LEBs could possibly be written to at the power cut + * time. + */ + sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); else - sleb = ubifs_scan(c, lnum, offs, c->sbuf); + sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); if (IS_ERR(sleb)) return PTR_ERR(sleb); @@ -580,7 +628,7 @@ static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, goto out_dump; err = insert_dent(c, lnum, snod->offs, snod->len, - &snod->key, (char *)dent->name, + &snod->key, dent->name, le16_to_cpu(dent->nlen), snod->sqnum, !le64_to_cpu(dent->inum), &used); break; @@ -620,15 +668,14 @@ static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, goto out; } - bud = ubifs_search_bud(c, lnum); - if (!bud) - BUG(); - + ubifs_assert(ubifs_search_bud(c, lnum)); ubifs_assert(sleb->endpt - offs >= used); ubifs_assert(sleb->endpt % c->min_io_size == 0); - *dirty = sleb->endpt - offs - used; - *free = c->leb_size - sleb->endpt; + b->dirty = sleb->endpt - offs - used; + b->free = c->leb_size - sleb->endpt; + dbg_mnt("bud LEB %d replied: dirty %d, free %d", + lnum, b->dirty, b->free); out: ubifs_scan_destroy(sleb); @@ -636,61 +683,12 @@ out: out_dump: ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs); - dbg_dump_node(c, snod->node); + ubifs_dump_node(c, snod->node); ubifs_scan_destroy(sleb); return -EINVAL; } /** - * insert_ref_node - insert a reference node to the replay tree. - * @c: UBIFS file-system description object - * @lnum: node logical eraseblock number - * @offs: node offset - * @sqnum: sequence number - * @free: amount of free space in bud - * @dirty: amount of dirty space from padding and deletion nodes - * - * This function inserts a reference node to the replay tree and returns zero - * in case of success or a negative error code in case of failure. - */ -static int insert_ref_node(struct ubifs_info *c, int lnum, int offs, - unsigned long long sqnum, int free, int dirty) -{ - struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL; - struct replay_entry *r; - - dbg_mnt("add ref LEB %d:%d", lnum, offs); - while (*p) { - parent = *p; - r = rb_entry(parent, struct replay_entry, rb); - if (sqnum < r->sqnum) { - p = &(*p)->rb_left; - continue; - } else if (sqnum > r->sqnum) { - p = &(*p)->rb_right; - continue; - } - ubifs_err("duplicate sqnum in replay tree"); - return -EINVAL; - } - - r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); - if (!r) - return -ENOMEM; - - r->lnum = lnum; - r->offs = offs; - r->sqnum = sqnum; - r->flags = REPLAY_REF; - r->free = free; - r->dirty = dirty; - - rb_link_node(&r->rb, parent, p); - rb_insert_color(&r->rb, &c->replay_tree); - return 0; -} - -/** * replay_buds - replay all buds. * @c: UBIFS file-system description object * @@ -700,17 +698,16 @@ static int insert_ref_node(struct ubifs_info *c, int lnum, int offs, static int replay_buds(struct ubifs_info *c) { struct bud_entry *b; - int err, uninitialized_var(free), uninitialized_var(dirty); + int err; + unsigned long long prev_sqnum = 0; list_for_each_entry(b, &c->replay_buds, list) { - err = replay_bud(c, b->bud->lnum, b->bud->start, b->bud->jhead, - &free, &dirty); - if (err) - return err; - err = insert_ref_node(c, b->bud->lnum, b->bud->start, b->sqnum, - free, dirty); + err = replay_bud(c, b); if (err) return err; + + ubifs_assert(b->sqnum > prev_sqnum); + prev_sqnum = b->sqnum; } return 0; @@ -831,10 +828,16 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) const struct ubifs_cs_node *node; dbg_mnt("replay log LEB %d:%d", lnum, offs); - sleb = ubifs_scan(c, lnum, offs, sbuf); + sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); if (IS_ERR(sleb)) { - if (c->need_recovery) - sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); + if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) + return PTR_ERR(sleb); + /* + * Note, the below function will recover this log LEB only if + * it is the last, because unclean reboots can possibly corrupt + * only the tail of the log. + */ + sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); if (IS_ERR(sleb)) return PTR_ERR(sleb); } @@ -845,7 +848,6 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) } node = sleb->buf; - snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); if (c->cs_sqnum == 0) { /* @@ -856,16 +858,15 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) * numbers. */ if (snod->type != UBIFS_CS_NODE) { - dbg_err("first log node at LEB %d:%d is not CS node", - lnum, offs); + ubifs_err("first log node at LEB %d:%d is not CS node", + lnum, offs); goto out_dump; } if (le64_to_cpu(node->cmt_no) != c->cmt_no) { - dbg_err("first CS node at LEB %d:%d has wrong " - "commit number %llu expected %llu", - lnum, offs, - (unsigned long long)le64_to_cpu(node->cmt_no), - c->cmt_no); + ubifs_err("first CS node at LEB %d:%d has wrong commit number %llu expected %llu", + lnum, offs, + (unsigned long long)le64_to_cpu(node->cmt_no), + c->cmt_no); goto out_dump; } @@ -887,12 +888,11 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) /* Make sure the first node sits at offset zero of the LEB */ if (snod->offs != 0) { - dbg_err("first node is not at zero offset"); + ubifs_err("first node is not at zero offset"); goto out_dump; } list_for_each_entry(snod, &sleb->nodes, list) { - cond_resched(); if (snod->sqnum >= SQNUM_WATERMARK) { @@ -901,8 +901,8 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) } if (snod->sqnum < c->cs_sqnum) { - dbg_err("bad sqnum %llu, commit sqnum %llu", - snod->sqnum, c->cs_sqnum); + ubifs_err("bad sqnum %llu, commit sqnum %llu", + snod->sqnum, c->cs_sqnum); goto out_dump; } @@ -952,9 +952,9 @@ out: return err; out_dump: - ubifs_err("log error detected while replying the log at LEB %d:%d", + ubifs_err("log error detected while replaying the log at LEB %d:%d", lnum, offs + snod->offs); - dbg_dump_node(c, snod->node); + ubifs_dump_node(c, snod->node); ubifs_scan_destroy(sleb); return -EINVAL; } @@ -1004,67 +1004,64 @@ out: */ int ubifs_replay_journal(struct ubifs_info *c) { - int err, i, lnum, offs, _free; - void *sbuf = NULL; + int err, lnum, free; BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); /* Update the status of the index head in lprops to 'taken' */ - _free = take_ihead(c); - if (_free < 0) - return _free; /* Error code */ + free = take_ihead(c); + if (free < 0) + return free; /* Error code */ - if (c->ihead_offs != c->leb_size - _free) { + if (c->ihead_offs != c->leb_size - free) { ubifs_err("bad index head LEB %d:%d", c->ihead_lnum, c->ihead_offs); return -EINVAL; } - sbuf = vmalloc(c->leb_size); - if (!sbuf) - return -ENOMEM; - dbg_mnt("start replaying the journal"); - c->replaying = 1; - lnum = c->ltail_lnum = c->lhead_lnum; - offs = c->lhead_offs; - for (i = 0; i < c->log_lebs; i++, lnum++) { - if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) { - /* - * The log is logically circular, we reached the last - * LEB, switch to the first one. - */ - lnum = UBIFS_LOG_LNUM; - offs = 0; - } - err = replay_log_leb(c, lnum, offs, sbuf); + do { + err = replay_log_leb(c, lnum, 0, c->sbuf); if (err == 1) /* We hit the end of the log */ break; if (err) goto out; - offs = 0; - } + lnum = ubifs_next_log_lnum(c, lnum); + } while (lnum != c->ltail_lnum); err = replay_buds(c); if (err) goto out; - err = apply_replay_tree(c); + err = apply_replay_list(c); if (err) goto out; + err = set_buds_lprops(c); + if (err) + goto out; + + /* + * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable + * to roughly estimate index growth. Things like @c->bi.min_idx_lebs + * depend on it. This means we have to initialize it to make sure + * budgeting works properly. + */ + c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); + c->bi.uncommitted_idx *= c->max_idx_node_sz; + ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); - dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, " - "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum, + dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", + c->lhead_lnum, c->lhead_offs, c->max_sqnum, (unsigned long)c->highest_inum); out: - destroy_replay_tree(c); + destroy_replay_list(c); destroy_bud_list(c); - vfree(sbuf); c->replaying = 0; return err; } +#endif diff --git a/fs/ubifs/sb.c b/fs/ubifs/sb.c index 00c9cd3..fc0194a 100644 --- a/fs/ubifs/sb.c +++ b/fs/ubifs/sb.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -27,6 +16,18 @@ */ #include "ubifs.h" +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/slab.h> +#include <linux/random.h> +#include <linux/math64.h> +#else + +#include <linux/compat.h> +#include <linux/err.h> +#include <ubi_uboot.h> +#include <linux/stat.h> +#endif /* * Default journal size in logical eraseblocks as a percent of total @@ -60,6 +61,282 @@ /* Default time granularity in nanoseconds */ #define DEFAULT_TIME_GRAN 1000000000 +#ifndef __UBOOT__ +/** + * create_default_filesystem - format empty UBI volume. + * @c: UBIFS file-system description object + * + * This function creates default empty file-system. Returns zero in case of + * success and a negative error code in case of failure. + */ +static int create_default_filesystem(struct ubifs_info *c) +{ + struct ubifs_sb_node *sup; + struct ubifs_mst_node *mst; + struct ubifs_idx_node *idx; + struct ubifs_branch *br; + struct ubifs_ino_node *ino; + struct ubifs_cs_node *cs; + union ubifs_key key; + int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; + int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; + int min_leb_cnt = UBIFS_MIN_LEB_CNT; + long long tmp64, main_bytes; + __le64 tmp_le64; + + /* Some functions called from here depend on the @c->key_len filed */ + c->key_len = UBIFS_SK_LEN; + + /* + * First of all, we have to calculate default file-system geometry - + * log size, journal size, etc. + */ + if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) + /* We can first multiply then divide and have no overflow */ + jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; + else + jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; + + if (jnl_lebs < UBIFS_MIN_JNL_LEBS) + jnl_lebs = UBIFS_MIN_JNL_LEBS; + if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) + jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; + + /* + * The log should be large enough to fit reference nodes for all bud + * LEBs. Because buds do not have to start from the beginning of LEBs + * (half of the LEB may contain committed data), the log should + * generally be larger, make it twice as large. + */ + tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; + log_lebs = tmp / c->leb_size; + /* Plus one LEB reserved for commit */ + log_lebs += 1; + if (c->leb_cnt - min_leb_cnt > 8) { + /* And some extra space to allow writes while committing */ + log_lebs += 1; + min_leb_cnt += 1; + } + + max_buds = jnl_lebs - log_lebs; + if (max_buds < UBIFS_MIN_BUD_LEBS) + max_buds = UBIFS_MIN_BUD_LEBS; + + /* + * Orphan nodes are stored in a separate area. One node can store a lot + * of orphan inode numbers, but when new orphan comes we just add a new + * orphan node. At some point the nodes are consolidated into one + * orphan node. + */ + orph_lebs = UBIFS_MIN_ORPH_LEBS; + if (c->leb_cnt - min_leb_cnt > 1) + /* + * For debugging purposes it is better to have at least 2 + * orphan LEBs, because the orphan subsystem would need to do + * consolidations and would be stressed more. + */ + orph_lebs += 1; + + main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; + main_lebs -= orph_lebs; + + lpt_first = UBIFS_LOG_LNUM + log_lebs; + c->lsave_cnt = DEFAULT_LSAVE_CNT; + c->max_leb_cnt = c->leb_cnt; + err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, + &big_lpt); + if (err) + return err; + + dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, + lpt_first + lpt_lebs - 1); + + main_first = c->leb_cnt - main_lebs; + + /* Create default superblock */ + tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); + sup = kzalloc(tmp, GFP_KERNEL); + if (!sup) + return -ENOMEM; + + tmp64 = (long long)max_buds * c->leb_size; + if (big_lpt) + sup_flags |= UBIFS_FLG_BIGLPT; + + sup->ch.node_type = UBIFS_SB_NODE; + sup->key_hash = UBIFS_KEY_HASH_R5; + sup->flags = cpu_to_le32(sup_flags); + sup->min_io_size = cpu_to_le32(c->min_io_size); + sup->leb_size = cpu_to_le32(c->leb_size); + sup->leb_cnt = cpu_to_le32(c->leb_cnt); + sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt); + sup->max_bud_bytes = cpu_to_le64(tmp64); + sup->log_lebs = cpu_to_le32(log_lebs); + sup->lpt_lebs = cpu_to_le32(lpt_lebs); + sup->orph_lebs = cpu_to_le32(orph_lebs); + sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT); + sup->fanout = cpu_to_le32(DEFAULT_FANOUT); + sup->lsave_cnt = cpu_to_le32(c->lsave_cnt); + sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION); + sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN); + if (c->mount_opts.override_compr) + sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); + else + sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO); + + generate_random_uuid(sup->uuid); + + main_bytes = (long long)main_lebs * c->leb_size; + tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); + if (tmp64 > DEFAULT_MAX_RP_SIZE) + tmp64 = DEFAULT_MAX_RP_SIZE; + sup->rp_size = cpu_to_le64(tmp64); + sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); + + err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0); + kfree(sup); + if (err) + return err; + + dbg_gen("default superblock created at LEB 0:0"); + + /* Create default master node */ + mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); + if (!mst) + return -ENOMEM; + + mst->ch.node_type = UBIFS_MST_NODE; + mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM); + mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); + mst->cmt_no = 0; + mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); + mst->root_offs = 0; + tmp = ubifs_idx_node_sz(c, 1); + mst->root_len = cpu_to_le32(tmp); + mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB); + mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); + mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size)); + mst->index_size = cpu_to_le64(ALIGN(tmp, 8)); + mst->lpt_lnum = cpu_to_le32(c->lpt_lnum); + mst->lpt_offs = cpu_to_le32(c->lpt_offs); + mst->nhead_lnum = cpu_to_le32(c->nhead_lnum); + mst->nhead_offs = cpu_to_le32(c->nhead_offs); + mst->ltab_lnum = cpu_to_le32(c->ltab_lnum); + mst->ltab_offs = cpu_to_le32(c->ltab_offs); + mst->lsave_lnum = cpu_to_le32(c->lsave_lnum); + mst->lsave_offs = cpu_to_le32(c->lsave_offs); + mst->lscan_lnum = cpu_to_le32(main_first); + mst->empty_lebs = cpu_to_le32(main_lebs - 2); + mst->idx_lebs = cpu_to_le32(1); + mst->leb_cnt = cpu_to_le32(c->leb_cnt); + + /* Calculate lprops statistics */ + tmp64 = main_bytes; + tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); + tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); + mst->total_free = cpu_to_le64(tmp64); + + tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); + ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - + UBIFS_INO_NODE_SZ; + tmp64 += ino_waste; + tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); + mst->total_dirty = cpu_to_le64(tmp64); + + /* The indexing LEB does not contribute to dark space */ + tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); + mst->total_dark = cpu_to_le64(tmp64); + + mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); + + err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0); + if (err) { + kfree(mst); + return err; + } + err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, + 0); + kfree(mst); + if (err) + return err; + + dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); + + /* Create the root indexing node */ + tmp = ubifs_idx_node_sz(c, 1); + idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL); + if (!idx) + return -ENOMEM; + + c->key_fmt = UBIFS_SIMPLE_KEY_FMT; + c->key_hash = key_r5_hash; + + idx->ch.node_type = UBIFS_IDX_NODE; + idx->child_cnt = cpu_to_le16(1); + ino_key_init(c, &key, UBIFS_ROOT_INO); + br = ubifs_idx_branch(c, idx, 0); + key_write_idx(c, &key, &br->key); + br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); + br->len = cpu_to_le32(UBIFS_INO_NODE_SZ); + err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0); + kfree(idx); + if (err) + return err; + + dbg_gen("default root indexing node created LEB %d:0", + main_first + DEFAULT_IDX_LEB); + + /* Create default root inode */ + tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); + ino = kzalloc(tmp, GFP_KERNEL); + if (!ino) + return -ENOMEM; + + ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); + ino->ch.node_type = UBIFS_INO_NODE; + ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); + ino->nlink = cpu_to_le32(2); + tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec); + ino->atime_sec = tmp_le64; + ino->ctime_sec = tmp_le64; + ino->mtime_sec = tmp_le64; + ino->atime_nsec = 0; + ino->ctime_nsec = 0; + ino->mtime_nsec = 0; + ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); + ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); + + /* Set compression enabled by default */ + ino->flags = cpu_to_le32(UBIFS_COMPR_FL); + + err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, + main_first + DEFAULT_DATA_LEB, 0); + kfree(ino); + if (err) + return err; + + dbg_gen("root inode created at LEB %d:0", + main_first + DEFAULT_DATA_LEB); + + /* + * The first node in the log has to be the commit start node. This is + * always the case during normal file-system operation. Write a fake + * commit start node to the log. + */ + tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size); + cs = kzalloc(tmp, GFP_KERNEL); + if (!cs) + return -ENOMEM; + + cs->ch.node_type = UBIFS_CS_NODE; + err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0); + kfree(cs); + + ubifs_msg("default file-system created"); + return 0; +} +#endif + /** * validate_sb - validate superblock node. * @c: UBIFS file-system description object @@ -114,9 +391,8 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { - ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, " - "%d minimum required", c->leb_cnt, c->vi.size, - min_leb_cnt); + ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, %d minimum required", + c->leb_cnt, c->vi.size, min_leb_cnt); goto failed; } @@ -127,13 +403,22 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) } if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { - err = 7; + ubifs_err("too few main LEBs count %d, must be at least %d", + c->main_lebs, UBIFS_MIN_MAIN_LEBS); + goto failed; + } + + max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS; + if (c->max_bud_bytes < max_bytes) { + ubifs_err("too small journal (%lld bytes), must be at least %lld bytes", + c->max_bud_bytes, max_bytes); goto failed; } - if (c->max_bud_bytes < (long long)c->leb_size * UBIFS_MIN_BUD_LEBS || - c->max_bud_bytes > (long long)c->leb_size * c->main_lebs) { - err = 8; + max_bytes = (long long)c->leb_size * c->main_lebs; + if (c->max_bud_bytes > max_bytes) { + ubifs_err("too large journal size (%lld bytes), only %lld bytes available in the main area", + c->max_bud_bytes, max_bytes); goto failed; } @@ -167,7 +452,6 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) goto failed; } - max_bytes = c->main_lebs * (long long)c->leb_size; if (c->rp_size < 0 || max_bytes < c->rp_size) { err = 14; goto failed; @@ -183,7 +467,7 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) failed: ubifs_err("bad superblock, error %d", err); - dbg_dump_node(c, sup); + ubifs_dump_node(c, sup); return -EINVAL; } @@ -192,7 +476,8 @@ failed: * @c: UBIFS file-system description object * * This function returns a pointer to the superblock node or a negative error - * code. + * code. Note, the user of this function is responsible of kfree()'ing the + * returned superblock buffer. */ struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) { @@ -214,6 +499,21 @@ struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) } /** + * ubifs_write_sb_node - write superblock node. + * @c: UBIFS file-system description object + * @sup: superblock node read with 'ubifs_read_sb_node()' + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) +{ + int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); + + ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1); + return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len); +} + +/** * ubifs_read_superblock - read superblock. * @c: UBIFS file-system description object * @@ -227,8 +527,14 @@ int ubifs_read_superblock(struct ubifs_info *c) struct ubifs_sb_node *sup; if (c->empty) { +#ifndef __UBOOT__ + err = create_default_filesystem(c); + if (err) + return err; +#else printf("No UBIFS filesystem found!\n"); return -1; +#endif } sup = ubifs_read_sb_node(c); @@ -243,16 +549,12 @@ int ubifs_read_superblock(struct ubifs_info *c) * due to the unavailability of time-travelling equipment. */ if (c->fmt_version > UBIFS_FORMAT_VERSION) { - struct super_block *sb = c->vfs_sb; - int mounting_ro = sb->s_flags & MS_RDONLY; - - ubifs_assert(!c->ro_media || mounting_ro); - if (!mounting_ro || + ubifs_assert(!c->ro_media || c->ro_mount); + if (!c->ro_mount || c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { - ubifs_err("on-flash format version is w%d/r%d, but " - "software only supports up to version " - "w%d/r%d", c->fmt_version, - c->ro_compat_version, UBIFS_FORMAT_VERSION, + ubifs_err("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", + c->fmt_version, c->ro_compat_version, + UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { ubifs_msg("only R/O mounting is possible"); @@ -310,22 +612,41 @@ int ubifs_read_superblock(struct ubifs_info *c) c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; c->fanout = le32_to_cpu(sup->fanout); c->lsave_cnt = le32_to_cpu(sup->lsave_cnt); - c->default_compr = le16_to_cpu(sup->default_compr); c->rp_size = le64_to_cpu(sup->rp_size); - c->rp_uid = le32_to_cpu(sup->rp_uid); - c->rp_gid = le32_to_cpu(sup->rp_gid); +#ifndef __UBOOT__ + c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid)); + c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid)); +#else + c->rp_uid.val = le32_to_cpu(sup->rp_uid); + c->rp_gid.val = le32_to_cpu(sup->rp_gid); +#endif sup_flags = le32_to_cpu(sup->flags); + if (!c->mount_opts.override_compr) + c->default_compr = le16_to_cpu(sup->default_compr); c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); memcpy(&c->uuid, &sup->uuid, 16); c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); + c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); /* Automatically increase file system size to the maximum size */ c->old_leb_cnt = c->leb_cnt; if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); - dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", - c->old_leb_cnt, c->leb_cnt); + if (c->ro_mount) + dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", + c->old_leb_cnt, c->leb_cnt); +#ifndef __UBOOT__ + else { + dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs", + c->old_leb_cnt, c->leb_cnt); + sup->leb_cnt = cpu_to_le32(c->leb_cnt); + err = ubifs_write_sb_node(c, sup); + if (err) + goto out; + c->old_leb_cnt = c->leb_cnt; + } +#endif } c->log_bytes = (long long)c->log_lebs * c->leb_size; @@ -337,10 +658,162 @@ int ubifs_read_superblock(struct ubifs_info *c) c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; c->main_first = c->leb_cnt - c->main_lebs; - c->report_rp_size = ubifs_reported_space(c, c->rp_size); err = validate_sb(c, sup); out: kfree(sup); return err; } + +/** + * fixup_leb - fixup/unmap an LEB containing free space. + * @c: UBIFS file-system description object + * @lnum: the LEB number to fix up + * @len: number of used bytes in LEB (starting at offset 0) + * + * This function reads the contents of the given LEB number @lnum, then fixes + * it up, so that empty min. I/O units in the end of LEB are actually erased on + * flash (rather than being just all-0xff real data). If the LEB is completely + * empty, it is simply unmapped. + */ +static int fixup_leb(struct ubifs_info *c, int lnum, int len) +{ + int err; + + ubifs_assert(len >= 0); + ubifs_assert(len % c->min_io_size == 0); + ubifs_assert(len < c->leb_size); + + if (len == 0) { + dbg_mnt("unmap empty LEB %d", lnum); + return ubifs_leb_unmap(c, lnum); + } + + dbg_mnt("fixup LEB %d, data len %d", lnum, len); + err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1); + if (err) + return err; + + return ubifs_leb_change(c, lnum, c->sbuf, len); +} + +/** + * fixup_free_space - find & remap all LEBs containing free space. + * @c: UBIFS file-system description object + * + * This function walks through all LEBs in the filesystem and fiexes up those + * containing free/empty space. + */ +static int fixup_free_space(struct ubifs_info *c) +{ + int lnum, err = 0; + struct ubifs_lprops *lprops; + + ubifs_get_lprops(c); + + /* Fixup LEBs in the master area */ + for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { + err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); + if (err) + goto out; + } + + /* Unmap unused log LEBs */ + lnum = ubifs_next_log_lnum(c, c->lhead_lnum); + while (lnum != c->ltail_lnum) { + err = fixup_leb(c, lnum, 0); + if (err) + goto out; + lnum = ubifs_next_log_lnum(c, lnum); + } + + /* + * Fixup the log head which contains the only a CS node at the + * beginning. + */ + err = fixup_leb(c, c->lhead_lnum, + ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size)); + if (err) + goto out; + + /* Fixup LEBs in the LPT area */ + for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { + int free = c->ltab[lnum - c->lpt_first].free; + + if (free > 0) { + err = fixup_leb(c, lnum, c->leb_size - free); + if (err) + goto out; + } + } + + /* Unmap LEBs in the orphans area */ + for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { + err = fixup_leb(c, lnum, 0); + if (err) + goto out; + } + + /* Fixup LEBs in the main area */ + for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { + lprops = ubifs_lpt_lookup(c, lnum); + if (IS_ERR(lprops)) { + err = PTR_ERR(lprops); + goto out; + } + + if (lprops->free > 0) { + err = fixup_leb(c, lnum, c->leb_size - lprops->free); + if (err) + goto out; + } + } + +out: + ubifs_release_lprops(c); + return err; +} + +/** + * ubifs_fixup_free_space - find & fix all LEBs with free space. + * @c: UBIFS file-system description object + * + * This function fixes up LEBs containing free space on first mount, if the + * appropriate flag was set when the FS was created. Each LEB with one or more + * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure + * the free space is actually erased. E.g., this is necessary for some NAND + * chips, since the free space may have been programmed like real "0xff" data + * (generating a non-0xff ECC), causing future writes to the not-really-erased + * NAND pages to behave badly. After the space is fixed up, the superblock flag + * is cleared, so that this is skipped for all future mounts. + */ +int ubifs_fixup_free_space(struct ubifs_info *c) +{ + int err; + struct ubifs_sb_node *sup; + + ubifs_assert(c->space_fixup); + ubifs_assert(!c->ro_mount); + + ubifs_msg("start fixing up free space"); + + err = fixup_free_space(c); + if (err) + return err; + + sup = ubifs_read_sb_node(c); + if (IS_ERR(sup)) + return PTR_ERR(sup); + + /* Free-space fixup is no longer required */ + c->space_fixup = 0; + sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); + + err = ubifs_write_sb_node(c, sup); + kfree(sup); + if (err) + return err; + + ubifs_msg("free space fixup complete"); + return err; +} diff --git a/fs/ubifs/scan.c b/fs/ubifs/scan.c index 0ed8247..5523d4e 100644 --- a/fs/ubifs/scan.c +++ b/fs/ubifs/scan.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -27,6 +16,10 @@ * debugging functions. */ +#define __UBOOT__ +#ifdef __UBOOT__ +#include <linux/err.h> +#endif #include "ubifs.h" /** @@ -75,7 +68,7 @@ int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum, magic = le32_to_cpu(ch->magic); if (magic == 0xFFFFFFFF) { - dbg_scan("hit empty space"); + dbg_scan("hit empty space at LEB %d:%d", lnum, offs); return SCANNED_EMPTY_SPACE; } @@ -85,7 +78,8 @@ int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum, if (len < UBIFS_CH_SZ) return SCANNED_GARBAGE; - dbg_scan("scanning %s", dbg_ntype(ch->node_type)); + dbg_scan("scanning %s at LEB %d:%d", + dbg_ntype(ch->node_type), lnum, offs); if (ubifs_check_node(c, buf, lnum, offs, quiet, 1)) return SCANNED_A_CORRUPT_NODE; @@ -101,22 +95,21 @@ int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum, if (!quiet) { ubifs_err("bad pad node at LEB %d:%d", lnum, offs); - dbg_dump_node(c, pad); + ubifs_dump_node(c, pad); } return SCANNED_A_BAD_PAD_NODE; } /* Make the node pads to 8-byte boundary */ if ((node_len + pad_len) & 7) { - if (!quiet) { - dbg_err("bad padding length %d - %d", - offs, offs + node_len + pad_len); - } + if (!quiet) + ubifs_err("bad padding length %d - %d", + offs, offs + node_len + pad_len); return SCANNED_A_BAD_PAD_NODE; } - dbg_scan("%d bytes padded, offset now %d", - pad_len, ALIGN(offs + node_len + pad_len, 8)); + dbg_scan("%d bytes padded at LEB %d:%d, offset now %d", pad_len, + lnum, offs, ALIGN(offs + node_len + pad_len, 8)); return node_len + pad_len; } @@ -149,10 +142,10 @@ struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum, INIT_LIST_HEAD(&sleb->nodes); sleb->buf = sbuf; - err = ubi_read(c->ubi, lnum, sbuf + offs, offs, c->leb_size - offs); + err = ubifs_leb_read(c, lnum, sbuf + offs, offs, c->leb_size - offs, 0); if (err && err != -EBADMSG) { - ubifs_err("cannot read %d bytes from LEB %d:%d," - " error %d", c->leb_size - offs, lnum, offs, err); + ubifs_err("cannot read %d bytes from LEB %d:%d, error %d", + c->leb_size - offs, lnum, offs, err); kfree(sleb); return ERR_PTR(err); } @@ -198,7 +191,7 @@ int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb, struct ubifs_ino_node *ino = buf; struct ubifs_scan_node *snod; - snod = kzalloc(sizeof(struct ubifs_scan_node), GFP_NOFS); + snod = kmalloc(sizeof(struct ubifs_scan_node), GFP_NOFS); if (!snod) return -ENOMEM; @@ -213,13 +206,15 @@ int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb, case UBIFS_DENT_NODE: case UBIFS_XENT_NODE: case UBIFS_DATA_NODE: - case UBIFS_TRUN_NODE: /* * The key is in the same place in all keyed * nodes. */ key_read(c, &ino->key, &snod->key); break; + default: + invalid_key_init(c, &snod->key); + break; } list_add_tail(&snod->list, &sleb->nodes); sleb->nodes_cnt += 1; @@ -238,13 +233,11 @@ void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs, { int len; - ubifs_err("corrupted data at LEB %d:%d", lnum, offs); - if (dbg_failure_mode) - return; + ubifs_err("corruption at LEB %d:%d", lnum, offs); len = c->leb_size - offs; - if (len > 4096) - len = 4096; - dbg_err("first %d bytes from LEB %d:%d", len, lnum, offs); + if (len > 8192) + len = 8192; + ubifs_err("first %d bytes from LEB %d:%d", len, lnum, offs); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 4, buf, len, 1); } @@ -253,13 +246,19 @@ void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs, * @c: UBIFS file-system description object * @lnum: logical eraseblock number * @offs: offset to start at (usually zero) - * @sbuf: scan buffer (must be c->leb_size) + * @sbuf: scan buffer (must be of @c->leb_size bytes in size) + * @quiet: print no messages * * This function scans LEB number @lnum and returns complete information about - * its contents. Returns an error code in case of failure. + * its contents. Returns the scaned information in case of success and, + * %-EUCLEAN if the LEB neads recovery, and other negative error codes in case + * of failure. + * + * If @quiet is non-zero, this function does not print large and scary + * error messages and flash dumps in case of errors. */ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, - int offs, void *sbuf) + int offs, void *sbuf, int quiet) { void *buf = sbuf + offs; int err, len = c->leb_size - offs; @@ -278,8 +277,7 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, cond_resched(); - ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 0); - + ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); if (ret > 0) { /* Padding bytes or a valid padding node */ offs += ret; @@ -294,17 +292,18 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, switch (ret) { case SCANNED_GARBAGE: - dbg_err("garbage"); + ubifs_err("garbage"); goto corrupted; case SCANNED_A_NODE: break; case SCANNED_A_CORRUPT_NODE: case SCANNED_A_BAD_PAD_NODE: - dbg_err("bad node"); + ubifs_err("bad node"); goto corrupted; default: - dbg_err("unknown"); - goto corrupted; + ubifs_err("unknown"); + err = -EINVAL; + goto error; } err = ubifs_add_snod(c, sleb, buf, offs); @@ -317,8 +316,12 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, len -= node_len; } - if (offs % c->min_io_size) + if (offs % c->min_io_size) { + if (!quiet) + ubifs_err("empty space starts at non-aligned offset %d", + offs); goto corrupted; + } ubifs_end_scan(c, sleb, lnum, offs); @@ -327,18 +330,25 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, break; for (; len; offs++, buf++, len--) if (*(uint8_t *)buf != 0xff) { - ubifs_err("corrupt empty space at LEB %d:%d", - lnum, offs); + if (!quiet) + ubifs_err("corrupt empty space at LEB %d:%d", + lnum, offs); goto corrupted; } return sleb; corrupted: - ubifs_scanned_corruption(c, lnum, offs, buf); + if (!quiet) { + ubifs_scanned_corruption(c, lnum, offs, buf); + ubifs_err("LEB %d scanning failed", lnum); + } err = -EUCLEAN; + ubifs_scan_destroy(sleb); + return ERR_PTR(err); + error: - ubifs_err("LEB %d scanning failed", lnum); + ubifs_err("LEB %d scanning failed, error %d", lnum, err); ubifs_scan_destroy(sleb); return ERR_PTR(err); } diff --git a/fs/ubifs/super.c b/fs/ubifs/super.c index 748ab67..9c87db4 100644 --- a/fs/ubifs/super.c +++ b/fs/ubifs/super.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -26,103 +15,45 @@ * corresponding subsystems, but most of it is here. */ -#include "ubifs.h" +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/ctype.h> +#include <linux/kthread.h> +#include <linux/parser.h> +#include <linux/seq_file.h> +#include <linux/mount.h> #include <linux/math64.h> +#include <linux/writeback.h> +#else -#define INODE_LOCKED_MAX 64 +#include <linux/compat.h> +#include <linux/stat.h> +#include <linux/err.h> +#include "ubifs.h" +#include <ubi_uboot.h> +#include <mtd/ubi-user.h> -struct super_block *ubifs_sb; -static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; +struct dentry; +struct file; +struct iattr; +struct kstat; +struct vfsmount; -/* shrinker.c */ +#define INODE_LOCKED_MAX 64 -/* List of all UBIFS file-system instances */ -struct list_head ubifs_infos; +struct super_block *ubifs_sb; +LIST_HEAD(super_blocks); -/* linux/fs/super.c */ +static struct inode *inodes_locked_down[INODE_LOCKED_MAX]; -static int sb_set(struct super_block *sb, void *data) +int set_anon_super(struct super_block *s, void *data) { - dev_t *dev = data; - - sb->s_dev = *dev; return 0; } -/** - * sget - find or create a superblock - * @type: filesystem type superblock should belong to - * @test: comparison callback - * @set: setup callback - * @data: argument to each of them - */ -struct super_block *sget(struct file_system_type *type, - int (*test)(struct super_block *,void *), - int (*set)(struct super_block *,void *), - void *data) -{ - struct super_block *s = NULL; - int err; - - s = kzalloc(sizeof(struct super_block), GFP_USER); - if (!s) { - err = -ENOMEM; - return ERR_PTR(err); - } - - INIT_LIST_HEAD(&s->s_instances); - INIT_LIST_HEAD(&s->s_inodes); - s->s_time_gran = 1000000000; - - err = set(s, data); - if (err) { - return ERR_PTR(err); - } - s->s_type = type; - strncpy(s->s_id, type->name, sizeof(s->s_id)); - list_add(&s->s_instances, &type->fs_supers); - return s; -} - -/** - * validate_inode - validate inode. - * @c: UBIFS file-system description object - * @inode: the inode to validate - * - * This is a helper function for 'ubifs_iget()' which validates various fields - * of a newly built inode to make sure they contain sane values and prevent - * possible vulnerabilities. Returns zero if the inode is all right and - * a non-zero error code if not. - */ -static int validate_inode(struct ubifs_info *c, const struct inode *inode) -{ - int err; - const struct ubifs_inode *ui = ubifs_inode(inode); - - if (inode->i_size > c->max_inode_sz) { - ubifs_err("inode is too large (%lld)", - (long long)inode->i_size); - return 1; - } - - if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { - ubifs_err("unknown compression type %d", ui->compr_type); - return 2; - } - - if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) - return 4; - - if (!ubifs_compr_present(ui->compr_type)) { - ubifs_warn("inode %lu uses '%s' compression, but it was not " - "compiled in", inode->i_ino, - ubifs_compr_name(ui->compr_type)); - } - - err = dbg_check_dir_size(c, inode); - return err; -} - struct inode *iget_locked(struct super_block *sb, unsigned long ino) { struct inode *inode; @@ -138,6 +69,10 @@ struct inode *iget_locked(struct super_block *sb, unsigned long ino) return inode; } +void iget_failed(struct inode *inode) +{ +} + int ubifs_iput(struct inode *inode) { list_del_init(&inode->i_sb_list); @@ -179,6 +114,125 @@ void iput(struct inode *inode) inodes_locked_down[i] = ino; } +/* from fs/inode.c */ +/** + * clear_nlink - directly zero an inode's link count + * @inode: inode + * + * This is a low-level filesystem helper to replace any + * direct filesystem manipulation of i_nlink. See + * drop_nlink() for why we care about i_nlink hitting zero. + */ +void clear_nlink(struct inode *inode) +{ + if (inode->i_nlink) { + inode->__i_nlink = 0; + atomic_long_inc(&inode->i_sb->s_remove_count); + } +} +EXPORT_SYMBOL(clear_nlink); + +/** + * set_nlink - directly set an inode's link count + * @inode: inode + * @nlink: new nlink (should be non-zero) + * + * This is a low-level filesystem helper to replace any + * direct filesystem manipulation of i_nlink. + */ +void set_nlink(struct inode *inode, unsigned int nlink) +{ + if (!nlink) { + clear_nlink(inode); + } else { + /* Yes, some filesystems do change nlink from zero to one */ + if (inode->i_nlink == 0) + atomic_long_dec(&inode->i_sb->s_remove_count); + + inode->__i_nlink = nlink; + } +} +EXPORT_SYMBOL(set_nlink); + +/* from include/linux/fs.h */ +static inline void i_uid_write(struct inode *inode, uid_t uid) +{ + inode->i_uid.val = uid; +} + +static inline void i_gid_write(struct inode *inode, gid_t gid) +{ + inode->i_gid.val = gid; +} + +void unlock_new_inode(struct inode *inode) +{ + return; +} +#endif + +/* + * Maximum amount of memory we may 'kmalloc()' without worrying that we are + * allocating too much. + */ +#define UBIFS_KMALLOC_OK (128*1024) + +/* Slab cache for UBIFS inodes */ +struct kmem_cache *ubifs_inode_slab; + +#ifndef __UBOOT__ +/* UBIFS TNC shrinker description */ +static struct shrinker ubifs_shrinker_info = { + .scan_objects = ubifs_shrink_scan, + .count_objects = ubifs_shrink_count, + .seeks = DEFAULT_SEEKS, +}; +#endif + +/** + * validate_inode - validate inode. + * @c: UBIFS file-system description object + * @inode: the inode to validate + * + * This is a helper function for 'ubifs_iget()' which validates various fields + * of a newly built inode to make sure they contain sane values and prevent + * possible vulnerabilities. Returns zero if the inode is all right and + * a non-zero error code if not. + */ +static int validate_inode(struct ubifs_info *c, const struct inode *inode) +{ + int err; + const struct ubifs_inode *ui = ubifs_inode(inode); + + if (inode->i_size > c->max_inode_sz) { + ubifs_err("inode is too large (%lld)", + (long long)inode->i_size); + return 1; + } + + if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { + ubifs_err("unknown compression type %d", ui->compr_type); + return 2; + } + + if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) + return 3; + + if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) + return 4; + + if (ui->xattr && !S_ISREG(inode->i_mode)) + return 5; + + if (!ubifs_compr_present(ui->compr_type)) { + ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in", + inode->i_ino, ubifs_compr_name(ui->compr_type)); + } + + err = dbg_check_dir(c, inode); + return err; +} + struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) { int err; @@ -187,10 +241,13 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) struct ubifs_info *c = sb->s_fs_info; struct inode *inode; struct ubifs_inode *ui; +#ifdef __UBOOT__ int i; +#endif dbg_gen("inode %lu", inum); +#ifdef __UBOOT__ /* * U-Boot special handling of locked down inodes via recovery * e.g. ubifs_recover_size() @@ -211,6 +268,7 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) return inodes_locked_down[i]; } } +#endif inode = iget_locked(sb, inum); if (!inode) @@ -232,9 +290,9 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) goto out_ino; inode->i_flags |= (S_NOCMTIME | S_NOATIME); - inode->i_nlink = le32_to_cpu(ino->nlink); - inode->i_uid = le32_to_cpu(ino->uid); - inode->i_gid = le32_to_cpu(ino->gid); + set_nlink(inode, le32_to_cpu(ino->nlink)); + i_uid_write(inode, le32_to_cpu(ino->uid)); + i_gid_write(inode, le32_to_cpu(ino->gid)); inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); @@ -248,12 +306,101 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) ui->flags = le32_to_cpu(ino->flags); ui->compr_type = le16_to_cpu(ino->compr_type); ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); + ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); + ui->xattr_size = le32_to_cpu(ino->xattr_size); + ui->xattr_names = le32_to_cpu(ino->xattr_names); ui->synced_i_size = ui->ui_size = inode->i_size; + ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; + err = validate_inode(c, inode); if (err) goto out_invalid; +#ifndef __UBOOT__ + /* Disable read-ahead */ + inode->i_mapping->backing_dev_info = &c->bdi; + + switch (inode->i_mode & S_IFMT) { + case S_IFREG: + inode->i_mapping->a_ops = &ubifs_file_address_operations; + inode->i_op = &ubifs_file_inode_operations; + inode->i_fop = &ubifs_file_operations; + if (ui->xattr) { + ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); + if (!ui->data) { + err = -ENOMEM; + goto out_ino; + } + memcpy(ui->data, ino->data, ui->data_len); + ((char *)ui->data)[ui->data_len] = '\0'; + } else if (ui->data_len != 0) { + err = 10; + goto out_invalid; + } + break; + case S_IFDIR: + inode->i_op = &ubifs_dir_inode_operations; + inode->i_fop = &ubifs_dir_operations; + if (ui->data_len != 0) { + err = 11; + goto out_invalid; + } + break; + case S_IFLNK: + inode->i_op = &ubifs_symlink_inode_operations; + if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { + err = 12; + goto out_invalid; + } + ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); + if (!ui->data) { + err = -ENOMEM; + goto out_ino; + } + memcpy(ui->data, ino->data, ui->data_len); + ((char *)ui->data)[ui->data_len] = '\0'; + break; + case S_IFBLK: + case S_IFCHR: + { + dev_t rdev; + union ubifs_dev_desc *dev; + + ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); + if (!ui->data) { + err = -ENOMEM; + goto out_ino; + } + + dev = (union ubifs_dev_desc *)ino->data; + if (ui->data_len == sizeof(dev->new)) + rdev = new_decode_dev(le32_to_cpu(dev->new)); + else if (ui->data_len == sizeof(dev->huge)) + rdev = huge_decode_dev(le64_to_cpu(dev->huge)); + else { + err = 13; + goto out_invalid; + } + memcpy(ui->data, ino->data, ui->data_len); + inode->i_op = &ubifs_file_inode_operations; + init_special_inode(inode, inode->i_mode, rdev); + break; + } + case S_IFSOCK: + case S_IFIFO: + inode->i_op = &ubifs_file_inode_operations; + init_special_inode(inode, inode->i_mode, 0); + if (ui->data_len != 0) { + err = 14; + goto out_invalid; + } + break; + default: + err = 15; + goto out_invalid; + } +#else if ((inode->i_mode & S_IFMT) == S_IFLNK) { if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { err = 12; @@ -267,23 +414,258 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) memcpy(ui->data, ino->data, ui->data_len); ((char *)ui->data)[ui->data_len] = '\0'; } +#endif kfree(ino); - inode->i_state &= ~(I_LOCK | I_NEW); +#ifndef __UBOOT__ + ubifs_set_inode_flags(inode); +#endif + unlock_new_inode(inode); return inode; out_invalid: ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); - dbg_dump_node(c, ino); - dbg_dump_inode(c, inode); + ubifs_dump_node(c, ino); + ubifs_dump_inode(c, inode); err = -EINVAL; out_ino: kfree(ino); out: ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); + iget_failed(inode); return ERR_PTR(err); } +static struct inode *ubifs_alloc_inode(struct super_block *sb) +{ + struct ubifs_inode *ui; + + ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); + if (!ui) + return NULL; + + memset((void *)ui + sizeof(struct inode), 0, + sizeof(struct ubifs_inode) - sizeof(struct inode)); + mutex_init(&ui->ui_mutex); + spin_lock_init(&ui->ui_lock); + return &ui->vfs_inode; +}; + +#ifndef __UBOOT__ +static void ubifs_i_callback(struct rcu_head *head) +{ + struct inode *inode = container_of(head, struct inode, i_rcu); + struct ubifs_inode *ui = ubifs_inode(inode); + kmem_cache_free(ubifs_inode_slab, ui); +} + +static void ubifs_destroy_inode(struct inode *inode) +{ + struct ubifs_inode *ui = ubifs_inode(inode); + + kfree(ui->data); + call_rcu(&inode->i_rcu, ubifs_i_callback); +} + +/* + * Note, Linux write-back code calls this without 'i_mutex'. + */ +static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) +{ + int err = 0; + struct ubifs_info *c = inode->i_sb->s_fs_info; + struct ubifs_inode *ui = ubifs_inode(inode); + + ubifs_assert(!ui->xattr); + if (is_bad_inode(inode)) + return 0; + + mutex_lock(&ui->ui_mutex); + /* + * Due to races between write-back forced by budgeting + * (see 'sync_some_inodes()') and background write-back, the inode may + * have already been synchronized, do not do this again. This might + * also happen if it was synchronized in an VFS operation, e.g. + * 'ubifs_link()'. + */ + if (!ui->dirty) { + mutex_unlock(&ui->ui_mutex); + return 0; + } + + /* + * As an optimization, do not write orphan inodes to the media just + * because this is not needed. + */ + dbg_gen("inode %lu, mode %#x, nlink %u", + inode->i_ino, (int)inode->i_mode, inode->i_nlink); + if (inode->i_nlink) { + err = ubifs_jnl_write_inode(c, inode); + if (err) + ubifs_err("can't write inode %lu, error %d", + inode->i_ino, err); + else + err = dbg_check_inode_size(c, inode, ui->ui_size); + } + + ui->dirty = 0; + mutex_unlock(&ui->ui_mutex); + ubifs_release_dirty_inode_budget(c, ui); + return err; +} + +static void ubifs_evict_inode(struct inode *inode) +{ + int err; + struct ubifs_info *c = inode->i_sb->s_fs_info; + struct ubifs_inode *ui = ubifs_inode(inode); + + if (ui->xattr) + /* + * Extended attribute inode deletions are fully handled in + * 'ubifs_removexattr()'. These inodes are special and have + * limited usage, so there is nothing to do here. + */ + goto out; + + dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); + ubifs_assert(!atomic_read(&inode->i_count)); + + truncate_inode_pages(&inode->i_data, 0); + + if (inode->i_nlink) + goto done; + + if (is_bad_inode(inode)) + goto out; + + ui->ui_size = inode->i_size = 0; + err = ubifs_jnl_delete_inode(c, inode); + if (err) + /* + * Worst case we have a lost orphan inode wasting space, so a + * simple error message is OK here. + */ + ubifs_err("can't delete inode %lu, error %d", + inode->i_ino, err); + +out: + if (ui->dirty) + ubifs_release_dirty_inode_budget(c, ui); + else { + /* We've deleted something - clean the "no space" flags */ + c->bi.nospace = c->bi.nospace_rp = 0; + smp_wmb(); + } +done: + clear_inode(inode); +} +#endif + +static void ubifs_dirty_inode(struct inode *inode, int flags) +{ + struct ubifs_inode *ui = ubifs_inode(inode); + + ubifs_assert(mutex_is_locked(&ui->ui_mutex)); + if (!ui->dirty) { + ui->dirty = 1; + dbg_gen("inode %lu", inode->i_ino); + } +} + +#ifndef __UBOOT__ +static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) +{ + struct ubifs_info *c = dentry->d_sb->s_fs_info; + unsigned long long free; + __le32 *uuid = (__le32 *)c->uuid; + + free = ubifs_get_free_space(c); + dbg_gen("free space %lld bytes (%lld blocks)", + free, free >> UBIFS_BLOCK_SHIFT); + + buf->f_type = UBIFS_SUPER_MAGIC; + buf->f_bsize = UBIFS_BLOCK_SIZE; + buf->f_blocks = c->block_cnt; + buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; + if (free > c->report_rp_size) + buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; + else + buf->f_bavail = 0; + buf->f_files = 0; + buf->f_ffree = 0; + buf->f_namelen = UBIFS_MAX_NLEN; + buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); + buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); + ubifs_assert(buf->f_bfree <= c->block_cnt); + return 0; +} + +static int ubifs_show_options(struct seq_file *s, struct dentry *root) +{ + struct ubifs_info *c = root->d_sb->s_fs_info; + + if (c->mount_opts.unmount_mode == 2) + seq_printf(s, ",fast_unmount"); + else if (c->mount_opts.unmount_mode == 1) + seq_printf(s, ",norm_unmount"); + + if (c->mount_opts.bulk_read == 2) + seq_printf(s, ",bulk_read"); + else if (c->mount_opts.bulk_read == 1) + seq_printf(s, ",no_bulk_read"); + + if (c->mount_opts.chk_data_crc == 2) + seq_printf(s, ",chk_data_crc"); + else if (c->mount_opts.chk_data_crc == 1) + seq_printf(s, ",no_chk_data_crc"); + + if (c->mount_opts.override_compr) { + seq_printf(s, ",compr=%s", + ubifs_compr_name(c->mount_opts.compr_type)); + } + + return 0; +} + +static int ubifs_sync_fs(struct super_block *sb, int wait) +{ + int i, err; + struct ubifs_info *c = sb->s_fs_info; + + /* + * Zero @wait is just an advisory thing to help the file system shove + * lots of data into the queues, and there will be the second + * '->sync_fs()' call, with non-zero @wait. + */ + if (!wait) + return 0; + + /* + * Synchronize write buffers, because 'ubifs_run_commit()' does not + * do this if it waits for an already running commit. + */ + for (i = 0; i < c->jhead_cnt; i++) { + err = ubifs_wbuf_sync(&c->jheads[i].wbuf); + if (err) + return err; + } + + /* + * Strictly speaking, it is not necessary to commit the journal here, + * synchronizing write-buffers would be enough. But committing makes + * UBIFS free space predictions much more accurate, so we want to let + * the user be able to get more accurate results of 'statfs()' after + * they synchronize the file system. + */ + err = ubifs_run_commit(c); + if (err) + return err; + + return ubi_sync(c->vi.ubi_num); +} +#endif + /** * init_constants_early - initialize UBIFS constants. * @c: UBIFS file-system description object @@ -312,9 +694,12 @@ static int init_constants_early(struct ubifs_info *c) c->leb_cnt = c->vi.size; c->leb_size = c->vi.usable_leb_size; + c->leb_start = c->di.leb_start; c->half_leb_size = c->leb_size / 2; c->min_io_size = c->di.min_io_size; c->min_io_shift = fls(c->min_io_size) - 1; + c->max_write_size = c->di.max_write_size; + c->max_write_shift = fls(c->max_write_size) - 1; if (c->leb_size < UBIFS_MIN_LEB_SZ) { ubifs_err("too small LEBs (%d bytes), min. is %d bytes", @@ -334,6 +719,18 @@ static int init_constants_early(struct ubifs_info *c) } /* + * Maximum write size has to be greater or equivalent to min. I/O + * size, and be multiple of min. I/O size. + */ + if (c->max_write_size < c->min_io_size || + c->max_write_size % c->min_io_size || + !is_power_of_2(c->max_write_size)) { + ubifs_err("bad write buffer size %d for %d min. I/O unit", + c->max_write_size, c->min_io_size); + return -EINVAL; + } + + /* * UBIFS aligns all node to 8-byte boundary, so to make function in * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is * less than 8. @@ -341,6 +738,10 @@ static int init_constants_early(struct ubifs_info *c) if (c->min_io_size < 8) { c->min_io_size = 8; c->min_io_shift = 3; + if (c->max_write_size < c->min_io_size) { + c->max_write_size = c->min_io_size; + c->max_write_shift = c->min_io_shift; + } } c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); @@ -393,9 +794,33 @@ static int init_constants_early(struct ubifs_info *c) */ c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; + /* Buffer size for bulk-reads */ + c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; + if (c->max_bu_buf_len > c->leb_size) + c->max_bu_buf_len = c->leb_size; return 0; } +/** + * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. + * @c: UBIFS file-system description object + * @lnum: LEB the write-buffer was synchronized to + * @free: how many free bytes left in this LEB + * @pad: how many bytes were padded + * + * This is a callback function which is called by the I/O unit when the + * write-buffer is synchronized. We need this to correctly maintain space + * accounting in bud logical eraseblocks. This function returns zero in case of + * success and a negative error code in case of failure. + * + * This function actually belongs to the journal, but we keep it here because + * we want to keep it static. + */ +static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) +{ + return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); +} + /* * init_constants_sb - initialize UBIFS constants. * @c: UBIFS file-system description object @@ -426,8 +851,8 @@ static int init_constants_sb(struct ubifs_info *c) tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; tmp = ALIGN(tmp, c->min_io_size); if (tmp > c->leb_size) { - dbg_err("too small LEB size %d, at least %d needed", - c->leb_size, tmp); + ubifs_err("too small LEB size %d, at least %d needed", + c->leb_size, tmp); return -EINVAL; } @@ -441,8 +866,8 @@ static int init_constants_sb(struct ubifs_info *c) tmp /= c->leb_size; tmp += 1; if (c->log_lebs < tmp) { - dbg_err("too small log %d LEBs, required min. %d LEBs", - c->log_lebs, tmp); + ubifs_err("too small log %d LEBs, required min. %d LEBs", + c->log_lebs, tmp); return -EINVAL; } @@ -451,11 +876,11 @@ static int init_constants_sb(struct ubifs_info *c) * be compressed and direntries are of the maximum size. * * Note, data, which may be stored in inodes is budgeted separately, so - * it is not included into 'c->inode_budget'. + * it is not included into 'c->bi.inode_budget'. */ - c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; - c->inode_budget = UBIFS_INO_NODE_SZ; - c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; + c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; + c->bi.inode_budget = UBIFS_INO_NODE_SZ; + c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; /* * When the amount of flash space used by buds becomes @@ -482,6 +907,8 @@ static int init_constants_sb(struct ubifs_info *c) if (err) return err; + /* Initialize effective LEB size used in budgeting calculations */ + c->idx_leb_size = c->leb_size - c->max_idx_node_sz; return 0; } @@ -497,7 +924,8 @@ static void init_constants_master(struct ubifs_info *c) { long long tmp64; - c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); + c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); + c->report_rp_size = ubifs_reported_space(c, c->rp_size); /* * Calculate total amount of FS blocks. This number is not used @@ -515,6 +943,88 @@ static void init_constants_master(struct ubifs_info *c) } /** + * take_gc_lnum - reserve GC LEB. + * @c: UBIFS file-system description object + * + * This function ensures that the LEB reserved for garbage collection is marked + * as "taken" in lprops. We also have to set free space to LEB size and dirty + * space to zero, because lprops may contain out-of-date information if the + * file-system was un-mounted before it has been committed. This function + * returns zero in case of success and a negative error code in case of + * failure. + */ +static int take_gc_lnum(struct ubifs_info *c) +{ + int err; + + if (c->gc_lnum == -1) { + ubifs_err("no LEB for GC"); + return -EINVAL; + } + + /* And we have to tell lprops that this LEB is taken */ + err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, + LPROPS_TAKEN, 0, 0); + return err; +} + +/** + * alloc_wbufs - allocate write-buffers. + * @c: UBIFS file-system description object + * + * This helper function allocates and initializes UBIFS write-buffers. Returns + * zero in case of success and %-ENOMEM in case of failure. + */ +static int alloc_wbufs(struct ubifs_info *c) +{ + int i, err; + + c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), + GFP_KERNEL); + if (!c->jheads) + return -ENOMEM; + + /* Initialize journal heads */ + for (i = 0; i < c->jhead_cnt; i++) { + INIT_LIST_HEAD(&c->jheads[i].buds_list); + err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); + if (err) + return err; + + c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; + c->jheads[i].wbuf.jhead = i; + c->jheads[i].grouped = 1; + } + + /* + * Garbage Collector head does not need to be synchronized by timer. + * Also GC head nodes are not grouped. + */ + c->jheads[GCHD].wbuf.no_timer = 1; + c->jheads[GCHD].grouped = 0; + + return 0; +} + +/** + * free_wbufs - free write-buffers. + * @c: UBIFS file-system description object + */ +static void free_wbufs(struct ubifs_info *c) +{ + int i; + + if (c->jheads) { + for (i = 0; i < c->jhead_cnt; i++) { + kfree(c->jheads[i].wbuf.buf); + kfree(c->jheads[i].wbuf.inodes); + } + kfree(c->jheads); + c->jheads = NULL; + } +} + +/** * free_orphans - free orphans. * @c: UBIFS file-system description object */ @@ -533,13 +1043,27 @@ static void free_orphans(struct ubifs_info *c) orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); list_del(&orph->list); kfree(orph); - dbg_err("orphan list not empty at unmount"); + ubifs_err("orphan list not empty at unmount"); } vfree(c->orph_buf); c->orph_buf = NULL; } +#ifndef __UBOOT__ +/** + * free_buds - free per-bud objects. + * @c: UBIFS file-system description object + */ +static void free_buds(struct ubifs_info *c) +{ + struct ubifs_bud *bud, *n; + + rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) + kfree(bud); +} +#endif + /** * check_volume_empty - check if the UBI volume is empty. * @c: UBIFS file-system description object @@ -555,7 +1079,7 @@ static int check_volume_empty(struct ubifs_info *c) c->empty = 1; for (lnum = 0; lnum < c->leb_cnt; lnum++) { - err = ubi_is_mapped(c->ubi, lnum); + err = ubifs_is_mapped(c, lnum); if (unlikely(err < 0)) return err; if (err == 1) { @@ -569,23 +1093,258 @@ static int check_volume_empty(struct ubifs_info *c) return 0; } +/* + * UBIFS mount options. + * + * Opt_fast_unmount: do not run a journal commit before un-mounting + * Opt_norm_unmount: run a journal commit before un-mounting + * Opt_bulk_read: enable bulk-reads + * Opt_no_bulk_read: disable bulk-reads + * Opt_chk_data_crc: check CRCs when reading data nodes + * Opt_no_chk_data_crc: do not check CRCs when reading data nodes + * Opt_override_compr: override default compressor + * Opt_err: just end of array marker + */ +enum { + Opt_fast_unmount, + Opt_norm_unmount, + Opt_bulk_read, + Opt_no_bulk_read, + Opt_chk_data_crc, + Opt_no_chk_data_crc, + Opt_override_compr, + Opt_err, +}; + +#ifndef __UBOOT__ +static const match_table_t tokens = { + {Opt_fast_unmount, "fast_unmount"}, + {Opt_norm_unmount, "norm_unmount"}, + {Opt_bulk_read, "bulk_read"}, + {Opt_no_bulk_read, "no_bulk_read"}, + {Opt_chk_data_crc, "chk_data_crc"}, + {Opt_no_chk_data_crc, "no_chk_data_crc"}, + {Opt_override_compr, "compr=%s"}, + {Opt_err, NULL}, +}; + +/** + * parse_standard_option - parse a standard mount option. + * @option: the option to parse + * + * Normally, standard mount options like "sync" are passed to file-systems as + * flags. However, when a "rootflags=" kernel boot parameter is used, they may + * be present in the options string. This function tries to deal with this + * situation and parse standard options. Returns 0 if the option was not + * recognized, and the corresponding integer flag if it was. + * + * UBIFS is only interested in the "sync" option, so do not check for anything + * else. + */ +static int parse_standard_option(const char *option) +{ + ubifs_msg("parse %s", option); + if (!strcmp(option, "sync")) + return MS_SYNCHRONOUS; + return 0; +} + +/** + * ubifs_parse_options - parse mount parameters. + * @c: UBIFS file-system description object + * @options: parameters to parse + * @is_remount: non-zero if this is FS re-mount + * + * This function parses UBIFS mount options and returns zero in case success + * and a negative error code in case of failure. + */ +static int ubifs_parse_options(struct ubifs_info *c, char *options, + int is_remount) +{ + char *p; + substring_t args[MAX_OPT_ARGS]; + + if (!options) + return 0; + + while ((p = strsep(&options, ","))) { + int token; + + if (!*p) + continue; + + token = match_token(p, tokens, args); + switch (token) { + /* + * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. + * We accept them in order to be backward-compatible. But this + * should be removed at some point. + */ + case Opt_fast_unmount: + c->mount_opts.unmount_mode = 2; + break; + case Opt_norm_unmount: + c->mount_opts.unmount_mode = 1; + break; + case Opt_bulk_read: + c->mount_opts.bulk_read = 2; + c->bulk_read = 1; + break; + case Opt_no_bulk_read: + c->mount_opts.bulk_read = 1; + c->bulk_read = 0; + break; + case Opt_chk_data_crc: + c->mount_opts.chk_data_crc = 2; + c->no_chk_data_crc = 0; + break; + case Opt_no_chk_data_crc: + c->mount_opts.chk_data_crc = 1; + c->no_chk_data_crc = 1; + break; + case Opt_override_compr: + { + char *name = match_strdup(&args[0]); + + if (!name) + return -ENOMEM; + if (!strcmp(name, "none")) + c->mount_opts.compr_type = UBIFS_COMPR_NONE; + else if (!strcmp(name, "lzo")) + c->mount_opts.compr_type = UBIFS_COMPR_LZO; + else if (!strcmp(name, "zlib")) + c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; + else { + ubifs_err("unknown compressor \"%s\"", name); + kfree(name); + return -EINVAL; + } + kfree(name); + c->mount_opts.override_compr = 1; + c->default_compr = c->mount_opts.compr_type; + break; + } + default: + { + unsigned long flag; + struct super_block *sb = c->vfs_sb; + + flag = parse_standard_option(p); + if (!flag) { + ubifs_err("unrecognized mount option \"%s\" or missing value", + p); + return -EINVAL; + } + sb->s_flags |= flag; + break; + } + } + } + + return 0; +} + +/** + * destroy_journal - destroy journal data structures. + * @c: UBIFS file-system description object + * + * This function destroys journal data structures including those that may have + * been created by recovery functions. + */ +static void destroy_journal(struct ubifs_info *c) +{ + while (!list_empty(&c->unclean_leb_list)) { + struct ubifs_unclean_leb *ucleb; + + ucleb = list_entry(c->unclean_leb_list.next, + struct ubifs_unclean_leb, list); + list_del(&ucleb->list); + kfree(ucleb); + } + while (!list_empty(&c->old_buds)) { + struct ubifs_bud *bud; + + bud = list_entry(c->old_buds.next, struct ubifs_bud, list); + list_del(&bud->list); + kfree(bud); + } + ubifs_destroy_idx_gc(c); + ubifs_destroy_size_tree(c); + ubifs_tnc_close(c); + free_buds(c); +} +#endif + +/** + * bu_init - initialize bulk-read information. + * @c: UBIFS file-system description object + */ +static void bu_init(struct ubifs_info *c) +{ + ubifs_assert(c->bulk_read == 1); + + if (c->bu.buf) + return; /* Already initialized */ + +again: + c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); + if (!c->bu.buf) { + if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { + c->max_bu_buf_len = UBIFS_KMALLOC_OK; + goto again; + } + + /* Just disable bulk-read */ + ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it", + c->max_bu_buf_len); + c->mount_opts.bulk_read = 1; + c->bulk_read = 0; + return; + } +} + +#ifndef __UBOOT__ +/** + * check_free_space - check if there is enough free space to mount. + * @c: UBIFS file-system description object + * + * This function makes sure UBIFS has enough free space to be mounted in + * read/write mode. UBIFS must always have some free space to allow deletions. + */ +static int check_free_space(struct ubifs_info *c) +{ + ubifs_assert(c->dark_wm > 0); + if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { + ubifs_err("insufficient free space to mount in R/W mode"); + ubifs_dump_budg(c, &c->bi); + ubifs_dump_lprops(c); + return -ENOSPC; + } + return 0; +} +#endif + /** * mount_ubifs - mount UBIFS file-system. * @c: UBIFS file-system description object * * This function mounts UBIFS file system. Returns zero in case of success and * a negative error code in case of failure. - * - * Note, the function does not de-allocate resources it it fails half way - * through, and the caller has to do this instead. */ static int mount_ubifs(struct ubifs_info *c) { - struct super_block *sb = c->vfs_sb; - int err, mounted_read_only = (sb->s_flags & MS_RDONLY); - long long x; + int err; + long long x, y; size_t sz; + c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); +#ifdef __UBOOT__ + if (!c->ro_mount) { + printf("UBIFS: only ro mode in U-Boot allowed.\n"); + return -EACCES; + } +#endif + err = init_constants_early(c); if (err) return err; @@ -598,7 +1357,7 @@ static int mount_ubifs(struct ubifs_info *c) if (err) goto out_free; - if (c->empty && (mounted_read_only || c->ro_media)) { + if (c->empty && (c->ro_mount || c->ro_media)) { /* * This UBI volume is empty, and read-only, or the file system * is mounted read-only - we cannot format it. @@ -609,7 +1368,7 @@ static int mount_ubifs(struct ubifs_info *c) goto out_free; } - if (c->ro_media && !mounted_read_only) { + if (c->ro_media && !c->ro_mount) { ubifs_err("cannot mount read-write - read-only media"); err = -EROFS; goto out_free; @@ -629,11 +1388,27 @@ static int mount_ubifs(struct ubifs_info *c) if (!c->sbuf) goto out_free; - /* - * We have to check all CRCs, even for data nodes, when we mount the FS - * (specifically, when we are replaying). - */ - c->always_chk_crc = 1; +#ifndef __UBOOT__ + if (!c->ro_mount) { + c->ileb_buf = vmalloc(c->leb_size); + if (!c->ileb_buf) + goto out_free; + } +#endif + + if (c->bulk_read == 1) + bu_init(c); + +#ifndef __UBOOT__ + if (!c->ro_mount) { + c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, + GFP_KERNEL); + if (!c->write_reserve_buf) + goto out_free; + } +#endif + + c->mounting = 1; err = ubifs_read_superblock(c); if (err) @@ -646,11 +1421,10 @@ static int mount_ubifs(struct ubifs_info *c) if (!ubifs_compr_present(c->default_compr)) { ubifs_err("'compressor \"%s\" is not compiled in", ubifs_compr_name(c->default_compr)); + err = -ENOTSUPP; goto out_free; } - dbg_failure_mode_registration(c); - err = init_constants_sb(c); if (err) goto out_free; @@ -663,7 +1437,25 @@ static int mount_ubifs(struct ubifs_info *c) goto out_free; } + err = alloc_wbufs(c); + if (err) + goto out_cbuf; + sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); +#ifndef __UBOOT__ + if (!c->ro_mount) { + /* Create background thread */ + c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); + if (IS_ERR(c->bgt)) { + err = PTR_ERR(c->bgt); + c->bgt = NULL; + ubifs_err("cannot spawn \"%s\", error %d", + c->bgt_name, err); + goto out_wbufs; + } + wake_up_process(c->bgt); + } +#endif err = ubifs_read_master(c); if (err) @@ -676,118 +1468,208 @@ static int mount_ubifs(struct ubifs_info *c) c->need_recovery = 1; } - err = ubifs_lpt_init(c, 1, !mounted_read_only); +#ifndef __UBOOT__ + if (c->need_recovery && !c->ro_mount) { + err = ubifs_recover_inl_heads(c, c->sbuf); + if (err) + goto out_master; + } +#endif + + err = ubifs_lpt_init(c, 1, !c->ro_mount); if (err) - goto out_lpt; + goto out_master; + +#ifndef __UBOOT__ + if (!c->ro_mount && c->space_fixup) { + err = ubifs_fixup_free_space(c); + if (err) + goto out_lpt; + } + + if (!c->ro_mount) { + /* + * Set the "dirty" flag so that if we reboot uncleanly we + * will notice this immediately on the next mount. + */ + c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); + err = ubifs_write_master(c); + if (err) + goto out_lpt; + } +#endif - err = dbg_check_idx_size(c, c->old_idx_sz); + err = dbg_check_idx_size(c, c->bi.old_idx_sz); if (err) goto out_lpt; +#ifndef __UBOOT__ err = ubifs_replay_journal(c); if (err) goto out_journal; +#endif + + /* Calculate 'min_idx_lebs' after journal replay */ + c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); - err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); + err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); if (err) goto out_orphans; - if (c->need_recovery) { + if (!c->ro_mount) { +#ifndef __UBOOT__ + int lnum; + + err = check_free_space(c); + if (err) + goto out_orphans; + + /* Check for enough log space */ + lnum = c->lhead_lnum + 1; + if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) + lnum = UBIFS_LOG_LNUM; + if (lnum == c->ltail_lnum) { + err = ubifs_consolidate_log(c); + if (err) + goto out_orphans; + } + + if (c->need_recovery) { + err = ubifs_recover_size(c); + if (err) + goto out_orphans; + err = ubifs_rcvry_gc_commit(c); + if (err) + goto out_orphans; + } else { + err = take_gc_lnum(c); + if (err) + goto out_orphans; + + /* + * GC LEB may contain garbage if there was an unclean + * reboot, and it should be un-mapped. + */ + err = ubifs_leb_unmap(c, c->gc_lnum); + if (err) + goto out_orphans; + } + + err = dbg_check_lprops(c); + if (err) + goto out_orphans; +#endif + } else if (c->need_recovery) { err = ubifs_recover_size(c); if (err) goto out_orphans; + } else { + /* + * Even if we mount read-only, we have to set space in GC LEB + * to proper value because this affects UBIFS free space + * reporting. We do not want to have a situation when + * re-mounting from R/O to R/W changes amount of free space. + */ + err = take_gc_lnum(c); + if (err) + goto out_orphans; } +#ifndef __UBOOT__ spin_lock(&ubifs_infos_lock); list_add_tail(&c->infos_list, &ubifs_infos); spin_unlock(&ubifs_infos_lock); +#endif if (c->need_recovery) { - if (mounted_read_only) + if (c->ro_mount) ubifs_msg("recovery deferred"); else { c->need_recovery = 0; ubifs_msg("recovery completed"); + /* + * GC LEB has to be empty and taken at this point. But + * the journal head LEBs may also be accounted as + * "empty taken" if they are empty. + */ + ubifs_assert(c->lst.taken_empty_lebs > 0); } - } + } else + ubifs_assert(c->lst.taken_empty_lebs > 0); err = dbg_check_filesystem(c); if (err) goto out_infos; - c->always_chk_crc = 0; + err = dbg_debugfs_init_fs(c); + if (err) + goto out_infos; + + c->mounting = 0; - ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", - c->vi.ubi_num, c->vi.vol_id, c->vi.name); - if (mounted_read_only) - ubifs_msg("mounted read-only"); + ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s", + c->vi.ubi_num, c->vi.vol_id, c->vi.name, + c->ro_mount ? ", R/O mode" : ""); x = (long long)c->main_lebs * c->leb_size; - ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " - "LEBs)", x, x >> 10, x >> 20, c->main_lebs); - x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; - ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " - "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); - ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", + y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; + ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", + c->leb_size, c->leb_size >> 10, c->min_io_size, + c->max_write_size); + ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", + x, x >> 20, c->main_lebs, + y, y >> 20, c->log_lebs + c->max_bud_cnt); + ubifs_msg("reserved for root: %llu bytes (%llu KiB)", + c->report_rp_size, c->report_rp_size >> 10); + ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", c->fmt_version, c->ro_compat_version, - UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); - ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); - ubifs_msg("reserved for root: %llu bytes (%llu KiB)", - c->report_rp_size, c->report_rp_size >> 10); - - dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); - dbg_msg("LEB size: %d bytes (%d KiB)", - c->leb_size, c->leb_size >> 10); - dbg_msg("data journal heads: %d", + UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, + c->big_lpt ? ", big LPT model" : ", small LPT model"); + + dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); + dbg_gen("data journal heads: %d", c->jhead_cnt - NONDATA_JHEADS_CNT); - dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" - "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", - c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], - c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], - c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], - c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); - dbg_msg("big_lpt %d", c->big_lpt); - dbg_msg("log LEBs: %d (%d - %d)", + dbg_gen("log LEBs: %d (%d - %d)", c->log_lebs, UBIFS_LOG_LNUM, c->log_last); - dbg_msg("LPT area LEBs: %d (%d - %d)", + dbg_gen("LPT area LEBs: %d (%d - %d)", c->lpt_lebs, c->lpt_first, c->lpt_last); - dbg_msg("orphan area LEBs: %d (%d - %d)", + dbg_gen("orphan area LEBs: %d (%d - %d)", c->orph_lebs, c->orph_first, c->orph_last); - dbg_msg("main area LEBs: %d (%d - %d)", + dbg_gen("main area LEBs: %d (%d - %d)", c->main_lebs, c->main_first, c->leb_cnt - 1); - dbg_msg("index LEBs: %d", c->lst.idx_lebs); - dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", - c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); - dbg_msg("key hash type: %d", c->key_hash_type); - dbg_msg("tree fanout: %d", c->fanout); - dbg_msg("reserved GC LEB: %d", c->gc_lnum); - dbg_msg("first main LEB: %d", c->main_first); - dbg_msg("max. znode size %d", c->max_znode_sz); - dbg_msg("max. index node size %d", c->max_idx_node_sz); - dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", + dbg_gen("index LEBs: %d", c->lst.idx_lebs); + dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", + c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, + c->bi.old_idx_sz >> 20); + dbg_gen("key hash type: %d", c->key_hash_type); + dbg_gen("tree fanout: %d", c->fanout); + dbg_gen("reserved GC LEB: %d", c->gc_lnum); + dbg_gen("max. znode size %d", c->max_znode_sz); + dbg_gen("max. index node size %d", c->max_idx_node_sz); + dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); - dbg_msg("node sizes: trun %zu, sb %zu, master %zu", + dbg_gen("node sizes: trun %zu, sb %zu, master %zu", UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); - dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", + dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); - dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", + dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, - UBIFS_MAX_DENT_NODE_SZ); - dbg_msg("dead watermark: %d", c->dead_wm); - dbg_msg("dark watermark: %d", c->dark_wm); - dbg_msg("LEB overhead: %d", c->leb_overhead); + UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); + dbg_gen("dead watermark: %d", c->dead_wm); + dbg_gen("dark watermark: %d", c->dark_wm); + dbg_gen("LEB overhead: %d", c->leb_overhead); x = (long long)c->main_lebs * c->dark_wm; - dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", + dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", x, x >> 10, x >> 20); - dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", + dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", c->max_bud_bytes, c->max_bud_bytes >> 10, c->max_bud_bytes >> 20); - dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", + dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", c->bg_bud_bytes, c->bg_bud_bytes >> 10, c->bg_bud_bytes >> 20); - dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", + dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); - dbg_msg("max. seq. number: %llu", c->max_sqnum); - dbg_msg("commit number: %llu", c->cmt_no); + dbg_gen("max. seq. number: %llu", c->max_sqnum); + dbg_gen("commit number: %llu", c->cmt_no); return 0; @@ -797,7 +1679,10 @@ out_infos: spin_unlock(&ubifs_infos_lock); out_orphans: free_orphans(c); +#ifndef __UBOOT__ out_journal: + destroy_journal(c); +#endif out_lpt: ubifs_lpt_free(c, 0); out_master: @@ -805,8 +1690,15 @@ out_master: kfree(c->rcvrd_mst_node); if (c->bgt) kthread_stop(c->bgt); +#ifndef __UBOOT__ +out_wbufs: +#endif + free_wbufs(c); +out_cbuf: kfree(c->cbuf); out_free: + kfree(c->write_reserve_buf); + kfree(c->bu.buf); vfree(c->ileb_buf); vfree(c->sbuf); kfree(c->bottom_up_buf); @@ -823,57 +1715,447 @@ out_free: * through mounting (error path cleanup function). So it has to make sure the * resource was actually allocated before freeing it. */ +#ifndef __UBOOT__ +static void ubifs_umount(struct ubifs_info *c) +#else void ubifs_umount(struct ubifs_info *c) +#endif { dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, c->vi.vol_id); + dbg_debugfs_exit_fs(c); spin_lock(&ubifs_infos_lock); list_del(&c->infos_list); spin_unlock(&ubifs_infos_lock); +#ifndef __UBOOT__ if (c->bgt) kthread_stop(c->bgt); + destroy_journal(c); +#endif + free_wbufs(c); free_orphans(c); ubifs_lpt_free(c, 0); kfree(c->cbuf); kfree(c->rcvrd_mst_node); kfree(c->mst_node); + kfree(c->write_reserve_buf); + kfree(c->bu.buf); vfree(c->ileb_buf); vfree(c->sbuf); kfree(c->bottom_up_buf); ubifs_debugging_exit(c); - +#ifdef __UBOOT__ /* Finally free U-Boot's global copy of superblock */ if (ubifs_sb != NULL) { free(ubifs_sb->s_fs_info); free(ubifs_sb); } +#endif +} + +#ifndef __UBOOT__ +/** + * ubifs_remount_rw - re-mount in read-write mode. + * @c: UBIFS file-system description object + * + * UBIFS avoids allocating many unnecessary resources when mounted in read-only + * mode. This function allocates the needed resources and re-mounts UBIFS in + * read-write mode. + */ +static int ubifs_remount_rw(struct ubifs_info *c) +{ + int err, lnum; + + if (c->rw_incompat) { + ubifs_err("the file-system is not R/W-compatible"); + ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", + c->fmt_version, c->ro_compat_version, + UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); + return -EROFS; + } + + mutex_lock(&c->umount_mutex); + dbg_save_space_info(c); + c->remounting_rw = 1; + c->ro_mount = 0; + + if (c->space_fixup) { + err = ubifs_fixup_free_space(c); + if (err) + return err; + } + + err = check_free_space(c); + if (err) + goto out; + + if (c->old_leb_cnt != c->leb_cnt) { + struct ubifs_sb_node *sup; + + sup = ubifs_read_sb_node(c); + if (IS_ERR(sup)) { + err = PTR_ERR(sup); + goto out; + } + sup->leb_cnt = cpu_to_le32(c->leb_cnt); + err = ubifs_write_sb_node(c, sup); + kfree(sup); + if (err) + goto out; + } + + if (c->need_recovery) { + ubifs_msg("completing deferred recovery"); + err = ubifs_write_rcvrd_mst_node(c); + if (err) + goto out; + err = ubifs_recover_size(c); + if (err) + goto out; + err = ubifs_clean_lebs(c, c->sbuf); + if (err) + goto out; + err = ubifs_recover_inl_heads(c, c->sbuf); + if (err) + goto out; + } else { + /* A readonly mount is not allowed to have orphans */ + ubifs_assert(c->tot_orphans == 0); + err = ubifs_clear_orphans(c); + if (err) + goto out; + } + + if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { + c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); + err = ubifs_write_master(c); + if (err) + goto out; + } + + c->ileb_buf = vmalloc(c->leb_size); + if (!c->ileb_buf) { + err = -ENOMEM; + goto out; + } + + c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); + if (!c->write_reserve_buf) { + err = -ENOMEM; + goto out; + } + + err = ubifs_lpt_init(c, 0, 1); + if (err) + goto out; + + /* Create background thread */ + c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); + if (IS_ERR(c->bgt)) { + err = PTR_ERR(c->bgt); + c->bgt = NULL; + ubifs_err("cannot spawn \"%s\", error %d", + c->bgt_name, err); + goto out; + } + wake_up_process(c->bgt); + + c->orph_buf = vmalloc(c->leb_size); + if (!c->orph_buf) { + err = -ENOMEM; + goto out; + } + + /* Check for enough log space */ + lnum = c->lhead_lnum + 1; + if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) + lnum = UBIFS_LOG_LNUM; + if (lnum == c->ltail_lnum) { + err = ubifs_consolidate_log(c); + if (err) + goto out; + } + + if (c->need_recovery) + err = ubifs_rcvry_gc_commit(c); + else + err = ubifs_leb_unmap(c, c->gc_lnum); + if (err) + goto out; + + dbg_gen("re-mounted read-write"); + c->remounting_rw = 0; + + if (c->need_recovery) { + c->need_recovery = 0; + ubifs_msg("deferred recovery completed"); + } else { + /* + * Do not run the debugging space check if the were doing + * recovery, because when we saved the information we had the + * file-system in a state where the TNC and lprops has been + * modified in memory, but all the I/O operations (including a + * commit) were deferred. So the file-system was in + * "non-committed" state. Now the file-system is in committed + * state, and of course the amount of free space will change + * because, for example, the old index size was imprecise. + */ + err = dbg_check_space_info(c); + } + + mutex_unlock(&c->umount_mutex); + return err; + +out: + c->ro_mount = 1; + vfree(c->orph_buf); + c->orph_buf = NULL; + if (c->bgt) { + kthread_stop(c->bgt); + c->bgt = NULL; + } + free_wbufs(c); + kfree(c->write_reserve_buf); + c->write_reserve_buf = NULL; + vfree(c->ileb_buf); + c->ileb_buf = NULL; + ubifs_lpt_free(c, 1); + c->remounting_rw = 0; + mutex_unlock(&c->umount_mutex); + return err; +} + +/** + * ubifs_remount_ro - re-mount in read-only mode. + * @c: UBIFS file-system description object + * + * We assume VFS has stopped writing. Possibly the background thread could be + * running a commit, however kthread_stop will wait in that case. + */ +static void ubifs_remount_ro(struct ubifs_info *c) +{ + int i, err; + + ubifs_assert(!c->need_recovery); + ubifs_assert(!c->ro_mount); + + mutex_lock(&c->umount_mutex); + if (c->bgt) { + kthread_stop(c->bgt); + c->bgt = NULL; + } + + dbg_save_space_info(c); + + for (i = 0; i < c->jhead_cnt; i++) + ubifs_wbuf_sync(&c->jheads[i].wbuf); + + c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); + c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); + c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); + err = ubifs_write_master(c); + if (err) + ubifs_ro_mode(c, err); + + vfree(c->orph_buf); + c->orph_buf = NULL; + kfree(c->write_reserve_buf); + c->write_reserve_buf = NULL; + vfree(c->ileb_buf); + c->ileb_buf = NULL; + ubifs_lpt_free(c, 1); + c->ro_mount = 1; + err = dbg_check_space_info(c); + if (err) + ubifs_ro_mode(c, err); + mutex_unlock(&c->umount_mutex); +} + +static void ubifs_put_super(struct super_block *sb) +{ + int i; + struct ubifs_info *c = sb->s_fs_info; + + ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, + c->vi.vol_id); + + /* + * The following asserts are only valid if there has not been a failure + * of the media. For example, there will be dirty inodes if we failed + * to write them back because of I/O errors. + */ + if (!c->ro_error) { + ubifs_assert(c->bi.idx_growth == 0); + ubifs_assert(c->bi.dd_growth == 0); + ubifs_assert(c->bi.data_growth == 0); + } + + /* + * The 'c->umount_lock' prevents races between UBIFS memory shrinker + * and file system un-mount. Namely, it prevents the shrinker from + * picking this superblock for shrinking - it will be just skipped if + * the mutex is locked. + */ + mutex_lock(&c->umount_mutex); + if (!c->ro_mount) { + /* + * First of all kill the background thread to make sure it does + * not interfere with un-mounting and freeing resources. + */ + if (c->bgt) { + kthread_stop(c->bgt); + c->bgt = NULL; + } + + /* + * On fatal errors c->ro_error is set to 1, in which case we do + * not write the master node. + */ + if (!c->ro_error) { + int err; + + /* Synchronize write-buffers */ + for (i = 0; i < c->jhead_cnt; i++) + ubifs_wbuf_sync(&c->jheads[i].wbuf); + + /* + * We are being cleanly unmounted which means the + * orphans were killed - indicate this in the master + * node. Also save the reserved GC LEB number. + */ + c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); + c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); + c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); + err = ubifs_write_master(c); + if (err) + /* + * Recovery will attempt to fix the master area + * next mount, so we just print a message and + * continue to unmount normally. + */ + ubifs_err("failed to write master node, error %d", + err); + } else { +#ifndef __UBOOT__ + for (i = 0; i < c->jhead_cnt; i++) + /* Make sure write-buffer timers are canceled */ + hrtimer_cancel(&c->jheads[i].wbuf.timer); +#endif + } + } + + ubifs_umount(c); +#ifndef __UBOOT__ + bdi_destroy(&c->bdi); +#endif + ubi_close_volume(c->ubi); + mutex_unlock(&c->umount_mutex); +} +#endif + +#ifndef __UBOOT__ +static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) +{ + int err; + struct ubifs_info *c = sb->s_fs_info; + + dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); + + err = ubifs_parse_options(c, data, 1); + if (err) { + ubifs_err("invalid or unknown remount parameter"); + return err; + } + + if (c->ro_mount && !(*flags & MS_RDONLY)) { + if (c->ro_error) { + ubifs_msg("cannot re-mount R/W due to prior errors"); + return -EROFS; + } + if (c->ro_media) { + ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); + return -EROFS; + } + err = ubifs_remount_rw(c); + if (err) + return err; + } else if (!c->ro_mount && (*flags & MS_RDONLY)) { + if (c->ro_error) { + ubifs_msg("cannot re-mount R/O due to prior errors"); + return -EROFS; + } + ubifs_remount_ro(c); + } + + if (c->bulk_read == 1) + bu_init(c); + else { + dbg_gen("disable bulk-read"); + kfree(c->bu.buf); + c->bu.buf = NULL; + } + + ubifs_assert(c->lst.taken_empty_lebs > 0); + return 0; } +#endif + +const struct super_operations ubifs_super_operations = { + .alloc_inode = ubifs_alloc_inode, +#ifndef __UBOOT__ + .destroy_inode = ubifs_destroy_inode, + .put_super = ubifs_put_super, + .write_inode = ubifs_write_inode, + .evict_inode = ubifs_evict_inode, + .statfs = ubifs_statfs, +#endif + .dirty_inode = ubifs_dirty_inode, +#ifndef __UBOOT__ + .remount_fs = ubifs_remount_fs, + .show_options = ubifs_show_options, + .sync_fs = ubifs_sync_fs, +#endif +}; /** * open_ubi - parse UBI device name string and open the UBI device. * @name: UBI volume name * @mode: UBI volume open mode * - * There are several ways to specify UBI volumes when mounting UBIFS: - * o ubiX_Y - UBI device number X, volume Y; - * o ubiY - UBI device number 0, volume Y; + * The primary method of mounting UBIFS is by specifying the UBI volume + * character device node path. However, UBIFS may also be mounted withoug any + * character device node using one of the following methods: + * + * o ubiX_Y - mount UBI device number X, volume Y; + * o ubiY - mount UBI device number 0, volume Y; * o ubiX:NAME - mount UBI device X, volume with name NAME; * o ubi:NAME - mount UBI device 0, volume with name NAME. * * Alternative '!' separator may be used instead of ':' (because some shells * like busybox may interpret ':' as an NFS host name separator). This function - * returns ubi volume object in case of success and a negative error code in - * case of failure. + * returns UBI volume description object in case of success and a negative + * error code in case of failure. */ static struct ubi_volume_desc *open_ubi(const char *name, int mode) { +#ifndef __UBOOT__ + struct ubi_volume_desc *ubi; +#endif int dev, vol; char *endptr; +#ifndef __UBOOT__ + /* First, try to open using the device node path method */ + ubi = ubi_open_volume_path(name, mode); + if (!IS_ERR(ubi)) + return ubi; +#endif + + /* Try the "nodev" method */ if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') return ERR_PTR(-EINVAL); @@ -905,78 +2187,100 @@ static struct ubi_volume_desc *open_ubi(const char *name, int mode) return ERR_PTR(-EINVAL); } -static int ubifs_fill_super(struct super_block *sb, void *data, int silent) +static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) { - struct ubi_volume_desc *ubi = sb->s_fs_info; struct ubifs_info *c; - struct inode *root; - int err; c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); - if (!c) - return -ENOMEM; + if (c) { + spin_lock_init(&c->cnt_lock); + spin_lock_init(&c->cs_lock); + spin_lock_init(&c->buds_lock); + spin_lock_init(&c->space_lock); + spin_lock_init(&c->orphan_lock); + init_rwsem(&c->commit_sem); + mutex_init(&c->lp_mutex); + mutex_init(&c->tnc_mutex); + mutex_init(&c->log_mutex); + mutex_init(&c->mst_mutex); + mutex_init(&c->umount_mutex); + mutex_init(&c->bu_mutex); + mutex_init(&c->write_reserve_mutex); + init_waitqueue_head(&c->cmt_wq); + c->buds = RB_ROOT; + c->old_idx = RB_ROOT; + c->size_tree = RB_ROOT; + c->orph_tree = RB_ROOT; + INIT_LIST_HEAD(&c->infos_list); + INIT_LIST_HEAD(&c->idx_gc); + INIT_LIST_HEAD(&c->replay_list); + INIT_LIST_HEAD(&c->replay_buds); + INIT_LIST_HEAD(&c->uncat_list); + INIT_LIST_HEAD(&c->empty_list); + INIT_LIST_HEAD(&c->freeable_list); + INIT_LIST_HEAD(&c->frdi_idx_list); + INIT_LIST_HEAD(&c->unclean_leb_list); + INIT_LIST_HEAD(&c->old_buds); + INIT_LIST_HEAD(&c->orph_list); + INIT_LIST_HEAD(&c->orph_new); + c->no_chk_data_crc = 1; + + c->highest_inum = UBIFS_FIRST_INO; + c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; + + ubi_get_volume_info(ubi, &c->vi); + ubi_get_device_info(c->vi.ubi_num, &c->di); + } + return c; +} - spin_lock_init(&c->cnt_lock); - spin_lock_init(&c->cs_lock); - spin_lock_init(&c->buds_lock); - spin_lock_init(&c->space_lock); - spin_lock_init(&c->orphan_lock); - init_rwsem(&c->commit_sem); - mutex_init(&c->lp_mutex); - mutex_init(&c->tnc_mutex); - mutex_init(&c->log_mutex); - mutex_init(&c->mst_mutex); - mutex_init(&c->umount_mutex); - init_waitqueue_head(&c->cmt_wq); - c->buds = RB_ROOT; - c->old_idx = RB_ROOT; - c->size_tree = RB_ROOT; - c->orph_tree = RB_ROOT; - INIT_LIST_HEAD(&c->infos_list); - INIT_LIST_HEAD(&c->idx_gc); - INIT_LIST_HEAD(&c->replay_list); - INIT_LIST_HEAD(&c->replay_buds); - INIT_LIST_HEAD(&c->uncat_list); - INIT_LIST_HEAD(&c->empty_list); - INIT_LIST_HEAD(&c->freeable_list); - INIT_LIST_HEAD(&c->frdi_idx_list); - INIT_LIST_HEAD(&c->unclean_leb_list); - INIT_LIST_HEAD(&c->old_buds); - INIT_LIST_HEAD(&c->orph_list); - INIT_LIST_HEAD(&c->orph_new); - - c->highest_inum = UBIFS_FIRST_INO; - c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; - - ubi_get_volume_info(ubi, &c->vi); - ubi_get_device_info(c->vi.ubi_num, &c->di); +static int ubifs_fill_super(struct super_block *sb, void *data, int silent) +{ + struct ubifs_info *c = sb->s_fs_info; + struct inode *root; + int err; + c->vfs_sb = sb; /* Re-open the UBI device in read-write mode */ - c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY); + c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); if (IS_ERR(c->ubi)) { err = PTR_ERR(c->ubi); - goto out_free; + goto out; } - c->vfs_sb = sb; +#ifndef __UBOOT__ + /* + * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For + * UBIFS, I/O is not deferred, it is done immediately in readpage, + * which means the user would have to wait not just for their own I/O + * but the read-ahead I/O as well i.e. completely pointless. + * + * Read-ahead will be disabled because @c->bdi.ra_pages is 0. + */ + co>bdi.name = "ubifs", + c->bdi.capabilities = BDI_CAP_MAP_COPY; + err = bdi_init(&c->bdi); + if (err) + goto out_close; + err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", + c->vi.ubi_num, c->vi.vol_id); + if (err) + goto out_bdi; + + err = ubifs_parse_options(c, data, 0); + if (err) + goto out_bdi; + sb->s_bdi = &c->bdi; +#endif sb->s_fs_info = c; sb->s_magic = UBIFS_SUPER_MAGIC; sb->s_blocksize = UBIFS_BLOCK_SIZE; sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; - sb->s_dev = c->vi.cdev; sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); if (c->max_inode_sz > MAX_LFS_FILESIZE) sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; - - if (c->rw_incompat) { - ubifs_err("the file-system is not R/W-compatible"); - ubifs_msg("on-flash format version is w%d/r%d, but software " - "only supports up to version w%d/r%d", c->fmt_version, - c->ro_compat_version, UBIFS_FORMAT_VERSION, - UBIFS_RO_COMPAT_VERSION); - return -EROFS; - } + sb->s_op = &ubifs_super_operations; mutex_lock(&c->umount_mutex); err = mount_ubifs(c); @@ -992,7 +2296,15 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent) goto out_umount; } +#ifndef __UBOOT__ + sb->s_root = d_make_root(root); + if (!sb->s_root) { + err = -ENOMEM; + goto out_umount; + } +#else sb->s_root = NULL; +#endif mutex_unlock(&c->umount_mutex); return 0; @@ -1001,24 +2313,130 @@ out_umount: ubifs_umount(c); out_unlock: mutex_unlock(&c->umount_mutex); +#ifndef __UBOOT__ +out_bdi: + bdi_destroy(&c->bdi); +out_close: +#endif ubi_close_volume(c->ubi); -out_free: - kfree(c); +out: return err; } static int sb_test(struct super_block *sb, void *data) { - dev_t *dev = data; + struct ubifs_info *c1 = data; + struct ubifs_info *c = sb->s_fs_info; - return sb->s_dev == *dev; + return c->vi.cdev == c1->vi.cdev; } -static int ubifs_get_sb(struct file_system_type *fs_type, int flags, - const char *name, void *data, struct vfsmount *mnt) +static int sb_set(struct super_block *sb, void *data) +{ + sb->s_fs_info = data; + return set_anon_super(sb, NULL); +} + +static struct super_block *alloc_super(struct file_system_type *type, int flags) +{ + struct super_block *s; + int err; + + s = kzalloc(sizeof(struct super_block), GFP_USER); + if (!s) { + err = -ENOMEM; + return ERR_PTR(err); + } + + INIT_HLIST_NODE(&s->s_instances); + INIT_LIST_HEAD(&s->s_inodes); + s->s_time_gran = 1000000000; + s->s_flags = flags; + + return s; +} + +/** + * sget - find or create a superblock + * @type: filesystem type superblock should belong to + * @test: comparison callback + * @set: setup callback + * @flags: mount flags + * @data: argument to each of them + */ +struct super_block *sget(struct file_system_type *type, + int (*test)(struct super_block *,void *), + int (*set)(struct super_block *,void *), + int flags, + void *data) +{ + struct super_block *s = NULL; +#ifndef __UBOOT__ + struct super_block *old; +#endif + int err; + +#ifndef __UBOOT__ +retry: + spin_lock(&sb_lock); + if (test) { + hlist_for_each_entry(old, &type->fs_supers, s_instances) { + if (!test(old, data)) + continue; + if (!grab_super(old)) + goto retry; + if (s) { + up_write(&s->s_umount); + destroy_super(s); + s = NULL; + } + return old; + } + } +#endif + if (!s) { + spin_unlock(&sb_lock); + s = alloc_super(type, flags); + if (!s) + return ERR_PTR(-ENOMEM); +#ifndef __UBOOT__ + goto retry; +#endif + } + + err = set(s, data); + if (err) { +#ifndef __UBOOT__ + spin_unlock(&sb_lock); + up_write(&s->s_umount); + destroy_super(s); +#endif + return ERR_PTR(err); + } + s->s_type = type; +#ifndef __UBOOT__ + strlcpy(s->s_id, type->name, sizeof(s->s_id)); +#else + strncpy(s->s_id, type->name, sizeof(s->s_id)); +#endif + list_add_tail(&s->s_list, &super_blocks); + hlist_add_head(&s->s_instances, &type->fs_supers); +#ifndef __UBOOT__ + spin_unlock(&sb_lock); + get_filesystem(type); + register_shrinker(&s->s_shrink); +#endif + return s; +} + +EXPORT_SYMBOL(sget); + + +static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, + const char *name, void *data) { struct ubi_volume_desc *ubi; - struct ubi_volume_info vi; + struct ubifs_info *c; struct super_block *sb; int err; @@ -1033,32 +2451,34 @@ static int ubifs_get_sb(struct file_system_type *fs_type, int flags, if (IS_ERR(ubi)) { ubifs_err("cannot open \"%s\", error %d", name, (int)PTR_ERR(ubi)); - return PTR_ERR(ubi); + return ERR_CAST(ubi); + } + + c = alloc_ubifs_info(ubi); + if (!c) { + err = -ENOMEM; + goto out_close; } - ubi_get_volume_info(ubi, &vi); - dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); + dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); - sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev); + sb = sget(fs_type, sb_test, sb_set, flags, c); if (IS_ERR(sb)) { err = PTR_ERR(sb); + kfree(c); goto out_close; } if (sb->s_root) { + struct ubifs_info *c1 = sb->s_fs_info; + kfree(c); /* A new mount point for already mounted UBIFS */ dbg_gen("this ubi volume is already mounted"); - if ((flags ^ sb->s_flags) & MS_RDONLY) { + if (!!(flags & MS_RDONLY) != c1->ro_mount) { err = -EBUSY; goto out_deact; } } else { - sb->s_flags = flags; - /* - * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is - * replaced by 'c'. - */ - sb->s_fs_info = ubi; err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); if (err) goto out_deact; @@ -1069,17 +2489,53 @@ static int ubifs_get_sb(struct file_system_type *fs_type, int flags, /* 'fill_super()' opens ubi again so we must close it here */ ubi_close_volume(ubi); +#ifdef __UBOOT__ ubifs_sb = sb; return 0; +#else + return dget(sb->s_root); +#endif out_deact: - up_write(&sb->s_umount); +#ifndef __UBOOT__ + deactivate_locked_super(sb); +#endif out_close: ubi_close_volume(ubi); - return err; + return ERR_PTR(err); +} + +static void kill_ubifs_super(struct super_block *s) +{ + struct ubifs_info *c = s->s_fs_info; +#ifndef __UBOOT__ + kill_anon_super(s); +#endif + kfree(c); +} + +static struct file_system_type ubifs_fs_type = { + .name = "ubifs", + .owner = THIS_MODULE, + .mount = ubifs_mount, + .kill_sb = kill_ubifs_super, +}; +#ifndef __UBOOT__ +MODULE_ALIAS_FS("ubifs"); + +/* + * Inode slab cache constructor. + */ +static void inode_slab_ctor(void *obj) +{ + struct ubifs_inode *ui = obj; + inode_init_once(&ui->vfs_inode); } -int __init ubifs_init(void) +static int __init ubifs_init(void) +#else +int ubifs_init(void) +#endif { int err; @@ -1135,41 +2591,84 @@ int __init ubifs_init(void) * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. */ if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { - ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" - " at least 4096 bytes", + ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", (unsigned int)PAGE_CACHE_SIZE); return -EINVAL; } - err = -ENOMEM; +#ifndef __UBOOT__ + ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", + sizeof(struct ubifs_inode), 0, + SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, + &inode_slab_ctor); + if (!ubifs_inode_slab) + return -ENOMEM; + + register_shrinker(&ubifs_shrinker_info); +#endif err = ubifs_compressors_init(); if (err) goto out_shrinker; +#ifndef __UBOOT__ + err = dbg_debugfs_init(); + if (err) + goto out_compr; + + err = register_filesystem(&ubifs_fs_type); + if (err) { + ubifs_err("cannot register file system, error %d", err); + goto out_dbg; + } +#endif return 0; +#ifndef __UBOOT__ +out_dbg: + dbg_debugfs_exit(); +out_compr: + ubifs_compressors_exit(); +#endif out_shrinker: +#ifndef __UBOOT__ + unregister_shrinker(&ubifs_shrinker_info); +#endif + kmem_cache_destroy(ubifs_inode_slab); return err; } +/* late_initcall to let compressors initialize first */ +late_initcall(ubifs_init); -/* - * ubifsmount... - */ +#ifndef __UBOOT__ +static void __exit ubifs_exit(void) +{ + ubifs_assert(list_empty(&ubifs_infos)); + ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); -static struct file_system_type ubifs_fs_type = { - .name = "ubifs", - .owner = THIS_MODULE, - .get_sb = ubifs_get_sb, -}; + dbg_debugfs_exit(); + ubifs_compressors_exit(); + unregister_shrinker(&ubifs_shrinker_info); -int ubifs_mount(char *name) + /* + * Make sure all delayed rcu free inodes are flushed before we + * destroy cache. + */ + rcu_barrier(); + kmem_cache_destroy(ubifs_inode_slab); + unregister_filesystem(&ubifs_fs_type); +} +module_exit(ubifs_exit); + +MODULE_LICENSE("GPL"); +MODULE_VERSION(__stringify(UBIFS_VERSION)); +MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); +MODULE_DESCRIPTION("UBIFS - UBI File System"); +#else +int uboot_ubifs_mount(char *vol_name) { + struct dentry *ret; int flags; - void *data; - struct vfsmount *mnt; - int ret; - struct ubifs_info *c; /* * First unmount if allready mounted @@ -1177,23 +2676,17 @@ int ubifs_mount(char *name) if (ubifs_sb) ubifs_umount(ubifs_sb->s_fs_info); - INIT_LIST_HEAD(&ubifs_infos); - INIT_LIST_HEAD(&ubifs_fs_type.fs_supers); - /* * Mount in read-only mode */ flags = MS_RDONLY; - data = NULL; - mnt = NULL; - ret = ubifs_get_sb(&ubifs_fs_type, flags, name, data, mnt); - if (ret) { - ubifs_err("Error reading superblock on volume '%s' errno=%d!\n", name, ret); + ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL); + if (IS_ERR(ret)) { + printf("Error reading superblock on volume '%s' " \ + "errno=%d!\n", vol_name, (int)PTR_ERR(ret)); return -1; } - c = ubifs_sb->s_fs_info; - ubi_close_volume(c->ubi); - return 0; } +#endif diff --git a/fs/ubifs/tnc.c b/fs/ubifs/tnc.c index ccda938..eda5070 100644 --- a/fs/ubifs/tnc.c +++ b/fs/ubifs/tnc.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -30,6 +19,15 @@ * the mutex locked. */ +#define __UBOOT__ +#ifndef __UBOOT__ +#include <linux/crc32.h> +#include <linux/slab.h> +#else +#include <linux/compat.h> +#include <linux/err.h> +#include <linux/stat.h> +#endif #include "ubifs.h" /* @@ -176,27 +174,11 @@ static int ins_clr_old_idx_znode(struct ubifs_info *c, */ void destroy_old_idx(struct ubifs_info *c) { - struct rb_node *this = c->old_idx.rb_node; - struct ubifs_old_idx *old_idx; + struct ubifs_old_idx *old_idx, *n; - while (this) { - if (this->rb_left) { - this = this->rb_left; - continue; - } else if (this->rb_right) { - this = this->rb_right; - continue; - } - old_idx = rb_entry(this, struct ubifs_old_idx, rb); - this = rb_parent(this); - if (this) { - if (this->rb_left == &old_idx->rb) - this->rb_left = NULL; - else - this->rb_right = NULL; - } + rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) kfree(old_idx); - } + c->old_idx = RB_ROOT; } @@ -221,7 +203,7 @@ static struct ubifs_znode *copy_znode(struct ubifs_info *c, __set_bit(DIRTY_ZNODE, &zn->flags); __clear_bit(COW_ZNODE, &zn->flags); - ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); + ubifs_assert(!ubifs_zn_obsolete(znode)); __set_bit(OBSOLETE_ZNODE, &znode->flags); if (znode->level != 0) { @@ -269,7 +251,7 @@ static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, struct ubifs_znode *zn; int err; - if (!test_bit(COW_ZNODE, &znode->flags)) { + if (!ubifs_zn_cow(znode)) { /* znode is not being committed */ if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { atomic_long_inc(&c->dirty_zn_cnt); @@ -337,17 +319,16 @@ static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, err = ubifs_validate_entry(c, dent); if (err) { - dbg_dump_stack(); - dbg_dump_node(c, dent); + dump_stack(); + ubifs_dump_node(c, dent); return err; } - lnc_node = kmalloc(zbr->len, GFP_NOFS); + lnc_node = kmemdup(node, zbr->len, GFP_NOFS); if (!lnc_node) /* We don't have to have the cache, so no error */ return 0; - memcpy(lnc_node, node, zbr->len); zbr->leaf = lnc_node; return 0; } @@ -371,8 +352,8 @@ static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, err = ubifs_validate_entry(c, node); if (err) { - dbg_dump_stack(); - dbg_dump_node(c, node); + dump_stack(); + ubifs_dump_node(c, node); return err; } @@ -445,8 +426,11 @@ static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, * * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc * is true (it is controlled by corresponding mount option). However, if - * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always - * checked. + * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to + * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is + * because during mounting or re-mounting from R/O mode to R/W mode we may read + * journal nodes (when replying the journal or doing the recovery) and the + * journal nodes may potentially be corrupted, so checking is required. */ static int try_read_node(const struct ubifs_info *c, void *buf, int type, int len, int lnum, int offs) @@ -457,7 +441,7 @@ static int try_read_node(const struct ubifs_info *c, void *buf, int type, dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); - err = ubi_read(c->ubi, lnum, buf, offs, len); + err = ubifs_leb_read(c, lnum, buf, offs, len, 1); if (err) { ubifs_err("cannot read node type %d from LEB %d:%d, error %d", type, lnum, offs, err); @@ -474,7 +458,8 @@ static int try_read_node(const struct ubifs_info *c, void *buf, int type, if (node_len != len) return 0; - if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) + if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && + !c->remounting_rw) return 1; crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); @@ -500,7 +485,7 @@ static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, { int ret; - dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); + dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, zbr->offs); @@ -514,8 +499,8 @@ static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, ret = 0; } if (ret == 0 && c->replaying) - dbg_mnt("dangling branch LEB %d:%d len %d, key %s", - zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); + dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", + zbr->lnum, zbr->offs, zbr->len); return ret; } @@ -990,9 +975,9 @@ static int fallible_resolve_collision(struct ubifs_info *c, if (adding || !o_znode) return 0; - dbg_mnt("dangling match LEB %d:%d len %d %s", + dbg_mntk(key, "dangling match LEB %d:%d len %d key ", o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, - o_znode->zbranch[o_n].len, DBGKEY(key)); + o_znode->zbranch[o_n].len); *zn = o_znode; *n = o_n; return 1; @@ -1158,8 +1143,8 @@ static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, * o exact match, i.e. the found zero-level znode contains key @key, then %1 * is returned and slot number of the matched branch is stored in @n; * o not exact match, which means that zero-level znode does not contain - * @key, then %0 is returned and slot number of the closed branch is stored - * in @n; + * @key, then %0 is returned and slot number of the closest branch is stored + * in @n; * o @key is so small that it is even less than the lowest key of the * leftmost zero-level node, then %0 is returned and %0 is stored in @n. * @@ -1174,7 +1159,8 @@ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode *znode; unsigned long time = get_seconds(); - dbg_tnc("search key %s", DBGKEY(key)); + dbg_tnck(key, "search key "); + ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); znode = c->zroot.znode; if (unlikely(!znode)) { @@ -1251,7 +1237,7 @@ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, * splitting in the middle of the colliding sequence. Also, when * removing the leftmost key, we would have to correct the key of the * parent node, which would introduce additional complications. Namely, - * if we changed the the leftmost key of the parent znode, the garbage + * if we changed the leftmost key of the parent znode, the garbage * collector would be unable to find it (GC is doing this when GC'ing * indexing LEBs). Although we already have an additional RB-tree where * we save such changed znodes (see 'ins_clr_old_idx_znode()') until @@ -1309,7 +1295,7 @@ static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode *znode; unsigned long time = get_seconds(); - dbg_tnc("search and dirty key %s", DBGKEY(key)); + dbg_tnck(key, "search and dirty key "); znode = c->zroot.znode; if (unlikely(!znode)) { @@ -1400,9 +1386,31 @@ static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, */ static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) { +#ifndef __UBOOT__ + int gc_seq2, gced_lnum; + + gced_lnum = c->gced_lnum; + smp_rmb(); + gc_seq2 = c->gc_seq; + /* Same seq means no GC */ + if (gc_seq1 == gc_seq2) + return 0; + /* Different by more than 1 means we don't know */ + if (gc_seq1 + 1 != gc_seq2) + return 1; /* - * No garbage collection in the read-only U-Boot implementation + * We have seen the sequence number has increased by 1. Now we need to + * be sure we read the right LEB number, so read it again. */ + smp_rmb(); + if (gced_lnum != c->gced_lnum) + return 1; + /* Finally we can check lnum */ + if (gced_lnum == lnum) + return 1; +#else + /* No garbage collection in the read-only U-Boot implementation */ +#endif return 0; } @@ -1414,7 +1422,7 @@ static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) * @lnum: LEB number is returned here * @offs: offset is returned here * - * This function look up and reads node with key @key. The caller has to make + * This function looks up and reads node with key @key. The caller has to make * sure the @node buffer is large enough to fit the node. Returns zero in case * of success, %-ENOENT if the node was not found, and a negative error code in * case of failure. The node location can be returned in @lnum and @offs. @@ -1458,6 +1466,12 @@ again: gc_seq1 = c->gc_seq; mutex_unlock(&c->tnc_mutex); + if (ubifs_get_wbuf(c, zbr.lnum)) { + /* We do not GC journal heads */ + err = ubifs_tnc_read_node(c, &zbr, node); + return err; + } + err = fallible_read_node(c, key, &zbr, node); if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { /* @@ -1610,6 +1624,51 @@ out: } /** + * read_wbuf - bulk-read from a LEB with a wbuf. + * @wbuf: wbuf that may overlap the read + * @buf: buffer into which to read + * @len: read length + * @lnum: LEB number from which to read + * @offs: offset from which to read + * + * This functions returns %0 on success or a negative error code on failure. + */ +static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, + int offs) +{ + const struct ubifs_info *c = wbuf->c; + int rlen, overlap; + + dbg_io("LEB %d:%d, length %d", lnum, offs, len); + ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); + ubifs_assert(!(offs & 7) && offs < c->leb_size); + ubifs_assert(offs + len <= c->leb_size); + + spin_lock(&wbuf->lock); + overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); + if (!overlap) { + /* We may safely unlock the write-buffer and read the data */ + spin_unlock(&wbuf->lock); + return ubifs_leb_read(c, lnum, buf, offs, len, 0); + } + + /* Don't read under wbuf */ + rlen = wbuf->offs - offs; + if (rlen < 0) + rlen = 0; + + /* Copy the rest from the write-buffer */ + memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); + spin_unlock(&wbuf->lock); + + if (rlen > 0) + /* Read everything that goes before write-buffer */ + return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); + + return 0; +} + +/** * validate_data_node - validate data nodes for bulk-read. * @c: UBIFS file-system description object * @buf: buffer containing data node to validate @@ -1647,8 +1706,8 @@ static int validate_data_node(struct ubifs_info *c, void *buf, if (!keys_eq(c, &zbr->key, &key1)) { ubifs_err("bad key in node at LEB %d:%d", zbr->lnum, zbr->offs); - dbg_tnc("looked for key %s found node's key %s", - DBGKEY(&zbr->key), DBGKEY1(&key1)); + dbg_tnck(&zbr->key, "looked for key "); + dbg_tnck(&key1, "found node's key "); goto out_err; } @@ -1658,8 +1717,8 @@ out_err: err = -EINVAL; out: ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); - dbg_dump_node(c, buf); - dbg_dump_stack(); + ubifs_dump_node(c, buf); + dump_stack(); return err; } @@ -1676,6 +1735,7 @@ out: int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) { int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; + struct ubifs_wbuf *wbuf; void *buf; len = bu->zbranch[bu->cnt - 1].offs; @@ -1686,7 +1746,11 @@ int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) } /* Do the read */ - err = ubi_read(c->ubi, lnum, bu->buf, offs, len); + wbuf = ubifs_get_wbuf(c, lnum); + if (wbuf) + err = read_wbuf(wbuf, bu->buf, len, lnum, offs); + else + err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); /* Check for a race with GC */ if (maybe_leb_gced(c, lnum, bu->gc_seq)) @@ -1695,8 +1759,8 @@ int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) if (err && err != -EBADMSG) { ubifs_err("failed to read from LEB %d:%d, error %d", lnum, offs, err); - dbg_dump_stack(); - dbg_tnc("key %s", DBGKEY(&bu->key)); + dump_stack(); + dbg_tnck(&bu->key, "key "); return err; } @@ -1731,7 +1795,7 @@ static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, int found, n, err; struct ubifs_znode *znode; - dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); + dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name); mutex_lock(&c->tnc_mutex); found = ubifs_lookup_level0(c, key, &znode, &n); if (!found) { @@ -1905,8 +1969,7 @@ again: zp = znode->parent; if (znode->child_cnt < c->fanout) { ubifs_assert(n != c->fanout); - dbg_tnc("inserted at %d level %d, key %s", n, znode->level, - DBGKEY(key)); + dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); insert_zbranch(znode, zbr, n); @@ -1921,7 +1984,7 @@ again: * Unfortunately, @znode does not have more empty slots and we have to * split it. */ - dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); + dbg_tnck(key, "splitting level %d, key ", znode->level); if (znode->alt) /* @@ -2015,7 +2078,7 @@ do_split: } /* Insert new key and branch */ - dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); + dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); insert_zbranch(zi, zbr, n); @@ -2091,7 +2154,7 @@ int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); - dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); + dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); found = lookup_level0_dirty(c, key, &znode, &n); if (!found) { struct ubifs_zbranch zbr; @@ -2140,8 +2203,8 @@ int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); - dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, - old_offs, lnum, offs, len, DBGKEY(key)); + dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, + old_offs, lnum, offs, len); found = lookup_level0_dirty(c, key, &znode, &n); if (found < 0) { err = found; @@ -2223,8 +2286,8 @@ int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); - dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, - DBGKEY(key)); + dbg_tnck(key, "LEB %d:%d, name '%.*s', key ", + lnum, offs, nm->len, nm->name); found = lookup_level0_dirty(c, key, &znode, &n); if (found < 0) { err = found; @@ -2282,7 +2345,7 @@ int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, * by passing 'ubifs_tnc_remove_nm()' the same key but * an unmatchable name. */ - struct qstr noname = { .len = 0, .name = "" }; + struct qstr noname = { .name = "" }; err = dbg_check_tnc(c, 0); mutex_unlock(&c->tnc_mutex); @@ -2317,14 +2380,14 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) /* Delete without merge for now */ ubifs_assert(znode->level == 0); ubifs_assert(n >= 0 && n < c->fanout); - dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); + dbg_tnck(&znode->zbranch[n].key, "deleting key "); zbr = &znode->zbranch[n]; lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); if (err) { - dbg_dump_znode(c, znode); + ubifs_dump_znode(c, znode); return err; } @@ -2342,7 +2405,7 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) */ do { - ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); + ubifs_assert(!ubifs_zn_obsolete(znode)); ubifs_assert(ubifs_zn_dirty(znode)); zp = znode->parent; @@ -2398,9 +2461,8 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) c->zroot.offs = zbr->offs; c->zroot.len = zbr->len; c->zroot.znode = znode; - ubifs_assert(!test_bit(OBSOLETE_ZNODE, - &zp->flags)); - ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); + ubifs_assert(!ubifs_zn_obsolete(zp)); + ubifs_assert(ubifs_zn_dirty(zp)); atomic_long_dec(&c->dirty_zn_cnt); if (zp->cnext) { @@ -2428,7 +2490,7 @@ int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); - dbg_tnc("key %s", DBGKEY(key)); + dbg_tnck(key, "key "); found = lookup_level0_dirty(c, key, &znode, &n); if (found < 0) { err = found; @@ -2459,7 +2521,7 @@ int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode *znode; mutex_lock(&c->tnc_mutex); - dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); + dbg_tnck(key, "%.*s, key ", nm->len, nm->name); err = lookup_level0_dirty(c, key, &znode, &n); if (err < 0) goto out_unlock; @@ -2476,11 +2538,11 @@ int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, if (err) { /* Ensure the znode is dirtied */ if (znode->cnext || !ubifs_zn_dirty(znode)) { - znode = dirty_cow_bottom_up(c, znode); - if (IS_ERR(znode)) { - err = PTR_ERR(znode); - goto out_unlock; - } + znode = dirty_cow_bottom_up(c, znode); + if (IS_ERR(znode)) { + err = PTR_ERR(znode); + goto out_unlock; + } } err = tnc_delete(c, znode, n); } @@ -2571,10 +2633,10 @@ int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, err = ubifs_add_dirt(c, znode->zbranch[i].lnum, znode->zbranch[i].len); if (err) { - dbg_dump_znode(c, znode); + ubifs_dump_znode(c, znode); goto out_unlock; } - dbg_tnc("removing %s", DBGKEY(key)); + dbg_tnck(key, "removing key "); } if (k) { for (i = n + 1 + k; i < znode->child_cnt; i++) @@ -2633,7 +2695,7 @@ int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) dbg_tnc("xent '%s', ino %lu", xent->name, (unsigned long)xattr_inum); - nm.name = (char *)xent->name; + nm.name = xent->name; nm.len = le16_to_cpu(xent->nlen); err = ubifs_tnc_remove_nm(c, &key1, &nm); if (err) { @@ -2694,7 +2756,7 @@ struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, struct ubifs_zbranch *zbr; union ubifs_key *dkey; - dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); + dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)"); ubifs_assert(is_hash_key(c, key)); mutex_lock(&c->tnc_mutex); @@ -2765,3 +2827,503 @@ out_unlock: mutex_unlock(&c->tnc_mutex); return ERR_PTR(err); } + +#ifndef __UBOOT__ +/** + * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. + * @c: UBIFS file-system description object + * + * Destroy left-over obsolete znodes from a failed commit. + */ +static void tnc_destroy_cnext(struct ubifs_info *c) +{ + struct ubifs_znode *cnext; + + if (!c->cnext) + return; + ubifs_assert(c->cmt_state == COMMIT_BROKEN); + cnext = c->cnext; + do { + struct ubifs_znode *znode = cnext; + + cnext = cnext->cnext; + if (ubifs_zn_obsolete(znode)) + kfree(znode); + } while (cnext && cnext != c->cnext); +} + +/** + * ubifs_tnc_close - close TNC subsystem and free all related resources. + * @c: UBIFS file-system description object + */ +void ubifs_tnc_close(struct ubifs_info *c) +{ + tnc_destroy_cnext(c); + if (c->zroot.znode) { + long n; + + ubifs_destroy_tnc_subtree(c->zroot.znode); + n = atomic_long_read(&c->clean_zn_cnt); + atomic_long_sub(n, &ubifs_clean_zn_cnt); + } + kfree(c->gap_lebs); + kfree(c->ilebs); + destroy_old_idx(c); +} +#endif + +/** + * left_znode - get the znode to the left. + * @c: UBIFS file-system description object + * @znode: znode + * + * This function returns a pointer to the znode to the left of @znode or NULL if + * there is not one. A negative error code is returned on failure. + */ +static struct ubifs_znode *left_znode(struct ubifs_info *c, + struct ubifs_znode *znode) +{ + int level = znode->level; + + while (1) { + int n = znode->iip - 1; + + /* Go up until we can go left */ + znode = znode->parent; + if (!znode) + return NULL; + if (n >= 0) { + /* Now go down the rightmost branch to 'level' */ + znode = get_znode(c, znode, n); + if (IS_ERR(znode)) + return znode; + while (znode->level != level) { + n = znode->child_cnt - 1; + znode = get_znode(c, znode, n); + if (IS_ERR(znode)) + return znode; + } + break; + } + } + return znode; +} + +/** + * right_znode - get the znode to the right. + * @c: UBIFS file-system description object + * @znode: znode + * + * This function returns a pointer to the znode to the right of @znode or NULL + * if there is not one. A negative error code is returned on failure. + */ +static struct ubifs_znode *right_znode(struct ubifs_info *c, + struct ubifs_znode *znode) +{ + int level = znode->level; + + while (1) { + int n = znode->iip + 1; + + /* Go up until we can go right */ + znode = znode->parent; + if (!znode) + return NULL; + if (n < znode->child_cnt) { + /* Now go down the leftmost branch to 'level' */ + znode = get_znode(c, znode, n); + if (IS_ERR(znode)) + return znode; + while (znode->level != level) { + znode = get_znode(c, znode, 0); + if (IS_ERR(znode)) + return znode; + } + break; + } + } + return znode; +} + +/** + * lookup_znode - find a particular indexing node from TNC. + * @c: UBIFS file-system description object + * @key: index node key to lookup + * @level: index node level + * @lnum: index node LEB number + * @offs: index node offset + * + * This function searches an indexing node by its first key @key and its + * address @lnum:@offs. It looks up the indexing tree by pulling all indexing + * nodes it traverses to TNC. This function is called for indexing nodes which + * were found on the media by scanning, for example when garbage-collecting or + * when doing in-the-gaps commit. This means that the indexing node which is + * looked for does not have to have exactly the same leftmost key @key, because + * the leftmost key may have been changed, in which case TNC will contain a + * dirty znode which still refers the same @lnum:@offs. This function is clever + * enough to recognize such indexing nodes. + * + * Note, if a znode was deleted or changed too much, then this function will + * not find it. For situations like this UBIFS has the old index RB-tree + * (indexed by @lnum:@offs). + * + * This function returns a pointer to the znode found or %NULL if it is not + * found. A negative error code is returned on failure. + */ +static struct ubifs_znode *lookup_znode(struct ubifs_info *c, + union ubifs_key *key, int level, + int lnum, int offs) +{ + struct ubifs_znode *znode, *zn; + int n, nn; + + ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); + + /* + * The arguments have probably been read off flash, so don't assume + * they are valid. + */ + if (level < 0) + return ERR_PTR(-EINVAL); + + /* Get the root znode */ + znode = c->zroot.znode; + if (!znode) { + znode = ubifs_load_znode(c, &c->zroot, NULL, 0); + if (IS_ERR(znode)) + return znode; + } + /* Check if it is the one we are looking for */ + if (c->zroot.lnum == lnum && c->zroot.offs == offs) + return znode; + /* Descend to the parent level i.e. (level + 1) */ + if (level >= znode->level) + return NULL; + while (1) { + ubifs_search_zbranch(c, znode, key, &n); + if (n < 0) { + /* + * We reached a znode where the leftmost key is greater + * than the key we are searching for. This is the same + * situation as the one described in a huge comment at + * the end of the 'ubifs_lookup_level0()' function. And + * for exactly the same reasons we have to try to look + * left before giving up. + */ + znode = left_znode(c, znode); + if (!znode) + return NULL; + if (IS_ERR(znode)) + return znode; + ubifs_search_zbranch(c, znode, key, &n); + ubifs_assert(n >= 0); + } + if (znode->level == level + 1) + break; + znode = get_znode(c, znode, n); + if (IS_ERR(znode)) + return znode; + } + /* Check if the child is the one we are looking for */ + if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) + return get_znode(c, znode, n); + /* If the key is unique, there is nowhere else to look */ + if (!is_hash_key(c, key)) + return NULL; + /* + * The key is not unique and so may be also in the znodes to either + * side. + */ + zn = znode; + nn = n; + /* Look left */ + while (1) { + /* Move one branch to the left */ + if (n) + n -= 1; + else { + znode = left_znode(c, znode); + if (!znode) + break; + if (IS_ERR(znode)) + return znode; + n = znode->child_cnt - 1; + } + /* Check it */ + if (znode->zbranch[n].lnum == lnum && + znode->zbranch[n].offs == offs) + return get_znode(c, znode, n); + /* Stop if the key is less than the one we are looking for */ + if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) + break; + } + /* Back to the middle */ + znode = zn; + n = nn; + /* Look right */ + while (1) { + /* Move one branch to the right */ + if (++n >= znode->child_cnt) { + znode = right_znode(c, znode); + if (!znode) + break; + if (IS_ERR(znode)) + return znode; + n = 0; + } + /* Check it */ + if (znode->zbranch[n].lnum == lnum && + znode->zbranch[n].offs == offs) + return get_znode(c, znode, n); + /* Stop if the key is greater than the one we are looking for */ + if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) + break; + } + return NULL; +} + +/** + * is_idx_node_in_tnc - determine if an index node is in the TNC. + * @c: UBIFS file-system description object + * @key: key of index node + * @level: index node level + * @lnum: LEB number of index node + * @offs: offset of index node + * + * This function returns %0 if the index node is not referred to in the TNC, %1 + * if the index node is referred to in the TNC and the corresponding znode is + * dirty, %2 if an index node is referred to in the TNC and the corresponding + * znode is clean, and a negative error code in case of failure. + * + * Note, the @key argument has to be the key of the first child. Also note, + * this function relies on the fact that 0:0 is never a valid LEB number and + * offset for a main-area node. + */ +int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, + int lnum, int offs) +{ + struct ubifs_znode *znode; + + znode = lookup_znode(c, key, level, lnum, offs); + if (!znode) + return 0; + if (IS_ERR(znode)) + return PTR_ERR(znode); + + return ubifs_zn_dirty(znode) ? 1 : 2; +} + +/** + * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. + * @c: UBIFS file-system description object + * @key: node key + * @lnum: node LEB number + * @offs: node offset + * + * This function returns %1 if the node is referred to in the TNC, %0 if it is + * not, and a negative error code in case of failure. + * + * Note, this function relies on the fact that 0:0 is never a valid LEB number + * and offset for a main-area node. + */ +static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, + int lnum, int offs) +{ + struct ubifs_zbranch *zbr; + struct ubifs_znode *znode, *zn; + int n, found, err, nn; + const int unique = !is_hash_key(c, key); + + found = ubifs_lookup_level0(c, key, &znode, &n); + if (found < 0) + return found; /* Error code */ + if (!found) + return 0; + zbr = &znode->zbranch[n]; + if (lnum == zbr->lnum && offs == zbr->offs) + return 1; /* Found it */ + if (unique) + return 0; + /* + * Because the key is not unique, we have to look left + * and right as well + */ + zn = znode; + nn = n; + /* Look left */ + while (1) { + err = tnc_prev(c, &znode, &n); + if (err == -ENOENT) + break; + if (err) + return err; + if (keys_cmp(c, key, &znode->zbranch[n].key)) + break; + zbr = &znode->zbranch[n]; + if (lnum == zbr->lnum && offs == zbr->offs) + return 1; /* Found it */ + } + /* Look right */ + znode = zn; + n = nn; + while (1) { + err = tnc_next(c, &znode, &n); + if (err) { + if (err == -ENOENT) + return 0; + return err; + } + if (keys_cmp(c, key, &znode->zbranch[n].key)) + break; + zbr = &znode->zbranch[n]; + if (lnum == zbr->lnum && offs == zbr->offs) + return 1; /* Found it */ + } + return 0; +} + +/** + * ubifs_tnc_has_node - determine whether a node is in the TNC. + * @c: UBIFS file-system description object + * @key: node key + * @level: index node level (if it is an index node) + * @lnum: node LEB number + * @offs: node offset + * @is_idx: non-zero if the node is an index node + * + * This function returns %1 if the node is in the TNC, %0 if it is not, and a + * negative error code in case of failure. For index nodes, @key has to be the + * key of the first child. An index node is considered to be in the TNC only if + * the corresponding znode is clean or has not been loaded. + */ +int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, + int lnum, int offs, int is_idx) +{ + int err; + + mutex_lock(&c->tnc_mutex); + if (is_idx) { + err = is_idx_node_in_tnc(c, key, level, lnum, offs); + if (err < 0) + goto out_unlock; + if (err == 1) + /* The index node was found but it was dirty */ + err = 0; + else if (err == 2) + /* The index node was found and it was clean */ + err = 1; + else + BUG_ON(err != 0); + } else + err = is_leaf_node_in_tnc(c, key, lnum, offs); + +out_unlock: + mutex_unlock(&c->tnc_mutex); + return err; +} + +/** + * ubifs_dirty_idx_node - dirty an index node. + * @c: UBIFS file-system description object + * @key: index node key + * @level: index node level + * @lnum: index node LEB number + * @offs: index node offset + * + * This function loads and dirties an index node so that it can be garbage + * collected. The @key argument has to be the key of the first child. This + * function relies on the fact that 0:0 is never a valid LEB number and offset + * for a main-area node. Returns %0 on success and a negative error code on + * failure. + */ +int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, + int lnum, int offs) +{ + struct ubifs_znode *znode; + int err = 0; + + mutex_lock(&c->tnc_mutex); + znode = lookup_znode(c, key, level, lnum, offs); + if (!znode) + goto out_unlock; + if (IS_ERR(znode)) { + err = PTR_ERR(znode); + goto out_unlock; + } + znode = dirty_cow_bottom_up(c, znode); + if (IS_ERR(znode)) { + err = PTR_ERR(znode); + goto out_unlock; + } + +out_unlock: + mutex_unlock(&c->tnc_mutex); + return err; +} + +/** + * dbg_check_inode_size - check if inode size is correct. + * @c: UBIFS file-system description object + * @inum: inode number + * @size: inode size + * + * This function makes sure that the inode size (@size) is correct and it does + * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL + * if it has a data page beyond @size, and other negative error code in case of + * other errors. + */ +int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, + loff_t size) +{ + int err, n; + union ubifs_key from_key, to_key, *key; + struct ubifs_znode *znode; + unsigned int block; + + if (!S_ISREG(inode->i_mode)) + return 0; + if (!dbg_is_chk_gen(c)) + return 0; + + block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; + data_key_init(c, &from_key, inode->i_ino, block); + highest_data_key(c, &to_key, inode->i_ino); + + mutex_lock(&c->tnc_mutex); + err = ubifs_lookup_level0(c, &from_key, &znode, &n); + if (err < 0) + goto out_unlock; + + if (err) { + err = -EINVAL; + key = &from_key; + goto out_dump; + } + + err = tnc_next(c, &znode, &n); + if (err == -ENOENT) { + err = 0; + goto out_unlock; + } + if (err < 0) + goto out_unlock; + + ubifs_assert(err == 0); + key = &znode->zbranch[n].key; + if (!key_in_range(c, key, &from_key, &to_key)) + goto out_unlock; + +out_dump: + block = key_block(c, key); + ubifs_err("inode %lu has size %lld, but there are data at offset %lld", + (unsigned long)inode->i_ino, size, + ((loff_t)block) << UBIFS_BLOCK_SHIFT); + mutex_unlock(&c->tnc_mutex); + ubifs_dump_inode(c, inode); + dump_stack(); + return -EINVAL; + +out_unlock: + mutex_unlock(&c->tnc_mutex); + return err; +} diff --git a/fs/ubifs/tnc_misc.c b/fs/ubifs/tnc_misc.c index 955219f..81bdad9 100644 --- a/fs/ubifs/tnc_misc.c +++ b/fs/ubifs/tnc_misc.c @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) @@ -27,6 +16,10 @@ * putting it all in one file would make that file too big and unreadable. */ +#define __UBOOT__ +#ifdef __UBOOT__ +#include <linux/err.h> +#endif #include "ubifs.h" /** @@ -219,6 +212,44 @@ struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode) } /** + * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree. + * @znode: znode defining subtree to destroy + * + * This function destroys subtree of the TNC tree. Returns number of clean + * znodes in the subtree. + */ +long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode) +{ + struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode); + long clean_freed = 0; + int n; + + ubifs_assert(zn); + while (1) { + for (n = 0; n < zn->child_cnt; n++) { + if (!zn->zbranch[n].znode) + continue; + + if (zn->level > 0 && + !ubifs_zn_dirty(zn->zbranch[n].znode)) + clean_freed += 1; + + cond_resched(); + kfree(zn->zbranch[n].znode); + } + + if (zn == znode) { + if (!ubifs_zn_dirty(zn)) + clean_freed += 1; + kfree(zn); + return clean_freed; + } + + zn = ubifs_tnc_postorder_next(zn); + } +} + +/** * read_znode - read an indexing node from flash and fill znode. * @c: UBIFS file-system description object * @lnum: LEB of the indexing node to read @@ -255,10 +286,10 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, lnum, offs, znode->level, znode->child_cnt); if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) { - dbg_err("current fanout %d, branch count %d", - c->fanout, znode->child_cnt); - dbg_err("max levels %d, znode level %d", - UBIFS_MAX_LEVELS, znode->level); + ubifs_err("current fanout %d, branch count %d", + c->fanout, znode->child_cnt); + ubifs_err("max levels %d, znode level %d", + UBIFS_MAX_LEVELS, znode->level); err = 1; goto out_dump; } @@ -278,7 +309,7 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, if (zbr->lnum < c->main_first || zbr->lnum >= c->leb_cnt || zbr->offs < 0 || zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) { - dbg_err("bad branch %d", i); + ubifs_err("bad branch %d", i); err = 2; goto out_dump; } @@ -290,8 +321,8 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, case UBIFS_XENT_KEY: break; default: - dbg_msg("bad key type at slot %d: %s", i, - DBGKEY(&zbr->key)); + ubifs_err("bad key type at slot %d: %d", + i, key_type(c, &zbr->key)); err = 3; goto out_dump; } @@ -302,19 +333,19 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, type = key_type(c, &zbr->key); if (c->ranges[type].max_len == 0) { if (zbr->len != c->ranges[type].len) { - dbg_err("bad target node (type %d) length (%d)", - type, zbr->len); - dbg_err("have to be %d", c->ranges[type].len); + ubifs_err("bad target node (type %d) length (%d)", + type, zbr->len); + ubifs_err("have to be %d", c->ranges[type].len); err = 4; goto out_dump; } } else if (zbr->len < c->ranges[type].min_len || zbr->len > c->ranges[type].max_len) { - dbg_err("bad target node (type %d) length (%d)", - type, zbr->len); - dbg_err("have to be in range of %d-%d", - c->ranges[type].min_len, - c->ranges[type].max_len); + ubifs_err("bad target node (type %d) length (%d)", + type, zbr->len); + ubifs_err("have to be in range of %d-%d", + c->ranges[type].min_len, + c->ranges[type].max_len); err = 5; goto out_dump; } @@ -332,13 +363,13 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, cmp = keys_cmp(c, key1, key2); if (cmp > 0) { - dbg_err("bad key order (keys %d and %d)", i, i + 1); + ubifs_err("bad key order (keys %d and %d)", i, i + 1); err = 6; goto out_dump; } else if (cmp == 0 && !is_hash_key(c, key1)) { /* These can only be keys with colliding hash */ - dbg_err("keys %d and %d are not hashed but equivalent", - i, i + 1); + ubifs_err("keys %d and %d are not hashed but equivalent", + i, i + 1); err = 7; goto out_dump; } @@ -349,7 +380,7 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, out_dump: ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err); - dbg_dump_node(c, idx); + ubifs_dump_node(c, idx); kfree(idx); return -EINVAL; } @@ -385,6 +416,16 @@ struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, if (err) goto out; + atomic_long_inc(&c->clean_zn_cnt); + + /* + * Increment the global clean znode counter as well. It is OK that + * global and per-FS clean znode counters may be inconsistent for some + * short time (because we might be preempted at this point), the global + * one is only used in shrinker. + */ + atomic_long_inc(&ubifs_clean_zn_cnt); + zbr->znode = znode; znode->parent = parent; znode->time = get_seconds(); @@ -412,11 +453,22 @@ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, { union ubifs_key key1, *key = &zbr->key; int err, type = key_type(c, key); + struct ubifs_wbuf *wbuf; - err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, zbr->offs); + /* + * 'zbr' has to point to on-flash node. The node may sit in a bud and + * may even be in a write buffer, so we have to take care about this. + */ + wbuf = ubifs_get_wbuf(c, zbr->lnum); + if (wbuf) + err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len, + zbr->lnum, zbr->offs); + else + err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, + zbr->offs); if (err) { - dbg_tnc("key %s", DBGKEY(key)); + dbg_tnck(key, "key "); return err; } @@ -425,9 +477,9 @@ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, if (!keys_eq(c, key, &key1)) { ubifs_err("bad key in node at LEB %d:%d", zbr->lnum, zbr->offs); - dbg_tnc("looked for key %s found node's key %s", - DBGKEY(key), DBGKEY1(&key1)); - dbg_dump_node(c, node); + dbg_tnck(key, "looked for key "); + dbg_tnck(&key1, "but found node's key "); + ubifs_dump_node(c, node); return -EINVAL; } diff --git a/fs/ubifs/ubifs-media.h b/fs/ubifs/ubifs-media.h index 3eee07e..90b8ffa 100644 --- a/fs/ubifs/ubifs-media.h +++ b/fs/ubifs/ubifs-media.h @@ -3,18 +3,7 @@ * * Copyright (C) 2006-2008 Nokia Corporation. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -135,6 +124,13 @@ /* The key is always at the same position in all keyed nodes */ #define UBIFS_KEY_OFFSET offsetof(struct ubifs_ino_node, key) +/* Garbage collector journal head number */ +#define UBIFS_GC_HEAD 0 +/* Base journal head number */ +#define UBIFS_BASE_HEAD 1 +/* Data journal head number */ +#define UBIFS_DATA_HEAD 2 + /* * LEB Properties Tree node types. * @@ -401,9 +397,11 @@ enum { * Superblock flags. * * UBIFS_FLG_BIGLPT: if "big" LPT model is used if set + * UBIFS_FLG_SPACE_FIXUP: first-mount "fixup" of free space within LEBs needed */ enum { UBIFS_FLG_BIGLPT = 0x02, + UBIFS_FLG_SPACE_FIXUP = 0x04, }; /** @@ -427,7 +425,7 @@ struct ubifs_ch { __u8 node_type; __u8 group_type; __u8 padding[2]; -} __attribute__ ((packed)); +} __packed; /** * union ubifs_dev_desc - device node descriptor. @@ -441,7 +439,7 @@ struct ubifs_ch { union ubifs_dev_desc { __le32 new; __le64 huge; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_ino_node - inode node. @@ -502,7 +500,7 @@ struct ubifs_ino_node { __le16 compr_type; __u8 padding2[26]; /* Watch 'zero_ino_node_unused()' if changing! */ __u8 data[]; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_dent_node - directory entry node. @@ -526,8 +524,12 @@ struct ubifs_dent_node { __u8 type; __le16 nlen; __u8 padding2[4]; /* Watch 'zero_dent_node_unused()' if changing! */ +#ifndef __UBOOT__ __u8 name[]; -} __attribute__ ((packed)); +#else + char name[]; +#endif +} __packed; /** * struct ubifs_data_node - data node. @@ -548,7 +550,7 @@ struct ubifs_data_node { __le16 compr_type; __u8 padding[2]; /* Watch 'zero_data_node_unused()' if changing! */ __u8 data[]; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_trun_node - truncation node. @@ -568,7 +570,7 @@ struct ubifs_trun_node { __u8 padding[12]; /* Watch 'zero_trun_node_unused()' if changing! */ __le64 old_size; __le64 new_size; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_pad_node - padding node. @@ -579,7 +581,7 @@ struct ubifs_trun_node { struct ubifs_pad_node { struct ubifs_ch ch; __le32 pad_len; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_sb_node - superblock node. @@ -637,7 +639,7 @@ struct ubifs_sb_node { __u8 uuid[16]; __le32 ro_compat_version; __u8 padding2[3968]; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_mst_node - master node. @@ -704,7 +706,7 @@ struct ubifs_mst_node { __le32 idx_lebs; __le32 leb_cnt; __u8 padding[344]; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_ref_node - logical eraseblock reference node. @@ -720,7 +722,7 @@ struct ubifs_ref_node { __le32 offs; __le32 jhead; __u8 padding[28]; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_branch - key/reference/length branch @@ -733,8 +735,12 @@ struct ubifs_branch { __le32 lnum; __le32 offs; __le32 len; +#ifndef __UBOOT__ __u8 key[]; -} __attribute__ ((packed)); +#else + char key[]; +#endif +} __packed; /** * struct ubifs_idx_node - indexing node. @@ -747,8 +753,12 @@ struct ubifs_idx_node { struct ubifs_ch ch; __le16 child_cnt; __le16 level; +#ifndef __UBOOT__ __u8 branches[]; -} __attribute__ ((packed)); +#else + char branches[]; +#endif +} __packed; /** * struct ubifs_cs_node - commit start node. @@ -758,7 +768,7 @@ struct ubifs_idx_node { struct ubifs_cs_node { struct ubifs_ch ch; __le64 cmt_no; -} __attribute__ ((packed)); +} __packed; /** * struct ubifs_orph_node - orphan node. @@ -770,6 +780,6 @@ struct ubifs_orph_node { struct ubifs_ch ch; __le64 cmt_no; __le64 inos[]; -} __attribute__ ((packed)); +} __packed; #endif /* __UBIFS_MEDIA_H__ */ diff --git a/fs/ubifs/ubifs.c b/fs/ubifs/ubifs.c index 273c0a9..b91a6fd 100644 --- a/fs/ubifs/ubifs.c +++ b/fs/ubifs/ubifs.c @@ -26,6 +26,10 @@ #include "ubifs.h" #include <u-boot/zlib.h> +#define __UBOOT__ +#include <linux/err.h> +#include <linux/lzo.h> + DECLARE_GLOBAL_DATA_PTR; /* compress.c */ @@ -44,20 +48,27 @@ static int gzip_decompress(const unsigned char *in, size_t in_len, /* Fake description object for the "none" compressor */ static struct ubifs_compressor none_compr = { .compr_type = UBIFS_COMPR_NONE, - .name = "no compression", + .name = "none", .capi_name = "", .decompress = NULL, }; static struct ubifs_compressor lzo_compr = { .compr_type = UBIFS_COMPR_LZO, - .name = "LZO", +#ifndef __UBOOT__ + .comp_mutex = &lzo_mutex, +#endif + .name = "lzo", .capi_name = "lzo", .decompress = lzo1x_decompress_safe, }; static struct ubifs_compressor zlib_compr = { .compr_type = UBIFS_COMPR_ZLIB, +#ifndef __UBOOT__ + .comp_mutex = &deflate_mutex, + .decomp_mutex = &inflate_mutex, +#endif .name = "zlib", .capi_name = "deflate", .decompress = gzip_decompress, @@ -66,6 +77,82 @@ static struct ubifs_compressor zlib_compr = { /* All UBIFS compressors */ struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT]; + +#ifdef __UBOOT__ +/* from mm/util.c */ + +/** + * kmemdup - duplicate region of memory + * + * @src: memory region to duplicate + * @len: memory region length + * @gfp: GFP mask to use + */ +void *kmemdup(const void *src, size_t len, gfp_t gfp) +{ + void *p; + + p = kmalloc(len, gfp); + if (p) + memcpy(p, src, len); + return p; +} + +struct crypto_comp { + int compressor; +}; + +static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, + u32 type, u32 mask) +{ + struct ubifs_compressor *comp; + struct crypto_comp *ptr; + int i = 0; + + ptr = malloc(sizeof(struct crypto_comp)); + while (i < UBIFS_COMPR_TYPES_CNT) { + comp = ubifs_compressors[i]; + if (!comp) { + i++; + continue; + } + if (strncmp(alg_name, comp->capi_name, strlen(alg_name)) == 0) { + ptr->compressor = i; + return ptr; + } + i++; + } + if (i >= UBIFS_COMPR_TYPES_CNT) { + ubifs_err("invalid compression type %s", alg_name); + free (ptr); + return NULL; + } + return ptr; +} +static inline int crypto_comp_decompress(struct crypto_comp *tfm, + const u8 *src, unsigned int slen, + u8 *dst, unsigned int *dlen) +{ + struct ubifs_compressor *compr = ubifs_compressors[tfm->compressor]; + int err; + + if (compr->compr_type == UBIFS_COMPR_NONE) { + memcpy(dst, src, slen); + *dlen = slen; + return 0; + } + + err = compr->decompress(src, slen, dst, (size_t *)dlen); + if (err) + ubifs_err("cannot decompress %d bytes, compressor %s, " + "error %d", slen, compr->name, err); + + return err; + + return 0; +} +#endif + /** * ubifs_decompress - decompress data. * @in_buf: data to decompress @@ -102,10 +189,15 @@ int ubifs_decompress(const void *in_buf, int in_len, void *out_buf, return 0; } - err = compr->decompress(in_buf, in_len, out_buf, (size_t *)out_len); + if (compr->decomp_mutex) + mutex_lock(compr->decomp_mutex); + err = crypto_comp_decompress(compr->cc, in_buf, in_len, out_buf, + (unsigned int *)out_len); + if (compr->decomp_mutex) + mutex_unlock(compr->decomp_mutex); if (err) - ubifs_err("cannot decompress %d bytes, compressor %s, " - "error %d", in_len, compr->name, err); + ubifs_err("cannot decompress %d bytes, compressor %s, error %d", + in_len, compr->name, err); return err; } @@ -127,6 +219,15 @@ static int __init compr_init(struct ubifs_compressor *compr) ubifs_compressors[compr->compr_type]->decompress += gd->reloc_off; #endif + if (compr->capi_name) { + compr->cc = crypto_alloc_comp(compr->capi_name, 0, 0); + if (IS_ERR(compr->cc)) { + ubifs_err("cannot initialize compressor %s, error %ld", + compr->name, PTR_ERR(compr->cc)); + return PTR_ERR(compr->cc); + } + } + return 0; } @@ -188,7 +289,9 @@ static int filldir(struct ubifs_info *c, const char *name, int namlen, } ctime_r((time_t *)&inode->i_mtime, filetime); printf("%9lld %24.24s ", inode->i_size, filetime); +#ifndef __UBOOT__ ubifs_iput(inode); +#endif printf("%s\n", name); @@ -562,7 +665,7 @@ static int read_block(struct inode *inode, void *addr, unsigned int block, dump: ubifs_err("bad data node (block %u, inode %lu)", block, inode->i_ino); - dbg_dump_node(c, dn); + ubifs_dump_node(c, dn); return -EINVAL; } diff --git a/fs/ubifs/ubifs.h b/fs/ubifs/ubifs.h index 2213201..acc6a40 100644 --- a/fs/ubifs/ubifs.h +++ b/fs/ubifs/ubifs.h @@ -6,18 +6,7 @@ * (C) Copyright 2008-2009 * Stefan Roese, DENX Software Engineering, sr@denx.de. * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; if not, write to the Free Software Foundation, Inc., 51 - * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * SPDX-License-Identifier: GPL-2.0+ * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter @@ -26,12 +15,25 @@ #ifndef __UBIFS_H__ #define __UBIFS_H__ -#if 0 /* Enable for debugging output */ -#define CONFIG_UBIFS_FS_DEBUG -#define CONFIG_UBIFS_FS_DEBUG_MSG_LVL 3 -#endif - +#define __UBOOT__ +#ifndef __UBOOT__ +#include <asm/div64.h> +#include <linux/statfs.h> +#include <linux/fs.h> +#include <linux/err.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/spinlock.h> +#include <linux/mutex.h> +#include <linux/rwsem.h> +#include <linux/mtd/ubi.h> +#include <linux/pagemap.h> +#include <linux/backing-dev.h> +#include "ubifs-media.h" +#else #include <ubi_uboot.h> + #include <linux/ctype.h> #include <linux/time.h> #include <linux/math64.h> @@ -70,13 +72,26 @@ void iput(struct inode *inode); #define atomic_long_dec(a) #define atomic_long_sub(a, b) +typedef unsigned long atomic_long_t; + /* linux/include/time.h */ +#define NSEC_PER_SEC 1000000000L +#define get_seconds() 0 +#define CURRENT_TIME_SEC ((struct timespec) { get_seconds(), 0 }) struct timespec { time_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; +static struct timespec current_fs_time(struct super_block *sb) +{ + struct timespec now; + now.tv_sec = 0; + now.tv_nsec = 0; + return now; +}; + /* linux/include/dcache.h */ /* @@ -89,111 +104,245 @@ struct timespec { struct qstr { unsigned int hash; unsigned int len; +#ifndef __UBOOT__ const char *name; +#else + char *name; +#endif +}; + +/* include/linux/fs.h */ + +/* Possible states of 'frozen' field */ +enum { + SB_UNFROZEN = 0, /* FS is unfrozen */ + SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ + SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ + SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop + * internal threads if needed) */ + SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; +#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) + +struct sb_writers { +#ifndef __UBOOT__ + /* Counters for counting writers at each level */ + struct percpu_counter counter[SB_FREEZE_LEVELS]; +#endif + wait_queue_head_t wait; /* queue for waiting for + writers / faults to finish */ + int frozen; /* Is sb frozen? */ + wait_queue_head_t wait_unfrozen; /* queue for waiting for + sb to be thawed */ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + struct lockdep_map lock_map[SB_FREEZE_LEVELS]; +#endif +}; + +struct address_space { + struct inode *host; /* owner: inode, block_device */ +#ifndef __UBOOT__ + struct radix_tree_root page_tree; /* radix tree of all pages */ +#endif + spinlock_t tree_lock; /* and lock protecting it */ + unsigned int i_mmap_writable;/* count VM_SHARED mappings */ + struct rb_root i_mmap; /* tree of private and shared mappings */ + struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */ + struct mutex i_mmap_mutex; /* protect tree, count, list */ + /* Protected by tree_lock together with the radix tree */ + unsigned long nrpages; /* number of total pages */ + pgoff_t writeback_index;/* writeback starts here */ + const struct address_space_operations *a_ops; /* methods */ + unsigned long flags; /* error bits/gfp mask */ +#ifndef __UBOOT__ + struct backing_dev_info *backing_dev_info; /* device readahead, etc */ +#endif + spinlock_t private_lock; /* for use by the address_space */ + struct list_head private_list; /* ditto */ + void *private_data; /* ditto */ +} __attribute__((aligned(sizeof(long)))); + +/* + * Keep mostly read-only and often accessed (especially for + * the RCU path lookup and 'stat' data) fields at the beginning + * of the 'struct inode' + */ struct inode { - struct hlist_node i_hash; - struct list_head i_list; - struct list_head i_sb_list; - struct list_head i_dentry; + umode_t i_mode; + unsigned short i_opflags; + kuid_t i_uid; + kgid_t i_gid; + unsigned int i_flags; + +#ifdef CONFIG_FS_POSIX_ACL + struct posix_acl *i_acl; + struct posix_acl *i_default_acl; +#endif + + const struct inode_operations *i_op; + struct super_block *i_sb; + struct address_space *i_mapping; + +#ifdef CONFIG_SECURITY + void *i_security; +#endif + + /* Stat data, not accessed from path walking */ unsigned long i_ino; - unsigned int i_nlink; - uid_t i_uid; - gid_t i_gid; + /* + * Filesystems may only read i_nlink directly. They shall use the + * following functions for modification: + * + * (set|clear|inc|drop)_nlink + * inode_(inc|dec)_link_count + */ + union { + const unsigned int i_nlink; + unsigned int __i_nlink; + }; dev_t i_rdev; - u64 i_version; loff_t i_size; -#ifdef __NEED_I_SIZE_ORDERED - seqcount_t i_size_seqcount; -#endif struct timespec i_atime; struct timespec i_mtime; struct timespec i_ctime; - unsigned int i_blkbits; - unsigned short i_bytes; - umode_t i_mode; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ + unsigned short i_bytes; + unsigned int i_blkbits; + blkcnt_t i_blocks; + +#ifdef __NEED_I_SIZE_ORDERED + seqcount_t i_size_seqcount; +#endif + + /* Misc */ + unsigned long i_state; struct mutex i_mutex; - struct rw_semaphore i_alloc_sem; - const struct inode_operations *i_op; + + unsigned long dirtied_when; /* jiffies of first dirtying */ + + struct hlist_node i_hash; + struct list_head i_wb_list; /* backing dev IO list */ + struct list_head i_lru; /* inode LRU list */ + struct list_head i_sb_list; + union { + struct hlist_head i_dentry; + struct rcu_head i_rcu; + }; + u64 i_version; + atomic_t i_count; + atomic_t i_dio_count; + atomic_t i_writecount; const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ - struct super_block *i_sb; struct file_lock *i_flock; + struct address_space i_data; #ifdef CONFIG_QUOTA struct dquot *i_dquot[MAXQUOTAS]; #endif struct list_head i_devices; - int i_cindex; + union { + struct pipe_inode_info *i_pipe; + struct block_device *i_bdev; + struct cdev *i_cdev; + }; __u32 i_generation; -#ifdef CONFIG_DNOTIFY - unsigned long i_dnotify_mask; /* Directory notify events */ - struct dnotify_struct *i_dnotify; /* for directory notifications */ +#ifdef CONFIG_FSNOTIFY + __u32 i_fsnotify_mask; /* all events this inode cares about */ + struct hlist_head i_fsnotify_marks; #endif -#ifdef CONFIG_INOTIFY - struct list_head inotify_watches; /* watches on this inode */ - struct mutex inotify_mutex; /* protects the watches list */ +#ifdef CONFIG_IMA + atomic_t i_readcount; /* struct files open RO */ #endif + void *i_private; /* fs or device private pointer */ +}; - unsigned long i_state; - unsigned long dirtied_when; /* jiffies of first dirtying */ - - unsigned int i_flags; - -#ifdef CONFIG_SECURITY - void *i_security; +struct super_operations { + struct inode *(*alloc_inode)(struct super_block *sb); + void (*destroy_inode)(struct inode *); + + void (*dirty_inode) (struct inode *, int flags); + int (*write_inode) (struct inode *, struct writeback_control *wbc); + int (*drop_inode) (struct inode *); + void (*evict_inode) (struct inode *); + void (*put_super) (struct super_block *); + int (*sync_fs)(struct super_block *sb, int wait); + int (*freeze_fs) (struct super_block *); + int (*unfreeze_fs) (struct super_block *); +#ifndef __UBOOT__ + int (*statfs) (struct dentry *, struct kstatfs *); #endif - void *i_private; /* fs or device private pointer */ + int (*remount_fs) (struct super_block *, int *, char *); + void (*umount_begin) (struct super_block *); + +#ifndef __UBOOT__ + int (*show_options)(struct seq_file *, struct dentry *); + int (*show_devname)(struct seq_file *, struct dentry *); + int (*show_path)(struct seq_file *, struct dentry *); + int (*show_stats)(struct seq_file *, struct dentry *); +#endif +#ifdef CONFIG_QUOTA + ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); + ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); +#endif + int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t); + long (*nr_cached_objects)(struct super_block *, int); + long (*free_cached_objects)(struct super_block *, long, int); }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ - unsigned long s_blocksize; unsigned char s_blocksize_bits; - unsigned char s_dirt; - unsigned long long s_maxbytes; /* Max file size */ + unsigned long s_blocksize; + loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; - struct dquot_operations *dq_op; - struct quotactl_ops *s_qcop; + const struct dquot_operations *dq_op; + const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; - struct mutex s_lock; int s_count; - int s_syncing; - int s_need_sync_fs; + atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif - struct xattr_handler **s_xattr; + const struct xattr_handler **s_xattr; struct list_head s_inodes; /* all inodes */ - struct list_head s_dirty; /* dirty inodes */ - struct list_head s_io; /* parked for writeback */ - struct list_head s_more_io; /* parked for more writeback */ - struct hlist_head s_anon; /* anonymous dentries for (nfs) exporting */ - struct list_head s_files; - /* s_dentry_lru and s_nr_dentry_unused are protected by dcache_lock */ - struct list_head s_dentry_lru; /* unused dentry lru */ - int s_nr_dentry_unused; /* # of dentry on lru */ - +#ifndef __UBOOT__ + struct hlist_bl_head s_anon; /* anonymous dentries for (nfs) exporting */ +#endif + struct list_head s_mounts; /* list of mounts; _not_ for fs use */ struct block_device *s_bdev; +#ifndef __UBOOT__ + struct backing_dev_info *s_bdi; +#endif struct mtd_info *s_mtd; - struct list_head s_instances; + struct hlist_node s_instances; +#ifndef __UBOOT__ + struct quota_info s_dquot; /* Diskquota specific options */ +#endif - int s_frozen; - wait_queue_head_t s_wait_unfrozen; + struct sb_writers s_writers; char s_id[32]; /* Informational name */ + u8 s_uuid[16]; /* UUID */ void *s_fs_info; /* Filesystem private info */ + unsigned int s_max_links; +#ifndef __UBOOT__ + fmode_t s_mode; +#endif + + /* Granularity of c/m/atime in ns. + Cannot be worse than a second */ + u32 s_time_gran; /* * The next field is for VFS *only*. No filesystems have any business @@ -201,66 +350,83 @@ struct super_block { */ struct mutex s_vfs_rename_mutex; /* Kludge */ - /* Granularity of c/m/atime in ns. - Cannot be worse than a second */ - u32 s_time_gran; - /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ char *s_subtype; +#ifndef __UBOOT__ /* * Saved mount options for lazy filesystems using * generic_show_options() */ - char *s_options; + char __rcu *s_options; +#endif + const struct dentry_operations *s_d_op; /* default d_op for dentries */ + + /* + * Saved pool identifier for cleancache (-1 means none) + */ + int cleancache_poolid; + +#ifndef __UBOOT__ + struct shrinker s_shrink; /* per-sb shrinker handle */ +#endif + + /* Number of inodes with nlink == 0 but still referenced */ + atomic_long_t s_remove_count; + + /* Being remounted read-only */ + int s_readonly_remount; + + /* AIO completions deferred from interrupt context */ + struct workqueue_struct *s_dio_done_wq; + +#ifndef __UBOOT__ + /* + * Keep the lru lists last in the structure so they always sit on their + * own individual cachelines. + */ + struct list_lru s_dentry_lru ____cacheline_aligned_in_smp; + struct list_lru s_inode_lru ____cacheline_aligned_in_smp; +#endif + struct rcu_head rcu; }; struct file_system_type { const char *name; int fs_flags; - int (*get_sb) (struct file_system_type *, int, - const char *, void *, struct vfsmount *); +#define FS_REQUIRES_DEV 1 +#define FS_BINARY_MOUNTDATA 2 +#define FS_HAS_SUBTYPE 4 +#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ +#define FS_USERNS_DEV_MOUNT 16 /* A userns mount does not imply MNT_NODEV */ +#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ + struct dentry *(*mount) (struct file_system_type *, int, + const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; - struct list_head fs_supers; + struct hlist_head fs_supers; + +#ifndef __UBOOT__ + struct lock_class_key s_lock_key; + struct lock_class_key s_umount_key; + struct lock_class_key s_vfs_rename_key; + struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; + + struct lock_class_key i_lock_key; + struct lock_class_key i_mutex_key; + struct lock_class_key i_mutex_dir_key; +#endif }; +/* include/linux/mount.h */ struct vfsmount { - struct list_head mnt_hash; - struct vfsmount *mnt_parent; /* fs we are mounted on */ - struct dentry *mnt_mountpoint; /* dentry of mountpoint */ struct dentry *mnt_root; /* root of the mounted tree */ struct super_block *mnt_sb; /* pointer to superblock */ - struct list_head mnt_mounts; /* list of children, anchored here */ - struct list_head mnt_child; /* and going through their mnt_child */ int mnt_flags; - /* 4 bytes hole on 64bits arches */ - const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */ - struct list_head mnt_list; - struct list_head mnt_expire; /* link in fs-specific expiry list */ - struct list_head mnt_share; /* circular list of shared mounts */ - struct list_head mnt_slave_list;/* list of slave mounts */ - struct list_head mnt_slave; /* slave list entry */ - struct vfsmount *mnt_master; /* slave is on master->mnt_slave_list */ - struct mnt_namespace *mnt_ns; /* containing namespace */ - int mnt_id; /* mount identifier */ - int mnt_group_id; /* peer group identifier */ - /* - * We put mnt_count & mnt_expiry_mark at the end of struct vfsmount - * to let these frequently modified fields in a separate cache line - * (so that reads of mnt_flags wont ping-pong on SMP machines) - */ - int mnt_expiry_mark; /* true if marked for expiry */ - int mnt_pinned; - int mnt_ghosts; - /* - * This value is not stable unless all of the mnt_writers[] spinlocks - * are held, and all mnt_writer[]s on this mount have 0 as their ->count - */ }; struct path { @@ -451,32 +617,35 @@ static inline ino_t parent_ino(struct dentry *dentry) /* debug.c */ -#define DEFINE_SPINLOCK(...) #define module_param_named(...) /* misc.h */ #define mutex_lock_nested(...) #define mutex_unlock_nested(...) #define mutex_is_locked(...) 0 +#endif /* Version of this UBIFS implementation */ #define UBIFS_VERSION 1 /* Normal UBIFS messages */ -#ifdef CONFIG_UBIFS_SILENCE_MSG -#define ubifs_msg(fmt, ...) -#else -#define ubifs_msg(fmt, ...) \ - printk(KERN_NOTICE "UBIFS: " fmt "\n", ##__VA_ARGS__) -#endif +#define ubifs_msg(fmt, ...) pr_notice("UBIFS: " fmt "\n", ##__VA_ARGS__) /* UBIFS error messages */ -#define ubifs_err(fmt, ...) \ - printk(KERN_ERR "UBIFS error (pid %d): %s: " fmt "\n", 0, \ +#ifndef __UBOOT__ +#define ubifs_err(fmt, ...) \ + pr_err("UBIFS error (pid %d): %s: " fmt "\n", current->pid, \ __func__, ##__VA_ARGS__) /* UBIFS warning messages */ -#define ubifs_warn(fmt, ...) \ - printk(KERN_WARNING "UBIFS warning (pid %d): %s: " fmt "\n", \ - 0, __func__, ##__VA_ARGS__) +#define ubifs_warn(fmt, ...) \ + pr_warn("UBIFS warning (pid %d): %s: " fmt "\n", \ + current->pid, __func__, ##__VA_ARGS__) +#else +#define ubifs_err(fmt, ...) \ + pr_err("UBIFS error: %s: " fmt "\n", __func__, ##__VA_ARGS__) +/* UBIFS warning messages */ +#define ubifs_warn(fmt, ...) \ + pr_warn("UBIFS warning: %s: " fmt "\n", __func__, ##__VA_ARGS__) +#endif /* UBIFS file system VFS magic number */ #define UBIFS_SUPER_MAGIC 0x24051905 @@ -509,9 +678,6 @@ static inline ino_t parent_ino(struct dentry *dentry) #define INUM_WARN_WATERMARK 0xFFF00000 #define INUM_WATERMARK 0xFFFFFF00 -/* Largest key size supported in this implementation */ -#define CUR_MAX_KEY_LEN UBIFS_SK_LEN - /* Maximum number of entries in each LPT (LEB category) heap */ #define LPT_HEAP_SZ 256 @@ -521,8 +687,9 @@ static inline ino_t parent_ino(struct dentry *dentry) */ #define BGT_NAME_PATTERN "ubifs_bgt%d_%d" -/* Default write-buffer synchronization timeout (5 secs) */ -#define DEFAULT_WBUF_TIMEOUT (5 * HZ) +/* Write-buffer synchronization timeout interval in seconds */ +#define WBUF_TIMEOUT_SOFTLIMIT 3 +#define WBUF_TIMEOUT_HARDLIMIT 5 /* Maximum possible inode number (only 32-bit inodes are supported now) */ #define MAX_INUM 0xFFFFFFFF @@ -530,12 +697,10 @@ static inline ino_t parent_ino(struct dentry *dentry) /* Number of non-data journal heads */ #define NONDATA_JHEADS_CNT 2 -/* Garbage collector head */ -#define GCHD 0 -/* Base journal head number */ -#define BASEHD 1 -/* First "general purpose" journal head */ -#define DATAHD 2 +/* Shorter names for journal head numbers for internal usage */ +#define GCHD UBIFS_GC_HEAD +#define BASEHD UBIFS_BASE_HEAD +#define DATAHD UBIFS_DATA_HEAD /* 'No change' value for 'ubifs_change_lp()' */ #define LPROPS_NC 0x80000001 @@ -545,8 +710,12 @@ static inline ino_t parent_ino(struct dentry *dentry) * in TNC. However, when replaying, it is handy to introduce fake "truncation" * keys for truncation nodes because the code becomes simpler. So we define * %UBIFS_TRUN_KEY type. + * + * But otherwise, out of the journal reply scope, the truncation keys are + * invalid. */ -#define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT +#define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT +#define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT /* * How much a directory entry/extended attribute entry adds to the parent/host @@ -573,6 +742,12 @@ static inline ino_t parent_ino(struct dentry *dentry) */ #define WORST_COMPR_FACTOR 2 +/* + * How much memory is needed for a buffer where we comress a data node. + */ +#define COMPRESSED_DATA_NODE_BUF_SZ \ + (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR) + /* Maximum expected tree height for use by bottom_up_buf */ #define BOTTOM_UP_HEIGHT 64 @@ -646,14 +821,14 @@ enum { * LPT cnode flag bits. * * DIRTY_CNODE: cnode is dirty - * COW_CNODE: cnode is being committed and must be copied before writing * OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted), - * so it can (and must) be freed when the commit is finished + * so it can (and must) be freed when the commit is finished + * COW_CNODE: cnode is being committed and must be copied before writing */ enum { DIRTY_CNODE = 0, - COW_CNODE = 1, - OBSOLETE_CNODE = 2, + OBSOLETE_CNODE = 1, + COW_CNODE = 2, }; /* @@ -693,10 +868,10 @@ struct ubifs_old_idx { /* The below union makes it easier to deal with keys */ union ubifs_key { - uint8_t u8[CUR_MAX_KEY_LEN]; - uint32_t u32[CUR_MAX_KEY_LEN/4]; - uint64_t u64[CUR_MAX_KEY_LEN/8]; - __le32 j32[CUR_MAX_KEY_LEN/4]; + uint8_t u8[UBIFS_SK_LEN]; + uint32_t u32[UBIFS_SK_LEN/4]; + uint64_t u64[UBIFS_SK_LEN/8]; + __le32 j32[UBIFS_SK_LEN/4]; }; /** @@ -805,9 +980,9 @@ struct ubifs_gced_idx_leb { * The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses * @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot * make sure @inode->i_size is always changed under @ui_mutex, because it - * cannot call 'vmtruncate()' with @ui_mutex locked, because it would deadlock - * with 'ubifs_writepage()' (see file.c). All the other inode fields are - * changed under @ui_mutex, so they do not need "shadow" fields. Note, one + * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would + * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields + * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one * could consider to rework locking and base it on "shadow" fields. */ struct ubifs_inode { @@ -1068,17 +1243,19 @@ typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c, * @offs: write-buffer offset in this logical eraseblock * @avail: number of bytes available in the write-buffer * @used: number of used bytes in the write-buffer - * @dtype: type of data stored in this LEB (%UBI_LONGTERM, %UBI_SHORTTERM, - * %UBI_UNKNOWN) + * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range) * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep * up by 'mutex_lock_nested()). * @sync_callback: write-buffer synchronization callback * @io_mutex: serializes write-buffer I/O * @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes * fields + * @softlimit: soft write-buffer timeout interval + * @delta: hard and soft timeouts delta (the timer expire inteval is @softlimit + * and @softlimit + @delta) * @timer: write-buffer timer - * @timeout: timer expire interval in jiffies - * @need_sync: it is set if its timer expired and needs sync + * @no_timer: non-zero if this write-buffer does not have a timer + * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing * @next_ino: points to the next position of the following inode number * @inodes: stores the inode numbers of the nodes which are in wbuf * @@ -1099,13 +1276,16 @@ struct ubifs_wbuf { int offs; int avail; int used; - int dtype; + int size; int jhead; int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad); struct mutex io_mutex; spinlock_t lock; - int timeout; - int need_sync; +// ktime_t softlimit; +// unsigned long long delta; +// struct hrtimer timer; + unsigned int no_timer:1; + unsigned int need_sync:1; int next_ino; ino_t *inodes; }; @@ -1130,12 +1310,14 @@ struct ubifs_bud { * struct ubifs_jhead - journal head. * @wbuf: head's write-buffer * @buds_list: list of bud LEBs belonging to this journal head + * @grouped: non-zero if UBIFS groups nodes when writing to this journal head * * Note, the @buds list is protected by the @c->buds_lock. */ struct ubifs_jhead { struct ubifs_wbuf wbuf; struct list_head buds_list; + unsigned int grouped:1; }; /** @@ -1171,6 +1353,9 @@ struct ubifs_zbranch { * @offs: offset of the corresponding indexing node * @len: length of the corresponding indexing node * @zbranch: array of znode branches (@c->fanout elements) + * + * Note! The @lnum, @offs, and @len fields are not really needed - we have them + * only for internal consistency check. They could be removed to save some RAM. */ struct ubifs_znode { struct ubifs_znode *parent; @@ -1181,9 +1366,9 @@ struct ubifs_znode { int child_cnt; int iip; int alt; -#ifdef CONFIG_UBIFS_FS_DEBUG - int lnum, offs, len; -#endif + int lnum; + int offs; + int len; struct ubifs_zbranch zbranch[]; }; @@ -1236,10 +1421,15 @@ struct ubifs_node_range { */ struct ubifs_compressor { int compr_type; - char *name; - char *capi_name; + struct crypto_comp *cc; + struct mutex *comp_mutex; + struct mutex *decomp_mutex; + const char *name; + const char *capi_name; +#ifdef __UBOOT__ int (*decompress)(const unsigned char *in, size_t in_len, unsigned char *out, size_t *out_len); +#endif }; /** @@ -1313,6 +1503,8 @@ struct ubifs_budget_req { * @dnext: next orphan to delete * @inum: inode number * @new: %1 => added since the last commit, otherwise %0 + * @cmt: %1 => commit pending, otherwise %0 + * @del: %1 => delete pending, otherwise %0 */ struct ubifs_orphan { struct rb_node rb; @@ -1321,7 +1513,9 @@ struct ubifs_orphan { struct ubifs_orphan *cnext; struct ubifs_orphan *dnext; ino_t inum; - int new; + unsigned new:1; + unsigned cmt:1; + unsigned del:1; }; /** @@ -1344,6 +1538,40 @@ struct ubifs_mount_opts { unsigned int compr_type:2; }; +/** + * struct ubifs_budg_info - UBIFS budgeting information. + * @idx_growth: amount of bytes budgeted for index growth + * @data_growth: amount of bytes budgeted for cached data + * @dd_growth: amount of bytes budgeted for cached data that will make + * other data dirty + * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but + * which still have to be taken into account because the index + * has not been committed so far + * @old_idx_sz: size of index on flash + * @min_idx_lebs: minimum number of LEBs required for the index + * @nospace: non-zero if the file-system does not have flash space (used as + * optimization) + * @nospace_rp: the same as @nospace, but additionally means that even reserved + * pool is full + * @page_budget: budget for a page (constant, nenver changed after mount) + * @inode_budget: budget for an inode (constant, nenver changed after mount) + * @dent_budget: budget for a directory entry (constant, nenver changed after + * mount) + */ +struct ubifs_budg_info { + long long idx_growth; + long long data_growth; + long long dd_growth; + long long uncommitted_idx; + unsigned long long old_idx_sz; + int min_idx_lebs; + unsigned int nospace:1; + unsigned int nospace_rp:1; + int page_budget; + int inode_budget; + int dent_budget; +}; + struct ubifs_debug_info; /** @@ -1387,6 +1615,7 @@ struct ubifs_debug_info; * @cmt_wq: wait queue to sleep on if the log is full and a commit is running * * @big_lpt: flag that LPT is too big to write whole during commit + * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up * @no_chk_data_crc: do not check CRCs when reading data nodes (except during * recovery) * @bulk_read: enable bulk-reads @@ -1418,6 +1647,11 @@ struct ubifs_debug_info; * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu * @bu: pre-allocated bulk-read information * + * @write_reserve_mutex: protects @write_reserve_buf + * @write_reserve_buf: on the write path we allocate memory, which might + * sometimes be unavailable, in which case we use this + * write reserve buffer + * * @log_lebs: number of logical eraseblocks in the log * @log_bytes: log size in bytes * @log_last: last LEB of the log @@ -1439,43 +1673,34 @@ struct ubifs_debug_info; * * @min_io_size: minimal input/output unit size * @min_io_shift: number of bits in @min_io_size minus one + * @max_write_size: maximum amount of bytes the underlying flash can write at a + * time (MTD write buffer size) + * @max_write_shift: number of bits in @max_write_size minus one * @leb_size: logical eraseblock size in bytes + * @leb_start: starting offset of logical eraseblocks within physical + * eraseblocks * @half_leb_size: half LEB size + * @idx_leb_size: how many bytes of an LEB are effectively available when it is + * used to store indexing nodes (@leb_size - @max_idx_node_sz) * @leb_cnt: count of logical eraseblocks * @max_leb_cnt: maximum count of logical eraseblocks * @old_leb_cnt: count of logical eraseblocks before re-size * @ro_media: the underlying UBI volume is read-only + * @ro_mount: the file-system was mounted as read-only + * @ro_error: UBIFS switched to R/O mode because an error happened * * @dirty_pg_cnt: number of dirty pages (not used) * @dirty_zn_cnt: number of dirty znodes * @clean_zn_cnt: number of clean znodes * - * @budg_idx_growth: amount of bytes budgeted for index growth - * @budg_data_growth: amount of bytes budgeted for cached data - * @budg_dd_growth: amount of bytes budgeted for cached data that will make - * other data dirty - * @budg_uncommitted_idx: amount of bytes were budgeted for growth of the index, - * but which still have to be taken into account because - * the index has not been committed so far - * @space_lock: protects @budg_idx_growth, @budg_data_growth, @budg_dd_growth, - * @budg_uncommited_idx, @min_idx_lebs, @old_idx_sz, @lst, - * @nospace, and @nospace_rp; - * @min_idx_lebs: minimum number of LEBs required for the index - * @old_idx_sz: size of index on flash + * @space_lock: protects @bi and @lst + * @lst: lprops statistics + * @bi: budgeting information * @calc_idx_sz: temporary variable which is used to calculate new index size * (contains accurate new index size at end of TNC commit start) - * @lst: lprops statistics - * @nospace: non-zero if the file-system does not have flash space (used as - * optimization) - * @nospace_rp: the same as @nospace, but additionally means that even reserved - * pool is full - * - * @page_budget: budget for a page - * @inode_budget: budget for an inode - * @dent_budget: budget for a directory entry * * @ref_node_alsz: size of the LEB reference node aligned to the min. flash - * I/O unit + * I/O unit * @mst_node_alsz: master node aligned size * @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary * @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary @@ -1558,9 +1783,11 @@ struct ubifs_debug_info; * previous commit start * @uncat_list: list of un-categorized LEBs * @empty_list: list of empty LEBs - * @freeable_list: list of freeable non-index LEBs (free + dirty == leb_size) - * @frdi_idx_list: list of freeable index LEBs (free + dirty == leb_size) + * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size) + * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size) * @freeable_cnt: number of freeable LEBs in @freeable_list + * @in_a_category_cnt: count of lprops which are in a certain category, which + * basically meants that they were loaded from the flash * * @ltab_lnum: LEB number of LPT's own lprops table * @ltab_offs: offset of LPT's own lprops table @@ -1577,25 +1804,29 @@ struct ubifs_debug_info; * @rp_uid: reserved pool user ID * @rp_gid: reserved pool group ID * - * @empty: if the UBI device is empty - * @replay_tree: temporary tree used during journal replay + * @empty: %1 if the UBI device is empty + * @need_recovery: %1 if the file-system needs recovery + * @replaying: %1 during journal replay + * @mounting: %1 while mounting + * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode * @replay_list: temporary list used during journal replay * @replay_buds: list of buds to replay * @cs_sqnum: sequence number of first node in the log (commit start node) * @replay_sqnum: sequence number of node currently being replayed - * @need_recovery: file-system needs recovery - * @replaying: set to %1 during journal replay - * @unclean_leb_list: LEBs to recover when mounting ro to rw - * @rcvrd_mst_node: recovered master node to write when mounting ro to rw + * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W + * mode + * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted + * FS to R/W mode * @size_tree: inode size information for recovery - * @remounting_rw: set while remounting from ro to rw (sb flags have MS_RDONLY) - * @always_chk_crc: always check CRCs (while mounting and remounting rw) * @mount_opts: UBIFS-specific mount options * * @dbg: debugging-related information */ struct ubifs_info { struct super_block *vfs_sb; +#ifndef __UBOOT__ + struct backing_dev_info bdi; +#endif ino_t highest_inum; unsigned long long max_sqnum; @@ -1628,6 +1859,7 @@ struct ubifs_info { wait_queue_head_t cmt_wq; unsigned int big_lpt:1; + unsigned int space_fixup:1; unsigned int no_chk_data_crc:1; unsigned int bulk_read:1; unsigned int default_compr:2; @@ -1657,6 +1889,9 @@ struct ubifs_info { struct mutex bu_mutex; struct bu_info bu; + struct mutex write_reserve_mutex; + void *write_reserve_buf; + int log_lebs; long long log_bytes; int log_last; @@ -1678,28 +1913,27 @@ struct ubifs_info { int min_io_size; int min_io_shift; + int max_write_size; + int max_write_shift; int leb_size; + int leb_start; int half_leb_size; + int idx_leb_size; int leb_cnt; int max_leb_cnt; int old_leb_cnt; - int ro_media; + unsigned int ro_media:1; + unsigned int ro_mount:1; + unsigned int ro_error:1; + + atomic_long_t dirty_pg_cnt; + atomic_long_t dirty_zn_cnt; + atomic_long_t clean_zn_cnt; - long long budg_idx_growth; - long long budg_data_growth; - long long budg_dd_growth; - long long budg_uncommitted_idx; spinlock_t space_lock; - int min_idx_lebs; - unsigned long long old_idx_sz; - unsigned long long calc_idx_sz; struct ubifs_lp_stats lst; - unsigned int nospace:1; - unsigned int nospace_rp:1; - - int page_budget; - int inode_budget; - int dent_budget; + struct ubifs_budg_info bi; + unsigned long long calc_idx_sz; int ref_node_alsz; int mst_node_alsz; @@ -1785,6 +2019,7 @@ struct ubifs_info { struct list_head freeable_list; struct list_head frdi_idx_list; int freeable_cnt; + int in_a_category_cnt; int ltab_lnum; int ltab_offs; @@ -1798,31 +2033,32 @@ struct ubifs_info { long long rp_size; long long report_rp_size; - uid_t rp_uid; - gid_t rp_gid; + kuid_t rp_uid; + kgid_t rp_gid; /* The below fields are used only during mounting and re-mounting */ - int empty; - struct rb_root replay_tree; + unsigned int empty:1; + unsigned int need_recovery:1; + unsigned int replaying:1; + unsigned int mounting:1; + unsigned int remounting_rw:1; struct list_head replay_list; struct list_head replay_buds; unsigned long long cs_sqnum; unsigned long long replay_sqnum; - int need_recovery; - int replaying; struct list_head unclean_leb_list; struct ubifs_mst_node *rcvrd_mst_node; struct rb_root size_tree; - int remounting_rw; - int always_chk_crc; struct ubifs_mount_opts mount_opts; -#ifdef CONFIG_UBIFS_FS_DEBUG +#ifndef __UBOOT__ struct ubifs_debug_info *dbg; #endif }; +extern struct list_head ubifs_infos; extern spinlock_t ubifs_infos_lock; +extern atomic_long_t ubifs_clean_zn_cnt; extern struct kmem_cache *ubifs_inode_slab; extern const struct super_operations ubifs_super_operations; extern const struct address_space_operations ubifs_file_address_operations; @@ -1836,16 +2072,23 @@ extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT]; /* io.c */ void ubifs_ro_mode(struct ubifs_info *c, int err); +int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, + int len, int even_ebadmsg); +int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, + int len); +int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len); +int ubifs_leb_unmap(struct ubifs_info *c, int lnum); +int ubifs_leb_map(struct ubifs_info *c, int lnum); +int ubifs_is_mapped(const struct ubifs_info *c, int lnum); int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len); -int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, - int dtype); +int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs); int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf); int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, int lnum, int offs); int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, int lnum, int offs); int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum, - int offs, int dtype); + int offs); int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, int offs, int quiet, int must_chk_crc); void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad); @@ -1859,7 +2102,7 @@ int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode); /* scan.c */ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, - int offs, void *sbuf); + int offs, void *sbuf, int quiet); void ubifs_scan_destroy(struct ubifs_scan_leb *sleb); int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum, int offs, int quiet); @@ -1921,7 +2164,7 @@ long long ubifs_reported_space(const struct ubifs_info *c, long long free); long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs); /* find.c */ -int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *free, +int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs, int squeeze); int ubifs_find_free_leb_for_idx(struct ubifs_info *c); int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, @@ -1983,8 +2226,13 @@ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot); int ubifs_tnc_end_commit(struct ubifs_info *c); +#ifndef __UBOOT__ /* shrinker.c */ -int ubifs_shrinker(int nr_to_scan, gfp_t gfp_mask); +unsigned long ubifs_shrink_scan(struct shrinker *shrink, + struct shrink_control *sc); +unsigned long ubifs_shrink_count(struct shrinker *shrink, + struct shrink_control *sc); +#endif /* commit.c */ int ubifs_bg_thread(void *info); @@ -2003,6 +2251,7 @@ int ubifs_write_master(struct ubifs_info *c); int ubifs_read_superblock(struct ubifs_info *c); struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c); int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup); +int ubifs_fixup_free_space(struct ubifs_info *c); /* replay.c */ int ubifs_validate_entry(struct ubifs_info *c, @@ -2084,14 +2333,15 @@ const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c); const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c); const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c); const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c); +int ubifs_calc_dark(const struct ubifs_info *c, int spc); /* file.c */ -int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync); +int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync); int ubifs_setattr(struct dentry *dentry, struct iattr *attr); /* dir.c */ struct inode *ubifs_new_inode(struct ubifs_info *c, const struct inode *dir, - int mode); + umode_t mode); int ubifs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat); @@ -2111,11 +2361,11 @@ int ubifs_iput(struct inode *inode); int ubifs_recover_master_node(struct ubifs_info *c); int ubifs_write_rcvrd_mst_node(struct ubifs_info *c); struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, - int offs, void *sbuf, int grouped); + int offs, void *sbuf, int jhead); struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf); -int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf); -int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf); +int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf); +int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf); int ubifs_rcvry_gc_commit(struct ubifs_info *c); int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, int deletion, loff_t new_size); @@ -2131,24 +2381,22 @@ long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); /* compressor.c */ int __init ubifs_compressors_init(void); -void __exit ubifs_compressors_exit(void); +void ubifs_compressors_exit(void); void ubifs_compress(const void *in_buf, int in_len, void *out_buf, int *out_len, int *compr_type); int ubifs_decompress(const void *buf, int len, void *out, int *out_len, int compr_type); +#include "debug.h" +#include "misc.h" +#include "key.h" + +#ifdef __UBOOT__ /* these are used in cmd_ubifs.c */ int ubifs_init(void); -int ubifs_mount(char *vol_name); +int uboot_ubifs_mount(char *vol_name); void ubifs_umount(struct ubifs_info *c); int ubifs_ls(char *dir_name); int ubifs_load(char *filename, u32 addr, u32 size); - -#include "debug.h" -#include "misc.h" -#include "key.h" - -/* todo: Move these to a common U-Boot header */ -int lzo1x_decompress_safe(const unsigned char *in, size_t in_len, - unsigned char *out, size_t *out_len); +#endif #endif /* !__UBIFS_H__ */ |