summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorFred Fan <r01011@freescale.com>2009-02-23 13:34:09 +0800
committerFred Fan <r01011@freescale.com>2009-09-09 17:15:27 +0800
commitd409f3fd05bef817c37bade4b6a803da80dc7ad0 (patch)
treed7651f6c09179ff7e72d904dd1b047645840a09b /drivers
parent6259800e38b3da575a8436d5616b3920c77f25f5 (diff)
downloadu-boot-imx-d409f3fd05bef817c37bade4b6a803da80dc7ad0.zip
u-boot-imx-d409f3fd05bef817c37bade4b6a803da80dc7ad0.tar.gz
u-boot-imx-d409f3fd05bef817c37bade4b6a803da80dc7ad0.tar.bz2
ENGR00094619 Support i.MX31 3stack board
Support boot from NAND Flash Add driver for i.MX31 NFC Upgate U-Boot to support NAND boot Signed-off-by: Xinyu Chen <xinyu.chen@freescale.com>
Diffstat (limited to 'drivers')
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/mx31_nand.c969
2 files changed, 970 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 89ccec2..975a1b8 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -46,6 +46,7 @@ COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o
COBJS-$(CONFIG_NAND_S3C64XX) += s3c64xx.o
COBJS-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o
COBJS-$(CONFIG_NAND_PLAT) += nand_plat.o
+COBJS-$(CONFIG_MX31_NAND) += mx31_nand.o
endif
COBJS := $(COBJS-y)
diff --git a/drivers/mtd/nand/mx31_nand.c b/drivers/mtd/nand/mx31_nand.c
new file mode 100644
index 0000000..325e0f0
--- /dev/null
+++ b/drivers/mtd/nand/mx31_nand.c
@@ -0,0 +1,969 @@
+/*
+ * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
+ */
+
+/*
+ * The code contained herein is licensed under the GNU General Public
+ * License. You may obtain a copy of the GNU General Public License
+ * Version 2 or later at the following locations:
+ *
+ * http://www.opensource.org/licenses/gpl-license.html
+ * http://www.gnu.org/copyleft/gpl.html
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm-arm/arch/mx31-regs.h>
+
+/*
+ * Define delays in microsec for NAND device operations
+ */
+#define TROP_US_DELAY 2000
+
+/*
+ * Macros to get byte and bit positions of ECC
+ */
+#define COLPOS(x) ((x) >> 4)
+#define BITPOS(x) ((x) & 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+struct nand_info {
+ int oob;
+ int read_status;
+ int largepage;
+ u16 col;
+};
+
+static struct nand_info nandinfo;
+static int ecc_disabled;
+
+/*
+ * OOB placement block for use with hardware ecc generation
+ */
+static struct nand_oobinfo nand_hw_eccoob_8 = {
+ .useecc = MTD_NANDECC_AUTOPL_USR,
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {
+ {0, 5},
+ {11, 5}
+ }
+};
+
+static struct nand_oobinfo nand_hw_eccoob_2k = {
+ .useecc = MTD_NANDECC_AUTOPL_USR,
+ .eccbytes = 20,
+ .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
+ 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
+ .oobfree = {
+ {0, 5},
+ {11, 10},
+ {27, 10},
+ {43, 10},
+ {59, 5}
+ }
+};
+
+/* Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks. */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+ .options = NAND_BBT_SCAN2NDPAGE,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+/* Generic flash bbt decriptors */
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 4,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 0,
+ .len = 4,
+ .veroffs = 4,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/**
+ * memcpy variant that copies 32 bit words. This is needed since the
+ * NFC only allows 32 bit accesses. Added for U-boot.
+ */
+static void *memcpy_32(void *dest, const void *src, size_t n)
+{
+ u32 *dst_32 = (u32 *) dest;
+ const u32 *src_32 = (u32 *) src;
+
+ while (n > 0) {
+ *dst_32++ = *src_32++;
+ n -= 4;
+ }
+
+ return dest;
+}
+
+/**
+ * This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit of config2 register.
+ *
+ * @param max_retries number of retry attempts (separated by 1 us)
+ */
+static void wait_op_done(int max_retries)
+{
+ while (max_retries-- > 0) {
+ if (NFC_CONFIG2 & NFC_INT) {
+ NFC_CONFIG2 &= ~NFC_INT;
+ break;
+ }
+ udelay(1);
+ }
+ if (max_retries <= 0)
+ DEBUG(MTD_DEBUG_LEVEL0, "wait: INT not set\n");
+}
+
+/**
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ *
+ * @param cmd command for NAND Flash
+ */
+static void send_cmd(u16 cmd)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(0x%x)\n", cmd);
+
+ NFC_FLASH_CMD = (u16) cmd;
+ NFC_CONFIG2 = NFC_CMD;
+
+ /* Wait for operation to complete */
+ wait_op_done(TROP_US_DELAY);
+}
+
+/**
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ *
+ * @param addr address to be written to NFC.
+ * @param islast 1 if this is the last address cycle for command
+ */
+static void send_addr(u16 addr)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_addr(0x%x %d)\n", addr);
+
+ NFC_FLASH_ADDR = addr;
+ NFC_CONFIG2 = NFC_ADDR;
+
+ /* Wait for operation to complete */
+ wait_op_done(TROP_US_DELAY);
+}
+
+/**
+ * This function requests the NANDFC to initate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param oob set to 1 if only the spare area is transferred
+ */
+static void send_prog_page(u8 buf_id)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", nandinfo.oob);
+
+ /* NANDFC buffer 0 is used for page read/write */
+
+ NFC_BUF_ADDR = buf_id;
+
+ /* Configure spare or page+spare access */
+ if (!nandinfo.largepage) {
+ if (nandinfo.oob)
+ NFC_CONFIG1 |= NFC_SP_EN;
+ else
+ NFC_CONFIG1 &= ~NFC_SP_EN;
+ }
+ NFC_CONFIG2 = NFC_INPUT;
+
+ /* Wait for operation to complete */
+ wait_op_done(TROP_US_DELAY);
+}
+
+/**
+ * This function will correct the single bit ECC error
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param eccpos Ecc byte and bit position
+ * @param oob set to 1 if only spare area needs correction
+ */
+static void mxc_nd_correct_error(u8 buf_id, u16 eccpos, int oob)
+{
+ u16 col;
+ u8 pos;
+ u16 *buf;
+
+ /* Get col & bit position of error
+ these macros works for both 8 & 16 bits */
+ col = COLPOS(eccpos); /* Get half-word position */
+ pos = BITPOS(eccpos); /* Get bit position */
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nd_correct_error (col=%d pos=%d)\n", col, pos);
+
+ /* Set the pointer for main / spare area */
+ if (!oob)
+ buf = (u16 *)(MAIN_AREA0 + col + (256 * buf_id));
+ else
+ buf = (u16 *)(SPARE_AREA0 + col + (8 * buf_id));
+
+ /* Fix the data */
+ *buf ^= 1 << pos;
+}
+
+/**
+ * This function will maintains state of single bit Error
+ * in Main & spare area
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param spare set to 1 if only spare area needs correction
+ */
+static void mxc_nd_correct_ecc(u8 buf_id, int spare)
+{
+ u16 value, ecc_status;
+
+ /* Read the ECC result */
+ ecc_status = NFC_ECC_STATUS_RESULT;
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nd_correct_ecc (Ecc status=%x)\n", ecc_status);
+
+ if (((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR)
+ || ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR)) {
+ if (ecc_disabled) {
+ if ((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR) {
+ value = NFC_RSLTMAIN_AREA;
+ /* Correct single bit error in Mainarea
+ NFC will not correct the error in
+ current page */
+ mxc_nd_correct_error(buf_id, value, 0);
+ }
+ if ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR) {
+ value = NFC_RSLTSPARE_AREA;
+ /* Correct single bit error in Mainarea
+ NFC will not correct the error in
+ current page */
+ mxc_nd_correct_error(buf_id, value, 1);
+ }
+
+ } else {
+ /* Disable ECC */
+ NFC_CONFIG1 &= ~NFC_ECC_EN;
+ ecc_disabled = 1;
+ }
+ } else if (ecc_status == 0) {
+ if (ecc_disabled) {
+ /* Enable ECC */
+ NFC_CONFIG1 |= NFC_ECC_EN;
+ ecc_disabled = 0;
+ }
+ } /* else 2-bit Error. Do nothing */
+}
+
+/**
+ * This function requests the NANDFC to initated the transfer
+ * of data from the NAND device into in the NANDFC ram buffer.
+ *
+ * @param buf_id Specify Internal RAM Buffer number (0-3)
+ * @param oob set 1 if only the spare area is
+ * transferred
+ */
+static void send_read_page(u8 buf_id)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", nandinfo.oob);
+
+ /* NANDFC buffer 0 is used for page read/write */
+ NFC_BUF_ADDR = buf_id;
+
+ /* Configure spare or page+spare access */
+ if (!nandinfo.largepage) {
+ if (nandinfo.oob)
+ NFC_CONFIG1 |= NFC_SP_EN;
+ else
+ NFC_CONFIG1 &= ~NFC_SP_EN;
+ }
+
+ NFC_CONFIG2 = NFC_OUTPUT;
+
+ /* Wait for operation to complete */
+ wait_op_done(TROP_US_DELAY);
+
+ /* If there are single bit errors in
+ two consecutive page reads then
+ the error is not corrected by the
+ NFC for the second page.
+ Correct single bit error in driver */
+
+ mxc_nd_correct_ecc(buf_id, nandinfo.oob);
+}
+
+/**
+ * This function requests the NANDFC to perform a read of the
+ * NAND device ID.
+ */
+static void send_read_id(void)
+{
+ /* NANDFC buffer 0 is used for device ID output */
+ NFC_BUF_ADDR = 0x0;
+
+ /* Read ID into main buffer */
+ NFC_CONFIG1 &= ~NFC_SP_EN;
+ NFC_CONFIG2 = NFC_ID;
+
+ /* Wait for operation to complete */
+ wait_op_done(TROP_US_DELAY);
+}
+
+/**
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ *
+ * @return device status
+ */
+static u16 get_dev_status(void)
+{
+ volatile u16 *mainbuf = MAIN_AREA1;
+ u32 store;
+ u16 ret;
+ /* Issue status request to NAND device */
+
+ /* store the main area1 first word, later do recovery */
+ store = *((u32 *) mainbuf);
+ /*
+ * NANDFC buffer 1 is used for device status to prevent
+ * corruption of read/write buffer on status requests.
+ */
+ NFC_BUF_ADDR = 1;
+
+ /* Read status into main buffer */
+ NFC_CONFIG1 &= ~NFC_SP_EN;
+ NFC_CONFIG2 = NFC_STATUS;
+
+ /* Wait for operation to complete */
+ wait_op_done(TROP_US_DELAY);
+
+ /* Status is placed in first word of main buffer */
+ /* get status, then recovery area 1 data */
+ ret = mainbuf[0];
+ *((u32 *) mainbuf) = store;
+
+ return ret;
+}
+
+static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ /*
+ * If HW ECC is enabled, we turn it on during init. There is
+ * no need to enable again here.
+ */
+}
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, unsigned char *dat,
+ unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+ /*
+ * 1-Bit errors are automatically corrected in HW. No need for
+ * additional correction. 2-Bit errors cannot be corrected by
+ * HW ECC, so we need to return failure
+ */
+ u16 ecc_status = NFC_ECC_STATUS_RESULT;
+
+ if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *dat,
+ unsigned char *ecc_code)
+{
+ /*
+ * Just return success. HW ECC does not read/write the NFC spare
+ * buffer. Only the FLASH spare area contains the calcuated ECC.
+ */
+ return 0;
+}
+
+/**
+ * This function reads byte from the NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return data read from the NAND Flash
+ */
+static unsigned char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+ unsigned char ret_val = 0;
+ u16 col, rd_word;
+ volatile u16 *mainbuf = MAIN_AREA0;
+ volatile u16 *sparebuf = SPARE_AREA0;
+
+ /* Check for status request */
+ if (nandinfo.read_status)
+ return get_dev_status() & 0xFF;
+
+ /* Get column for 16-bit access */
+ col = nandinfo.col >> 1;
+
+ /* If we are accessing the spare region */
+ if (nandinfo.oob)
+ rd_word = sparebuf[col];
+ else
+ rd_word = mainbuf[col];
+
+ /* Pick upper/lower byte of word from RAM buffer */
+ if (nandinfo.col & 0x1)
+ ret_val = (rd_word >> 8) & 0xFF;
+ else
+ ret_val = rd_word & 0xFF;
+
+ /* Update saved column address */
+ nandinfo.col++;
+
+ return ret_val;
+}
+
+/**
+ * This function reads word from the NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ *
+ * @return data read from the NAND Flash
+ */
+static u16 mxc_nand_read_word(struct mtd_info *mtd)
+{
+ u16 col;
+ u16 rd_word, ret_val;
+ volatile u16 *p;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_word(col = %d)\n", nandinfo.col);
+
+ col = nandinfo.col;
+ /* Adjust saved column address */
+ if (col < mtd->oobblock && nandinfo.oob)
+ col += mtd->oobblock;
+
+ if (col < mtd->oobblock)
+ p = (MAIN_AREA0) + (col >> 1);
+ else
+ p = (SPARE_AREA0) + ((col - mtd->oobblock) >> 1);
+
+ if (col & 1) {
+ rd_word = *p;
+ ret_val = (rd_word >> 8) & 0xff;
+ rd_word = *(p + 1);
+ ret_val |= (rd_word << 8) & 0xff00;
+
+ } else
+ ret_val = *p;
+
+ /* Update saved column address */
+ nandinfo.col = col + 2;
+
+ return ret_val;
+}
+
+/**
+ * This function writes data of length \b len to buffer \b buf. The data
+ * to be written on NAND Flash is first copied to RAMbuffer. After the
+ * Data Input Operation by the NFC, the data is written to NAND Flash.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be written to NAND Flash
+ * @param len number of bytes to be written
+ */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+ const unsigned char *buf, int len)
+{
+ int n;
+ int col;
+ int i = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_write_buf(col = %d, len = %d)\n", nandinfo.col, len);
+
+ col = nandinfo.col;
+
+ /* Adjust saved column address */
+ if (col < mtd->oobblock && nandinfo.oob)
+ col += mtd->oobblock;
+
+ n = mtd->oobblock + mtd->oobsize - col;
+ if (len > mtd->oobblock + mtd->oobsize - col)
+ DEBUG(MTD_DEBUG_LEVEL1, "Error: too much data.\n");
+
+ n = min(len, n);
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: col = %d, n = %d\n", __FUNCTION__, __LINE__, col, n);
+
+ while (n) {
+ volatile u32 *p;
+ if (col < mtd->oobblock)
+ p = (volatile u32 *)((ulong) (MAIN_AREA0) + (col & ~3));
+ else
+ p = (volatile u32 *)((ulong) (SPARE_AREA0) -
+ mtd->oobblock + (col & ~3));
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n",
+ __FUNCTION__, __LINE__, p);
+
+ if (((col | (int)&buf[i]) & 3) || n < 16) {
+ u32 data = 0;
+
+ if (col & 3 || n < 4)
+ data = *p;
+
+ switch (col & 3) {
+ case 0:
+ if (n) {
+ data = (data & 0xffffff00) |
+ (buf[i++] << 0);
+ n--;
+ col++;
+ }
+ case 1:
+ if (n) {
+ data = (data & 0xffff00ff) |
+ (buf[i++] << 8);
+ n--;
+ col++;
+ }
+ case 2:
+ if (n) {
+ data = (data & 0xff00ffff) |
+ (buf[i++] << 16);
+ n--;
+ col++;
+ }
+ case 3:
+ if (n) {
+ data = (data & 0x00ffffff) |
+ (buf[i++] << 24);
+ n--;
+ col++;
+ }
+ }
+
+ *p = data;
+ } else {
+ int m = mtd->oobblock - col;
+
+ if (col >= mtd->oobblock)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+ __FUNCTION__, __LINE__, n, m, i, col);
+
+ memcpy_32((void *)(p), &buf[i], m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ nandinfo.col = col;
+}
+
+/**
+ * This function id is used to read the data buffer from the NAND Flash. To
+ * read the data from NAND Flash first the data output cycle is initiated by
+ * the NFC, which copies the data to RAMbuffer. This data of length \b len is
+ * then copied to buffer \b buf.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be read from NAND Flash
+ * @param len number of bytes to be read
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, unsigned char *buf, int len)
+{
+ int n;
+ int col;
+ int i = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_read_buf(col = %d, len = %d)\n", nandinfo.col, len);
+
+ col = nandinfo.col;
+ /**
+ * Adjust saved column address
+ * for nand_read_oob will pass col within oobsize
+ */
+ if (col < mtd->oobblock && nandinfo.oob)
+ col += mtd->oobblock;
+
+ n = mtd->oobblock + mtd->oobsize - col;
+ n = min(len, n);
+
+ while (n) {
+ volatile u32 *p;
+
+ if (col < mtd->oobblock)
+ p = (volatile u32 *)((ulong) (MAIN_AREA0) + (col & ~3));
+ else
+ p = (volatile u32 *)((ulong) (SPARE_AREA0) -
+ mtd->oobblock + (col & ~3));
+
+ if (((col | (int)&buf[i]) & 3) || n < 16) {
+ u32 data;
+
+ data = *p;
+ switch (col & 3) {
+ case 0:
+ if (n) {
+ buf[i++] = (u8) (data);
+ n--;
+ col++;
+ }
+ case 1:
+ if (n) {
+ buf[i++] = (u8) (data >> 8);
+ n--;
+ col++;
+ }
+ case 2:
+ if (n) {
+ buf[i++] = (u8) (data >> 16);
+ n--;
+ col++;
+ }
+ case 3:
+ if (n) {
+ buf[i++] = (u8) (data >> 24);
+ n--;
+ col++;
+ }
+ }
+ } else {
+ int m = mtd->oobblock - col;
+
+ if (col >= mtd->oobblock)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+ memcpy_32(&buf[i], (void *)(p), m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ nandinfo.col = col;
+}
+
+/**
+ * This function is used by the upper layer to verify the data in NAND Flash
+ * with the data in the \b buf.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param buf data to be verified
+ * @param len length of the data to be verified
+ *
+ * @return -EFAULT if error else 0
+ */
+static int
+mxc_nand_verify_buf(struct mtd_info *mtd, const unsigned char *buf, int len)
+{
+ return -1; /* Was -EFAULT */
+}
+
+/**
+ * This function is used by upper layer for select and deselect of the NAND
+ * chip.
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param chip val indicating select or deselect
+ */
+static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+/**
+ * This function is used by the upper layer to write command to NAND Flash
+ * for different operations to be carried out on NAND Flash
+ *
+ * @param mtd MTD structure for the NAND Flash
+ * @param command command for NAND Flash
+ * @param column column offset for the page read
+ * @param page_addr page to be read from NAND Flash
+ */
+static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
+{
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+ command, column, page_addr);
+
+ /* Reset command state information */
+ nandinfo.read_status = 0;
+ nandinfo.oob = 0;
+
+ /* Command pre-processing step */
+ switch (command) {
+
+ case NAND_CMD_STATUS:
+ nandinfo.col = 0;
+ nandinfo.read_status = 1;
+ break;
+
+ case NAND_CMD_READ0:
+ nandinfo.col = column;
+ break;
+
+ case NAND_CMD_READOOB:
+ nandinfo.col = column;
+ nandinfo.oob = 1;
+ if (nandinfo.largepage)
+ command = NAND_CMD_READ0;
+ break;
+
+ case NAND_CMD_SEQIN:
+ if (column >= mtd->oobblock) {
+ /* write oob routine caller */
+ if (nandinfo.largepage) {
+ /*
+ * FIXME: before send SEQIN command for
+ * write OOB, we must read one page out.
+ * For 2K nand has no READ1 command to set
+ * current HW pointer to spare area, we must
+ * write the whole page including OOB together.
+ */
+ /* call itself to read a page */
+ mxc_nand_command(mtd, NAND_CMD_READ0, 0,
+ page_addr);
+ }
+ nandinfo.col = column - mtd->oobblock;
+ nandinfo.oob = 1;
+ /* Set program pointer to spare region */
+ if (!nandinfo.largepage)
+ send_cmd(NAND_CMD_READOOB);
+ } else {
+ nandinfo.oob = 0;
+ nandinfo.col = column;
+ /* Set program pointer to page start */
+ if (!nandinfo.largepage)
+ send_cmd(NAND_CMD_READ0);
+ }
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ if (ecc_disabled) {
+ /* Enable Ecc for page writes */
+ NFC_CONFIG1 |= NFC_ECC_EN;
+ }
+ send_prog_page(0);
+
+ if (nandinfo.largepage) {
+ /* data in 4 areas datas */
+ send_prog_page(1);
+ send_prog_page(2);
+ send_prog_page(3);
+ }
+
+ break;
+
+ case NAND_CMD_ERASE1:
+ break;
+ }
+
+ /*
+ * Write out the command to the device.
+ */
+ send_cmd(command);
+
+ /*
+ * Write out column address, if necessary
+ */
+ if (column != -1) {
+ /*
+ * MXC NANDFC can only perform full page+spare or
+ * spare-only read/write. When the upper layers
+ * layers perform a read/write buf operation,
+ * we will used the saved column adress to index into
+ * the full page.
+ */
+ send_addr(0);
+ if (nandinfo.largepage)
+ /* another col addr cycle for 2k page */
+ send_addr(0);
+ }
+
+ /*
+ * Write out page address, if necessary
+ */
+ if (page_addr != -1) {
+ /* paddr_0 - p_addr_7 */
+ send_addr((page_addr & 0xff));
+
+ if (nandinfo.largepage) {
+ /* One more address cycle for higher
+ * density devices */
+
+ if (mtd->size >= 0x10000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr((page_addr >> 8) & 0xff);
+ send_addr((page_addr >> 16) & 0xff);
+ } else
+ /* paddr_8 - paddr_15 */
+ send_addr((page_addr >> 8) & 0xff);
+ } else {
+ /* One more address cycle for higher
+ * density devices */
+
+ if (mtd->size >= 0x4000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr((page_addr >> 8) & 0xff);
+ send_addr((page_addr >> 16) & 0xff);
+ } else
+ /* paddr_8 - paddr_15 */
+ send_addr((page_addr >> 8) & 0xff);
+ }
+ }
+
+ /*
+ * Command post-processing step
+ */
+ switch (command) {
+
+ case NAND_CMD_RESET:
+ break;
+
+ case NAND_CMD_READOOB:
+ case NAND_CMD_READ0:
+ if (nandinfo.largepage) {
+ /* send read confirm command */
+ send_cmd(NAND_CMD_READSTART);
+ /* read for each AREA */
+ send_read_page(0);
+ send_read_page(1);
+ send_read_page(2);
+ send_read_page(3);
+ } else
+ send_read_page(0);
+ break;
+
+ case NAND_CMD_READID:
+ send_read_id();
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ if (ecc_disabled) {
+ /* Disable Ecc after page writes */
+ NFC_CONFIG1 &= ~NFC_ECC_EN;
+ }
+ break;
+
+ case NAND_CMD_ERASE2:
+ break;
+ }
+}
+
+static int mxc_nand_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Config before scanning */
+ /* Do not rely on NFMS_BIT, set/clear NFMS bit based
+ * on mtd->oobblock */
+ if (mtd->oobblock == 2048)
+ NFMS |= 1 << NFMS_BIT;
+ else if ((NFMS >> NFMS_BIT) & 0x1)
+ NFMS &= ~(1 << NFMS_BIT);
+
+ /* use flash based bbt */
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+
+ /* update flash based bbt */
+ this->options |= NAND_USE_FLASH_BBT;
+
+ if (!this->badblock_pattern) {
+ if (nandinfo.largepage)
+ this->badblock_pattern = &smallpage_memorybased;
+ else
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_memorybased : &smallpage_memorybased;
+ }
+ /* Build bad block table */
+ return nand_scan_bbt(mtd, this->badblock_pattern);
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+ nand->chip_delay = 0;
+
+ nand->cmdfunc = mxc_nand_command;
+ nand->select_chip = mxc_nand_select_chip;
+ nand->read_byte = mxc_nand_read_byte;
+ nand->read_word = mxc_nand_read_word;
+ nand->write_buf = mxc_nand_write_buf;
+ nand->read_buf = mxc_nand_read_buf;
+ nand->verify_buf = mxc_nand_verify_buf;
+ nand->scan_bbt = mxc_nand_scan_bbt;
+ nand->calculate_ecc = mxc_nand_calculate_ecc;
+ nand->correct_data = mxc_nand_correct_data;
+ nand->enable_hwecc = mxc_nand_enable_hwecc;
+ nand->eccmode = NAND_ECC_HW3_512;
+ nand->eccbytes = 512;
+ nand->eccsize = 3;
+
+ /* Reset NAND */
+ NFC_CONFIG1 |= NFC_INT_MSK | NFC_RST | NFC_ECC_EN;
+
+ /* Unlock the internal RAM buffer */
+ NFC_CONFIG = 0x2;
+
+ /* Block to be unlocked */
+ NFC_UNLOCKSTART_BLKADDR = 0x0;
+ NFC_UNLOCKEND_BLKADDR = 0x4000;
+
+ /* Unlock Block Command for given address range */
+ NFC_WRPROT = 0x4;
+
+ /* Only 8 bit bus support for now */
+ nand->options |= 0;
+
+ if ((NFMS >> NFMS_BIT) & 1) {
+ nandinfo.largepage = 1;
+ nand->autooob = &nand_hw_eccoob_2k;
+ } else {
+ nandinfo.largepage = 0;
+ nand->autooob = &nand_hw_eccoob_8;
+ }
+
+ return 0;
+}