diff options
author | Kyle Moffett <Kyle.D.Moffett@boeing.com> | 2011-10-18 11:05:29 +0000 |
---|---|---|
committer | Wolfgang Denk <wd@denx.de> | 2011-10-28 00:37:01 +0200 |
commit | ce5207e191c59b3135303fd03b98dd2ac3701ba2 (patch) | |
tree | d9f5458d8dde3142031f21b76e6909a9cb328ca0 /drivers/net/e1000_spi.c | |
parent | 2326a94db10d9b6c0bf322c6536cafcac8e85522 (diff) | |
download | u-boot-imx-ce5207e191c59b3135303fd03b98dd2ac3701ba2.zip u-boot-imx-ce5207e191c59b3135303fd03b98dd2ac3701ba2.tar.gz u-boot-imx-ce5207e191c59b3135303fd03b98dd2ac3701ba2.tar.bz2 |
e1000: Allow direct access to the E1000 SPI EEPROM device
As a part of the manufacturing process for some of our custom hardware,
we are programming the EEPROMs attached to our Intel 82571EB controllers
from software using U-Boot and Linux.
This code provides several conditionally-compiled features to assist in
our manufacturing process:
CONFIG_CMD_E1000:
This is a basic "e1000" command which allows querying the controller
and (if other config options are set) performing EEPROM programming.
In particular, with CONFIG_E1000_SPI this allows you to display a
hex-dump of the EEPROM, copy to/from main memory, and verify/update
the software checksum.
CONFIG_E1000_SPI_GENERIC:
Build a generic SPI driver providing the standard U-Boot SPI driver
interface. This allows commands such as "sspi" to access the bus
attached to the E1000 controller. Additionally, some E1000 chipsets
can support user data in a reserved space in the E1000 EEPROM which
could be used for U-Boot environment storage.
CONFIG_E1000_SPI:
The core SPI access code used by the above interfaces.
For example, the following commands allow you to program the EEPROM from
a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled):
usb start
fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin
e1000 0 spi program $loadaddr 0 1024
e1000 0 spi checksum update
Please keep in mind that the Intel-provided .eep files are organized as
16-bit words. When converting them to binary form for programming you
must byteswap each 16-bit word so that it is in little-endian form.
This means that when reading and writing words to the SPI EEPROM, the
bit ordering for each word looks like this on the wire:
Time >>>
------------------------------------------------------------------
... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ...
------------------------------------------------------------------
(MSB is 15, LSB is 0).
Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Ben Warren <biggerbadderben@gmail.com>
Diffstat (limited to 'drivers/net/e1000_spi.c')
-rw-r--r-- | drivers/net/e1000_spi.c | 576 |
1 files changed, 576 insertions, 0 deletions
diff --git a/drivers/net/e1000_spi.c b/drivers/net/e1000_spi.c new file mode 100644 index 0000000..5491780 --- /dev/null +++ b/drivers/net/e1000_spi.c @@ -0,0 +1,576 @@ +#include "e1000.h" + +/*----------------------------------------------------------------------- + * SPI transfer + * + * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks + * "bitlen" bits in the SPI MISO port. That's just the way SPI works. + * + * The source of the outgoing bits is the "dout" parameter and the + * destination of the input bits is the "din" parameter. Note that "dout" + * and "din" can point to the same memory location, in which case the + * input data overwrites the output data (since both are buffered by + * temporary variables, this is OK). + * + * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will + * never return an error. + */ +static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, + const void *dout_mem, void *din_mem, boolean_t intr) +{ + const uint8_t *dout = dout_mem; + uint8_t *din = din_mem; + + uint8_t mask = 0; + uint32_t eecd; + unsigned long i; + + /* Pre-read the control register */ + eecd = E1000_READ_REG(hw, EECD); + + /* Iterate over each bit */ + for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { + /* Check for interrupt */ + if (intr && ctrlc()) + return -1; + + /* Determine the output bit */ + if (dout && dout[i >> 3] & mask) + eecd |= E1000_EECD_DI; + else + eecd &= ~E1000_EECD_DI; + + /* Write the output bit and wait 50us */ + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(50); + + /* Poke the clock (waits 50us) */ + e1000_raise_ee_clk(hw, &eecd); + + /* Now read the input bit */ + eecd = E1000_READ_REG(hw, EECD); + if (din) { + if (eecd & E1000_EECD_DO) + din[i >> 3] |= mask; + else + din[i >> 3] &= ~mask; + } + + /* Poke the clock again (waits 50us) */ + e1000_lower_ee_clk(hw, &eecd); + } + + /* Now clear any remaining bits of the input */ + if (din && (i & 7)) + din[i >> 3] &= ~((mask << 1) - 1); + + return 0; +} + +#ifdef CONFIG_E1000_SPI_GENERIC +static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) +{ + return container_of(spi, struct e1000_hw, spi); +} + +/* Not sure why all of these are necessary */ +void spi_init_r(void) { /* Nothing to do */ } +void spi_init_f(void) { /* Nothing to do */ } +void spi_init(void) { /* Nothing to do */ } + +struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, + unsigned int max_hz, unsigned int mode) +{ + /* Find the right PCI device */ + struct e1000_hw *hw = e1000_find_card(bus); + if (!hw) { + printf("ERROR: No such e1000 device: e1000#%u\n", bus); + return NULL; + } + + /* Make sure it has an SPI chip */ + if (hw->eeprom.type != e1000_eeprom_spi) { + E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); + return NULL; + } + + /* Argument sanity checks */ + if (cs != 0) { + E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs); + return NULL; + } + if (mode != SPI_MODE_0) { + E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n"); + return NULL; + } + + /* TODO: Use max_hz somehow */ + E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); + return &hw->spi; +} + +void spi_free_slave(struct spi_slave *spi) +{ + struct e1000_hw *hw = e1000_hw_from_spi(spi); + E1000_DBG(hw->nic, "EEPROM SPI access released\n"); +} + +int spi_claim_bus(struct spi_slave *spi) +{ + struct e1000_hw *hw = e1000_hw_from_spi(spi); + + if (e1000_acquire_eeprom(hw)) { + E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); + return -1; + } + + return 0; +} + +void spi_release_bus(struct spi_slave *spi) +{ + struct e1000_hw *hw = e1000_hw_from_spi(spi); + e1000_release_eeprom(hw); +} + +/* Skinny wrapper around e1000_spi_xfer */ +int spi_xfer(struct spi_slave *spi, unsigned int bitlen, + const void *dout_mem, void *din_mem, unsigned long flags) +{ + struct e1000_hw *hw = e1000_hw_from_spi(spi); + int ret; + + if (flags & SPI_XFER_BEGIN) + e1000_standby_eeprom(hw); + + ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, TRUE); + + if (flags & SPI_XFER_END) + e1000_standby_eeprom(hw); + + return ret; +} + +#endif /* not CONFIG_E1000_SPI_GENERIC */ + +#ifdef CONFIG_CMD_E1000 + +/* The EEPROM opcodes */ +#define SPI_EEPROM_ENABLE_WR 0x06 +#define SPI_EEPROM_DISABLE_WR 0x04 +#define SPI_EEPROM_WRITE_STATUS 0x01 +#define SPI_EEPROM_READ_STATUS 0x05 +#define SPI_EEPROM_WRITE_PAGE 0x02 +#define SPI_EEPROM_READ_PAGE 0x03 + +/* The EEPROM status bits */ +#define SPI_EEPROM_STATUS_BUSY 0x01 +#define SPI_EEPROM_STATUS_WREN 0x02 + +static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr) +{ + u8 op[] = { SPI_EEPROM_ENABLE_WR }; + e1000_standby_eeprom(hw); + return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); +} + +/* + * These have been tested to perform correctly, but they are not used by any + * of the EEPROM commands at this time. + */ +#if 0 +static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr) +{ + u8 op[] = { SPI_EEPROM_DISABLE_WR }; + e1000_standby_eeprom(hw); + return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); +} + +static int e1000_spi_eeprom_write_status(struct e1000_hw *hw, + u8 status, boolean_t intr) +{ + u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; + e1000_standby_eeprom(hw); + return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); +} +#endif + +static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr) +{ + u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; + e1000_standby_eeprom(hw); + if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) + return -1; + return op[1]; +} + +static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, + const void *data, u16 off, u16 len, boolean_t intr) +{ + u8 op[] = { + SPI_EEPROM_WRITE_PAGE, + (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff + }; + + e1000_standby_eeprom(hw); + + if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) + return -1; + if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) + return -1; + + return 0; +} + +static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, + void *data, u16 off, u16 len, boolean_t intr) +{ + u8 op[] = { + SPI_EEPROM_READ_PAGE, + (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff + }; + + e1000_standby_eeprom(hw); + + if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) + return -1; + if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) + return -1; + + return 0; +} + +static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr) +{ + int status; + while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { + if (!(status & SPI_EEPROM_STATUS_BUSY)) + return 0; + } + return -1; +} + +static int e1000_spi_eeprom_dump(struct e1000_hw *hw, + void *data, u16 off, unsigned int len, boolean_t intr) +{ + /* Interruptibly wait for the EEPROM to be ready */ + if (e1000_spi_eeprom_poll_ready(hw, intr)) + return -1; + + /* Dump each page in sequence */ + while (len) { + /* Calculate the data bytes on this page */ + u16 pg_off = off & (hw->eeprom.page_size - 1); + u16 pg_len = hw->eeprom.page_size - pg_off; + if (pg_len > len) + pg_len = len; + + /* Now dump the page */ + if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) + return -1; + + /* Otherwise go on to the next page */ + len -= pg_len; + off += pg_len; + data += pg_len; + } + + /* We're done! */ + return 0; +} + +static int e1000_spi_eeprom_program(struct e1000_hw *hw, + const void *data, u16 off, u16 len, boolean_t intr) +{ + /* Program each page in sequence */ + while (len) { + /* Calculate the data bytes on this page */ + u16 pg_off = off & (hw->eeprom.page_size - 1); + u16 pg_len = hw->eeprom.page_size - pg_off; + if (pg_len > len) + pg_len = len; + + /* Interruptibly wait for the EEPROM to be ready */ + if (e1000_spi_eeprom_poll_ready(hw, intr)) + return -1; + + /* Enable write access */ + if (e1000_spi_eeprom_enable_wr(hw, intr)) + return -1; + + /* Now program the page */ + if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) + return -1; + + /* Otherwise go on to the next page */ + len -= pg_len; + off += pg_len; + data += pg_len; + } + + /* Wait for the last write to complete */ + if (e1000_spi_eeprom_poll_ready(hw, intr)) + return -1; + + /* We're done! */ + return 0; +} + +static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, + int argc, char * const argv[]) +{ + unsigned int length = 0; + u16 i, offset = 0; + u8 *buffer; + int err; + + if (argc > 2) { + cmd_usage(cmdtp); + return 1; + } + + /* Parse the offset and length */ + if (argc >= 1) + offset = simple_strtoul(argv[0], NULL, 0); + if (argc == 2) + length = simple_strtoul(argv[1], NULL, 0); + else if (offset < (hw->eeprom.word_size << 1)) + length = (hw->eeprom.word_size << 1) - offset; + + /* Extra sanity checks */ + if (!length) { + E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); + return 1; + } + if ((0x10000 < length) || (0x10000 - length < offset)) { + E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); + return 1; + } + + /* Allocate a buffer to hold stuff */ + buffer = malloc(length); + if (!buffer) { + E1000_ERR(hw->nic, "Out of Memory!\n"); + return 1; + } + + /* Acquire the EEPROM and perform the dump */ + if (e1000_acquire_eeprom(hw)) { + E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); + free(buffer); + return 1; + } + err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE); + e1000_release_eeprom(hw); + if (err) { + E1000_ERR(hw->nic, "Interrupted!\n"); + free(buffer); + return 1; + } + + /* Now hexdump the result */ + printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", + hw->nic->name, offset, offset + length - 1); + for (i = 0; i < length; i++) { + if ((i & 0xF) == 0) + printf("\n%s: %04hX: ", hw->nic->name, offset + i); + else if ((i & 0xF) == 0x8) + printf(" "); + printf(" %02hx", buffer[i]); + } + printf("\n"); + + /* Success! */ + free(buffer); + return 0; +} + +static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, + int argc, char * const argv[]) +{ + unsigned int length; + u16 offset; + void *dest; + + if (argc != 3) { + cmd_usage(cmdtp); + return 1; + } + + /* Parse the arguments */ + dest = (void *)simple_strtoul(argv[0], NULL, 16); + offset = simple_strtoul(argv[1], NULL, 0); + length = simple_strtoul(argv[2], NULL, 0); + + /* Extra sanity checks */ + if (!length) { + E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); + return 1; + } + if ((0x10000 < length) || (0x10000 - length < offset)) { + E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); + return 1; + } + + /* Acquire the EEPROM */ + if (e1000_acquire_eeprom(hw)) { + E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); + return 1; + } + + /* Perform the programming operation */ + if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) { + E1000_ERR(hw->nic, "Interrupted!\n"); + e1000_release_eeprom(hw); + return 1; + } + + e1000_release_eeprom(hw); + printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name); + return 0; +} + +static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, + int argc, char * const argv[]) +{ + unsigned int length; + const void *source; + u16 offset; + + if (argc != 3) { + cmd_usage(cmdtp); + return 1; + } + + /* Parse the arguments */ + source = (const void *)simple_strtoul(argv[0], NULL, 16); + offset = simple_strtoul(argv[1], NULL, 0); + length = simple_strtoul(argv[2], NULL, 0); + + /* Acquire the EEPROM */ + if (e1000_acquire_eeprom(hw)) { + E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); + return 1; + } + + /* Perform the programming operation */ + if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) { + E1000_ERR(hw->nic, "Interrupted!\n"); + e1000_release_eeprom(hw); + return 1; + } + + e1000_release_eeprom(hw); + printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name); + return 0; +} + +static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, + int argc, char * const argv[]) +{ + uint16_t i, length, checksum, checksum_reg; + uint16_t *buffer; + boolean_t upd; + + if (argc == 0) + upd = 0; + else if ((argc == 1) && !strcmp(argv[0], "update")) + upd = 1; + else { + cmd_usage(cmdtp); + return 1; + } + + /* Allocate a temporary buffer */ + length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); + buffer = malloc(length); + if (!buffer) { + E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); + return 1; + } + + /* Acquire the EEPROM */ + if (e1000_acquire_eeprom(hw)) { + E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); + return 1; + } + + /* Read the EEPROM */ + if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) { + E1000_ERR(hw->nic, "Interrupted!\n"); + e1000_release_eeprom(hw); + return 1; + } + + /* Compute the checksum and read the expected value */ + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) + checksum += le16_to_cpu(buffer[i]); + checksum = ((uint16_t)EEPROM_SUM) - checksum; + checksum_reg = le16_to_cpu(buffer[i]); + + /* Verify it! */ + if (checksum_reg == checksum) { + printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", + hw->nic->name, checksum); + e1000_release_eeprom(hw); + return 0; + } + + /* Hrm, verification failed, print an error */ + E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); + E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n", + checksum_reg, checksum); + + /* If they didn't ask us to update it, just return an error */ + if (!upd) { + e1000_release_eeprom(hw); + return 1; + } + + /* Ok, correct it! */ + printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name); + buffer[i] = cpu_to_le16(checksum); + if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), + sizeof(uint16_t), TRUE)) { + E1000_ERR(hw->nic, "Interrupted!\n"); + e1000_release_eeprom(hw); + return 1; + } + + e1000_release_eeprom(hw); + return 0; +} + +int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, + int argc, char * const argv[]) +{ + if (argc < 1) { + cmd_usage(cmdtp); + return 1; + } + + /* Make sure it has an SPI chip */ + if (hw->eeprom.type != e1000_eeprom_spi) { + E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); + return 1; + } + + /* Check the eeprom sub-sub-command arguments */ + if (!strcmp(argv[0], "show")) + return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); + + if (!strcmp(argv[0], "dump")) + return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); + + if (!strcmp(argv[0], "program")) + return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); + + if (!strcmp(argv[0], "checksum")) + return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); + + cmd_usage(cmdtp); + return 1; +} + +#endif /* not CONFIG_CMD_E1000 */ |