summaryrefslogtreecommitdiff
path: root/drivers/mtd
diff options
context:
space:
mode:
authorNobuhiro Iwamatsu <iwamatsu@nigauri.org>2007-12-07 01:20:16 +0900
committerNobuhiro Iwamatsu <iwamatsu@nigauri.org>2007-12-07 01:20:16 +0900
commit521dcd30b9cc5b72cd27ae04104f19369251aa20 (patch)
treebc33710a3ae6f97f0dcae8f02fd6f3c91322d96d /drivers/mtd
parent260eea5676ca46903a335686cc020b29c4ca46fe (diff)
parent8d4f040a3c15036a6ea25a9c39e7d89fefa8440d (diff)
downloadu-boot-imx-521dcd30b9cc5b72cd27ae04104f19369251aa20.zip
u-boot-imx-521dcd30b9cc5b72cd27ae04104f19369251aa20.tar.gz
u-boot-imx-521dcd30b9cc5b72cd27ae04104f19369251aa20.tar.bz2
Merge git://www.denx.de/git/u-boot
Conflicts: drivers/Makefile
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/Makefile49
-rw-r--r--drivers/mtd/at45.c562
-rw-r--r--drivers/mtd/cfi_flash.c1528
-rw-r--r--drivers/mtd/dataflash.c507
-rw-r--r--drivers/mtd/mw_eeprom.c241
-rw-r--r--drivers/mtd/nand/Makefile51
-rw-r--r--drivers/mtd/nand/diskonchip.c1787
-rw-r--r--drivers/mtd/nand/nand.c83
-rw-r--r--drivers/mtd/nand/nand_base.c2668
-rw-r--r--drivers/mtd/nand/nand_bbt.c1052
-rw-r--r--drivers/mtd/nand/nand_ecc.c200
-rw-r--r--drivers/mtd/nand/nand_ids.c129
-rw-r--r--drivers/mtd/nand/nand_util.c872
-rw-r--r--drivers/mtd/nand_legacy/Makefile45
-rw-r--r--drivers/mtd/nand_legacy/nand_legacy.c1612
-rw-r--r--drivers/mtd/onenand/Makefile44
-rw-r--r--drivers/mtd/onenand/onenand_base.c1294
-rw-r--r--drivers/mtd/onenand/onenand_bbt.c265
18 files changed, 12989 insertions, 0 deletions
diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile
new file mode 100644
index 0000000..95c5e02
--- /dev/null
+++ b/drivers/mtd/Makefile
@@ -0,0 +1,49 @@
+#
+# (C) Copyright 2000-2007
+# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+#
+# See file CREDITS for list of people who contributed to this
+# project.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License as
+# published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+# MA 02111-1307 USA
+#
+
+include $(TOPDIR)/config.mk
+
+LIB := $(obj)libmtd.a
+
+COBJS-y += at45.o
+COBJS-y += cfi_flash.o
+COBJS-y += dataflash.o
+COBJS-y += mw_eeprom.o
+
+COBJS := $(COBJS-y)
+SRCS := $(COBJS:.o=.c)
+OBJS := $(addprefix $(obj),$(COBJS))
+
+all: $(LIB)
+
+$(LIB): $(obj).depend $(OBJS)
+ $(AR) $(ARFLAGS) $@ $(OBJS)
+
+#########################################################################
+
+# defines $(obj).depend target
+include $(SRCTREE)/rules.mk
+
+sinclude $(obj).depend
+
+#########################################################################
diff --git a/drivers/mtd/at45.c b/drivers/mtd/at45.c
new file mode 100644
index 0000000..dac987a
--- /dev/null
+++ b/drivers/mtd/at45.c
@@ -0,0 +1,562 @@
+/* Driver for ATMEL DataFlash support
+ * Author : Hamid Ikdoumi (Atmel)
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+#include <config.h>
+#include <common.h>
+
+#ifdef CONFIG_HAS_DATAFLASH
+#include <dataflash.h>
+
+/*
+ * spi.c API
+ */
+extern unsigned int AT91F_SpiWrite(AT91PS_DataflashDesc pDesc);
+extern void AT91F_SpiEnable(int cs);
+
+#define AT91C_TIMEOUT_WRDY 200000
+
+/*----------------------------------------------------------------------*/
+/* \fn AT91F_DataFlashSendCommand */
+/* \brief Generic function to send a command to the dataflash */
+/*----------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashSendCommand(AT91PS_DataFlash pDataFlash,
+ unsigned char OpCode,
+ unsigned int CmdSize,
+ unsigned int DataflashAddress)
+{
+ unsigned int adr;
+
+ if ((pDataFlash->pDataFlashDesc->state) != IDLE)
+ return DATAFLASH_BUSY;
+
+ /* process the address to obtain page address and byte address */
+ adr = ((DataflashAddress / (pDataFlash->pDevice->pages_size)) <<
+ pDataFlash->pDevice->page_offset) +
+ (DataflashAddress % (pDataFlash->pDevice->pages_size));
+
+ /* fill the command buffer */
+ pDataFlash->pDataFlashDesc->command[0] = OpCode;
+ if (pDataFlash->pDevice->pages_number >= 16384) {
+ pDataFlash->pDataFlashDesc->command[1] =
+ (unsigned char)((adr & 0x0F000000) >> 24);
+ pDataFlash->pDataFlashDesc->command[2] =
+ (unsigned char)((adr & 0x00FF0000) >> 16);
+ pDataFlash->pDataFlashDesc->command[3] =
+ (unsigned char)((adr & 0x0000FF00) >> 8);
+ pDataFlash->pDataFlashDesc->command[4] =
+ (unsigned char)(adr & 0x000000FF);
+ } else {
+ pDataFlash->pDataFlashDesc->command[1] =
+ (unsigned char)((adr & 0x00FF0000) >> 16);
+ pDataFlash->pDataFlashDesc->command[2] =
+ (unsigned char)((adr & 0x0000FF00) >> 8);
+ pDataFlash->pDataFlashDesc->command[3] =
+ (unsigned char)(adr & 0x000000FF);
+ pDataFlash->pDataFlashDesc->command[4] = 0;
+ }
+ pDataFlash->pDataFlashDesc->command[5] = 0;
+ pDataFlash->pDataFlashDesc->command[6] = 0;
+ pDataFlash->pDataFlashDesc->command[7] = 0;
+
+ /* Initialize the SpiData structure for the spi write fuction */
+ pDataFlash->pDataFlashDesc->tx_cmd_pt =
+ pDataFlash->pDataFlashDesc->command;
+ pDataFlash->pDataFlashDesc->tx_cmd_size = CmdSize;
+ pDataFlash->pDataFlashDesc->rx_cmd_pt =
+ pDataFlash->pDataFlashDesc->command;
+ pDataFlash->pDataFlashDesc->rx_cmd_size = CmdSize;
+
+ /* send the command and read the data */
+ return AT91F_SpiWrite(pDataFlash->pDataFlashDesc);
+}
+
+/*----------------------------------------------------------------------*/
+/* \fn AT91F_DataFlashGetStatus */
+/* \brief Read the status register of the dataflash */
+/*----------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashGetStatus(AT91PS_DataflashDesc pDesc)
+{
+ AT91S_DataFlashStatus status;
+
+ /* if a transfert is in progress ==> return 0 */
+ if ((pDesc->state) != IDLE)
+ return DATAFLASH_BUSY;
+
+ /* first send the read status command (D7H) */
+ pDesc->command[0] = DB_STATUS;
+ pDesc->command[1] = 0;
+
+ pDesc->DataFlash_state = GET_STATUS;
+ pDesc->tx_data_size = 0; /* Transmit the command */
+ /* and receive response */
+ pDesc->tx_cmd_pt = pDesc->command;
+ pDesc->rx_cmd_pt = pDesc->command;
+ pDesc->rx_cmd_size = 2;
+ pDesc->tx_cmd_size = 2;
+ status = AT91F_SpiWrite(pDesc);
+
+ pDesc->DataFlash_state = *((unsigned char *)(pDesc->rx_cmd_pt) + 1);
+
+ return status;
+}
+
+/*----------------------------------------------------------------------*/
+/* \fn AT91F_DataFlashWaitReady */
+/* \brief wait for dataflash ready (bit7 of the status register == 1) */
+/*----------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashWaitReady(AT91PS_DataflashDesc
+ pDataFlashDesc,
+ unsigned int timeout)
+{
+ pDataFlashDesc->DataFlash_state = IDLE;
+
+ do {
+ AT91F_DataFlashGetStatus(pDataFlashDesc);
+ timeout--;
+ } while (((pDataFlashDesc->DataFlash_state & 0x80) != 0x80) &&
+ (timeout > 0));
+
+ if ((pDataFlashDesc->DataFlash_state & 0x80) != 0x80)
+ return DATAFLASH_ERROR;
+
+ return DATAFLASH_OK;
+}
+
+/*--------------------------------------------------------------------------*/
+/* Function Name : AT91F_DataFlashContinuousRead */
+/* Object : Continuous stream Read */
+/* Input Parameters : DataFlash Service */
+/* : <src> = dataflash address */
+/* : <*dataBuffer> = data buffer pointer */
+/* : <sizeToRead> = data buffer size */
+/* Return value : State of the dataflash */
+/*--------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashContinuousRead(
+ AT91PS_DataFlash pDataFlash,
+ int src,
+ unsigned char *dataBuffer,
+ int sizeToRead)
+{
+ AT91S_DataFlashStatus status;
+ /* Test the size to read in the device */
+ if ((src + sizeToRead) >
+ (pDataFlash->pDevice->pages_size *
+ (pDataFlash->pDevice->pages_number)))
+ return DATAFLASH_MEMORY_OVERFLOW;
+
+ pDataFlash->pDataFlashDesc->rx_data_pt = dataBuffer;
+ pDataFlash->pDataFlashDesc->rx_data_size = sizeToRead;
+ pDataFlash->pDataFlashDesc->tx_data_pt = dataBuffer;
+ pDataFlash->pDataFlashDesc->tx_data_size = sizeToRead;
+
+ status = AT91F_DataFlashSendCommand(
+ pDataFlash, DB_CONTINUOUS_ARRAY_READ, 8, src);
+ /* Send the command to the dataflash */
+ return (status);
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_DataFlashPagePgmBuf */
+/* Object : Main memory page program thru buffer 1 or buffer 2 */
+/* Input Parameters : DataFlash Service */
+/* : <*src> = Source buffer */
+/* : <dest> = dataflash destination address */
+/* : <SizeToWrite> = data buffer size */
+/* Return value : State of the dataflash */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashPagePgmBuf(AT91PS_DataFlash pDataFlash,
+ unsigned char *src,
+ unsigned int dest,
+ unsigned int SizeToWrite)
+{
+ int cmdsize;
+ pDataFlash->pDataFlashDesc->tx_data_pt = src;
+ pDataFlash->pDataFlashDesc->tx_data_size = SizeToWrite;
+ pDataFlash->pDataFlashDesc->rx_data_pt = src;
+ pDataFlash->pDataFlashDesc->rx_data_size = SizeToWrite;
+
+ cmdsize = 4;
+ /* Send the command to the dataflash */
+ if (pDataFlash->pDevice->pages_number >= 16384)
+ cmdsize = 5;
+ return (AT91F_DataFlashSendCommand(
+ pDataFlash, DB_PAGE_PGM_BUF1, cmdsize, dest));
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_MainMemoryToBufferTransfert */
+/* Object : Read a page in the SRAM Buffer 1 or 2 */
+/* Input Parameters : DataFlash Service */
+/* : Page concerned */
+/* : */
+/* Return value : State of the dataflash */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_MainMemoryToBufferTransfert(
+ AT91PS_DataFlash
+ pDataFlash,
+ unsigned char
+ BufferCommand,
+ unsigned int page)
+{
+ int cmdsize;
+ /* Test if the buffer command is legal */
+ if ((BufferCommand != DB_PAGE_2_BUF1_TRF) &&
+ (BufferCommand != DB_PAGE_2_BUF2_TRF)) {
+ return DATAFLASH_BAD_COMMAND;
+ }
+
+ /* no data to transmit or receive */
+ pDataFlash->pDataFlashDesc->tx_data_size = 0;
+ cmdsize = 4;
+ if (pDataFlash->pDevice->pages_number >= 16384)
+ cmdsize = 5;
+ return (AT91F_DataFlashSendCommand(
+ pDataFlash, BufferCommand, cmdsize,
+ page * pDataFlash->pDevice->pages_size));
+}
+
+/*-------------------------------------------------------------------------- */
+/* Function Name : AT91F_DataFlashWriteBuffer */
+/* Object : Write data to the internal sram buffer 1 or 2 */
+/* Input Parameters : DataFlash Service */
+/* : <BufferCommand> = command to write buffer1 or 2 */
+/* : <*dataBuffer> = data buffer to write */
+/* : <bufferAddress> = address in the internal buffer */
+/* : <SizeToWrite> = data buffer size */
+/* Return value : State of the dataflash */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashWriteBuffer(
+ AT91PS_DataFlash pDataFlash,
+ unsigned char BufferCommand,
+ unsigned char *dataBuffer,
+ unsigned int bufferAddress,
+ int SizeToWrite)
+{
+ int cmdsize;
+ /* Test if the buffer command is legal */
+ if ((BufferCommand != DB_BUF1_WRITE) &&
+ (BufferCommand != DB_BUF2_WRITE)) {
+ return DATAFLASH_BAD_COMMAND;
+ }
+
+ /* buffer address must be lower than page size */
+ if (bufferAddress > pDataFlash->pDevice->pages_size)
+ return DATAFLASH_BAD_ADDRESS;
+
+ if ((pDataFlash->pDataFlashDesc->state) != IDLE)
+ return DATAFLASH_BUSY;
+
+ /* Send first Write Command */
+ pDataFlash->pDataFlashDesc->command[0] = BufferCommand;
+ pDataFlash->pDataFlashDesc->command[1] = 0;
+ if (pDataFlash->pDevice->pages_number >= 16384) {
+ pDataFlash->pDataFlashDesc->command[2] = 0;
+ pDataFlash->pDataFlashDesc->command[3] =
+ (unsigned char)(((unsigned int)(bufferAddress &
+ pDataFlash->pDevice->
+ byte_mask)) >> 8);
+ pDataFlash->pDataFlashDesc->command[4] =
+ (unsigned char)((unsigned int)bufferAddress & 0x00FF);
+ cmdsize = 5;
+ } else {
+ pDataFlash->pDataFlashDesc->command[2] =
+ (unsigned char)(((unsigned int)(bufferAddress &
+ pDataFlash->pDevice->
+ byte_mask)) >> 8);
+ pDataFlash->pDataFlashDesc->command[3] =
+ (unsigned char)((unsigned int)bufferAddress & 0x00FF);
+ pDataFlash->pDataFlashDesc->command[4] = 0;
+ cmdsize = 4;
+ }
+
+ pDataFlash->pDataFlashDesc->tx_cmd_pt =
+ pDataFlash->pDataFlashDesc->command;
+ pDataFlash->pDataFlashDesc->tx_cmd_size = cmdsize;
+ pDataFlash->pDataFlashDesc->rx_cmd_pt =
+ pDataFlash->pDataFlashDesc->command;
+ pDataFlash->pDataFlashDesc->rx_cmd_size = cmdsize;
+
+ pDataFlash->pDataFlashDesc->rx_data_pt = dataBuffer;
+ pDataFlash->pDataFlashDesc->tx_data_pt = dataBuffer;
+ pDataFlash->pDataFlashDesc->rx_data_size = SizeToWrite;
+ pDataFlash->pDataFlashDesc->tx_data_size = SizeToWrite;
+
+ return AT91F_SpiWrite(pDataFlash->pDataFlashDesc);
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_PageErase */
+/* Object : Erase a page */
+/* Input Parameters : DataFlash Service */
+/* : Page concerned */
+/* : */
+/* Return value : State of the dataflash */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_PageErase(
+ AT91PS_DataFlash pDataFlash,
+ unsigned int page)
+{
+ int cmdsize;
+ /* Test if the buffer command is legal */
+ /* no data to transmit or receive */
+ pDataFlash->pDataFlashDesc->tx_data_size = 0;
+
+ cmdsize = 4;
+ if (pDataFlash->pDevice->pages_number >= 16384)
+ cmdsize = 5;
+ return (AT91F_DataFlashSendCommand(pDataFlash,
+ DB_PAGE_ERASE, cmdsize,
+ page * pDataFlash->pDevice->pages_size));
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_BlockErase */
+/* Object : Erase a Block */
+/* Input Parameters : DataFlash Service */
+/* : Page concerned */
+/* : */
+/* Return value : State of the dataflash */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_BlockErase(
+ AT91PS_DataFlash pDataFlash,
+ unsigned int block)
+{
+ int cmdsize;
+ /* Test if the buffer command is legal */
+ /* no data to transmit or receive */
+ pDataFlash->pDataFlashDesc->tx_data_size = 0;
+ cmdsize = 4;
+ if (pDataFlash->pDevice->pages_number >= 16384)
+ cmdsize = 5;
+ return (AT91F_DataFlashSendCommand(pDataFlash, DB_BLOCK_ERASE, cmdsize,
+ block * 8 *
+ pDataFlash->pDevice->pages_size));
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_WriteBufferToMain */
+/* Object : Write buffer to the main memory */
+/* Input Parameters : DataFlash Service */
+/* : <BufferCommand> = command to send to buffer1 or buffer2 */
+/* : <dest> = main memory address */
+/* Return value : State of the dataflash */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_WriteBufferToMain(AT91PS_DataFlash pDataFlash,
+ unsigned char BufferCommand,
+ unsigned int dest)
+{
+ int cmdsize;
+ /* Test if the buffer command is correct */
+ if ((BufferCommand != DB_BUF1_PAGE_PGM) &&
+ (BufferCommand != DB_BUF1_PAGE_ERASE_PGM) &&
+ (BufferCommand != DB_BUF2_PAGE_PGM) &&
+ (BufferCommand != DB_BUF2_PAGE_ERASE_PGM))
+ return DATAFLASH_BAD_COMMAND;
+
+ /* no data to transmit or receive */
+ pDataFlash->pDataFlashDesc->tx_data_size = 0;
+
+ cmdsize = 4;
+ if (pDataFlash->pDevice->pages_number >= 16384)
+ cmdsize = 5;
+ /* Send the command to the dataflash */
+ return (AT91F_DataFlashSendCommand(pDataFlash, BufferCommand,
+ cmdsize, dest));
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_PartialPageWrite */
+/* Object : Erase partielly a page */
+/* Input Parameters : <page> = page number */
+/* : <AdrInpage> = adr to begin the fading */
+/* : <length> = Number of bytes to erase */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_PartialPageWrite(AT91PS_DataFlash pDataFlash,
+ unsigned char *src,
+ unsigned int dest,
+ unsigned int size)
+{
+ unsigned int page;
+ unsigned int AdrInPage;
+
+ page = dest / (pDataFlash->pDevice->pages_size);
+ AdrInPage = dest % (pDataFlash->pDevice->pages_size);
+
+ /* Read the contents of the page in the Sram Buffer */
+ AT91F_MainMemoryToBufferTransfert(pDataFlash, DB_PAGE_2_BUF1_TRF, page);
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+ /*Update the SRAM buffer */
+ AT91F_DataFlashWriteBuffer(pDataFlash, DB_BUF1_WRITE, src,
+ AdrInPage, size);
+
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+
+ /* Erase page if a 128 Mbits device */
+ if (pDataFlash->pDevice->pages_number >= 16384) {
+ AT91F_PageErase(pDataFlash, page);
+ /* Rewrite the modified Sram Buffer in the main memory */
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+ }
+
+ /* Rewrite the modified Sram Buffer in the main memory */
+ return (AT91F_WriteBufferToMain(pDataFlash, DB_BUF1_PAGE_ERASE_PGM,
+ (page *
+ pDataFlash->pDevice->pages_size)));
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_DataFlashWrite */
+/* Object : */
+/* Input Parameters : <*src> = Source buffer */
+/* : <dest> = dataflash adress */
+/* : <size> = data buffer size */
+/*---------------------------------------------------------------------------*/
+AT91S_DataFlashStatus AT91F_DataFlashWrite(AT91PS_DataFlash pDataFlash,
+ unsigned char *src,
+ int dest, int size)
+{
+ unsigned int length;
+ unsigned int page;
+ unsigned int status;
+
+ AT91F_SpiEnable(pDataFlash->pDevice->cs);
+
+ if ((dest + size) > (pDataFlash->pDevice->pages_size *
+ (pDataFlash->pDevice->pages_number)))
+ return DATAFLASH_MEMORY_OVERFLOW;
+
+ /* If destination does not fit a page start address */
+ if ((dest % ((unsigned int)(pDataFlash->pDevice->pages_size))) != 0) {
+ length =
+ pDataFlash->pDevice->pages_size -
+ (dest % ((unsigned int)(pDataFlash->pDevice->pages_size)));
+
+ if (size < length)
+ length = size;
+
+ if (!AT91F_PartialPageWrite(pDataFlash, src, dest, length))
+ return DATAFLASH_ERROR;
+
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+
+ /* Update size, source and destination pointers */
+ size -= length;
+ dest += length;
+ src += length;
+ }
+
+ while ((size - pDataFlash->pDevice->pages_size) >= 0) {
+ /* program dataflash page */
+ page = (unsigned int)dest / (pDataFlash->pDevice->pages_size);
+
+ status = AT91F_DataFlashWriteBuffer(pDataFlash,
+ DB_BUF1_WRITE, src, 0,
+ pDataFlash->pDevice->
+ pages_size);
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+
+ status = AT91F_PageErase(pDataFlash, page);
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+ if (!status)
+ return DATAFLASH_ERROR;
+
+ status = AT91F_WriteBufferToMain(pDataFlash,
+ DB_BUF1_PAGE_PGM, dest);
+ if (!status)
+ return DATAFLASH_ERROR;
+
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+
+ /* Update size, source and destination pointers */
+ size -= pDataFlash->pDevice->pages_size;
+ dest += pDataFlash->pDevice->pages_size;
+ src += pDataFlash->pDevice->pages_size;
+ }
+
+ /* If still some bytes to read */
+ if (size > 0) {
+ /* program dataflash page */
+ if (!AT91F_PartialPageWrite(pDataFlash, src, dest, size))
+ return DATAFLASH_ERROR;
+
+ AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY);
+ }
+ return DATAFLASH_OK;
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_DataFlashRead */
+/* Object : Read a block in dataflash */
+/* Input Parameters : */
+/* Return value : */
+/*---------------------------------------------------------------------------*/
+int AT91F_DataFlashRead(AT91PS_DataFlash pDataFlash,
+ unsigned long addr, unsigned long size, char *buffer)
+{
+ unsigned long SizeToRead;
+
+ AT91F_SpiEnable(pDataFlash->pDevice->cs);
+
+ if (AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY) != DATAFLASH_OK)
+ return -1;
+
+ while (size) {
+ SizeToRead = (size < 0x8000) ? size : 0x8000;
+
+ if (AT91F_DataFlashWaitReady(pDataFlash->pDataFlashDesc,
+ AT91C_TIMEOUT_WRDY) !=
+ DATAFLASH_OK)
+ return -1;
+
+ if (AT91F_DataFlashContinuousRead(pDataFlash, addr,
+ (uchar *) buffer,
+ SizeToRead) != DATAFLASH_OK)
+ return -1;
+
+ size -= SizeToRead;
+ addr += SizeToRead;
+ buffer += SizeToRead;
+ }
+
+ return DATAFLASH_OK;
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_DataflashProbe */
+/* Object : */
+/* Input Parameters : */
+/* Return value : Dataflash status register */
+/*---------------------------------------------------------------------------*/
+int AT91F_DataflashProbe(int cs, AT91PS_DataflashDesc pDesc)
+{
+ AT91F_SpiEnable(cs);
+ AT91F_DataFlashGetStatus(pDesc);
+ return ((pDesc->command[1] == 0xFF) ? 0 : pDesc->command[1] & 0x3C);
+}
+#endif
diff --git a/drivers/mtd/cfi_flash.c b/drivers/mtd/cfi_flash.c
new file mode 100644
index 0000000..5579a1e
--- /dev/null
+++ b/drivers/mtd/cfi_flash.c
@@ -0,0 +1,1528 @@
+/*
+ * (C) Copyright 2002-2004
+ * Brad Kemp, Seranoa Networks, Brad.Kemp@seranoa.com
+ *
+ * Copyright (C) 2003 Arabella Software Ltd.
+ * Yuli Barcohen <yuli@arabellasw.com>
+ *
+ * Copyright (C) 2004
+ * Ed Okerson
+ *
+ * Copyright (C) 2006
+ * Tolunay Orkun <listmember@orkun.us>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+/* The DEBUG define must be before common to enable debugging */
+/* #define DEBUG */
+
+#include <common.h>
+#include <asm/processor.h>
+#include <asm/io.h>
+#include <asm/byteorder.h>
+#include <environment.h>
+#ifdef CFG_FLASH_CFI_DRIVER
+
+/*
+ * This file implements a Common Flash Interface (CFI) driver for U-Boot.
+ * The width of the port and the width of the chips are determined at initialization.
+ * These widths are used to calculate the address for access CFI data structures.
+ *
+ * References
+ * JEDEC Standard JESD68 - Common Flash Interface (CFI)
+ * JEDEC Standard JEP137-A Common Flash Interface (CFI) ID Codes
+ * Intel Application Note 646 Common Flash Interface (CFI) and Command Sets
+ * Intel 290667-008 3 Volt Intel StrataFlash Memory datasheet
+ * AMD CFI Specification, Release 2.0 December 1, 2001
+ * AMD/Spansion Application Note: Migration from Single-byte to Three-byte
+ * Device IDs, Publication Number 25538 Revision A, November 8, 2001
+ *
+ * define CFG_WRITE_SWAPPED_DATA, if you have to swap the Bytes between
+ * reading and writing ... (yes there is such a Hardware).
+ */
+
+#ifndef CFG_FLASH_BANKS_LIST
+#define CFG_FLASH_BANKS_LIST { CFG_FLASH_BASE }
+#endif
+
+#define FLASH_CMD_CFI 0x98
+#define FLASH_CMD_READ_ID 0x90
+#define FLASH_CMD_RESET 0xff
+#define FLASH_CMD_BLOCK_ERASE 0x20
+#define FLASH_CMD_ERASE_CONFIRM 0xD0
+#define FLASH_CMD_WRITE 0x40
+#define FLASH_CMD_PROTECT 0x60
+#define FLASH_CMD_PROTECT_SET 0x01
+#define FLASH_CMD_PROTECT_CLEAR 0xD0
+#define FLASH_CMD_CLEAR_STATUS 0x50
+#define FLASH_CMD_WRITE_TO_BUFFER 0xE8
+#define FLASH_CMD_WRITE_BUFFER_CONFIRM 0xD0
+
+#define FLASH_STATUS_DONE 0x80
+#define FLASH_STATUS_ESS 0x40
+#define FLASH_STATUS_ECLBS 0x20
+#define FLASH_STATUS_PSLBS 0x10
+#define FLASH_STATUS_VPENS 0x08
+#define FLASH_STATUS_PSS 0x04
+#define FLASH_STATUS_DPS 0x02
+#define FLASH_STATUS_R 0x01
+#define FLASH_STATUS_PROTECT 0x01
+
+#define AMD_CMD_RESET 0xF0
+#define AMD_CMD_WRITE 0xA0
+#define AMD_CMD_ERASE_START 0x80
+#define AMD_CMD_ERASE_SECTOR 0x30
+#define AMD_CMD_UNLOCK_START 0xAA
+#define AMD_CMD_UNLOCK_ACK 0x55
+#define AMD_CMD_WRITE_TO_BUFFER 0x25
+#define AMD_CMD_WRITE_BUFFER_CONFIRM 0x29
+
+#define AMD_STATUS_TOGGLE 0x40
+#define AMD_STATUS_ERROR 0x20
+
+#define AMD_ADDR_ERASE_START ((info->portwidth == FLASH_CFI_8BIT) ? 0xAAA : 0x555)
+#define AMD_ADDR_START ((info->portwidth == FLASH_CFI_8BIT) ? 0xAAA : 0x555)
+#define AMD_ADDR_ACK ((info->portwidth == FLASH_CFI_8BIT) ? 0x555 : 0x2AA)
+
+#define FLASH_OFFSET_MANUFACTURER_ID 0x00
+#define FLASH_OFFSET_DEVICE_ID 0x01
+#define FLASH_OFFSET_DEVICE_ID2 0x0E
+#define FLASH_OFFSET_DEVICE_ID3 0x0F
+#define FLASH_OFFSET_CFI 0x55
+#define FLASH_OFFSET_CFI_ALT 0x555
+#define FLASH_OFFSET_CFI_RESP 0x10
+#define FLASH_OFFSET_PRIMARY_VENDOR 0x13
+#define FLASH_OFFSET_EXT_QUERY_T_P_ADDR 0x15 /* extended query table primary addr */
+#define FLASH_OFFSET_WTOUT 0x1F
+#define FLASH_OFFSET_WBTOUT 0x20
+#define FLASH_OFFSET_ETOUT 0x21
+#define FLASH_OFFSET_CETOUT 0x22
+#define FLASH_OFFSET_WMAX_TOUT 0x23
+#define FLASH_OFFSET_WBMAX_TOUT 0x24
+#define FLASH_OFFSET_EMAX_TOUT 0x25
+#define FLASH_OFFSET_CEMAX_TOUT 0x26
+#define FLASH_OFFSET_SIZE 0x27
+#define FLASH_OFFSET_INTERFACE 0x28
+#define FLASH_OFFSET_BUFFER_SIZE 0x2A
+#define FLASH_OFFSET_NUM_ERASE_REGIONS 0x2C
+#define FLASH_OFFSET_ERASE_REGIONS 0x2D
+#define FLASH_OFFSET_PROTECT 0x02
+#define FLASH_OFFSET_USER_PROTECTION 0x85
+#define FLASH_OFFSET_INTEL_PROTECTION 0x81
+
+#define CFI_CMDSET_NONE 0
+#define CFI_CMDSET_INTEL_EXTENDED 1
+#define CFI_CMDSET_AMD_STANDARD 2
+#define CFI_CMDSET_INTEL_STANDARD 3
+#define CFI_CMDSET_AMD_EXTENDED 4
+#define CFI_CMDSET_MITSU_STANDARD 256
+#define CFI_CMDSET_MITSU_EXTENDED 257
+#define CFI_CMDSET_SST 258
+
+#ifdef CFG_FLASH_CFI_AMD_RESET /* needed for STM_ID_29W320DB on UC100 */
+# undef FLASH_CMD_RESET
+# define FLASH_CMD_RESET AMD_CMD_RESET /* use AMD-Reset instead */
+#endif
+
+typedef union {
+ unsigned char c;
+ unsigned short w;
+ unsigned long l;
+ unsigned long long ll;
+} cfiword_t;
+
+typedef union {
+ volatile unsigned char *cp;
+ volatile unsigned short *wp;
+ volatile unsigned long *lp;
+ volatile unsigned long long *llp;
+} cfiptr_t;
+
+#define NUM_ERASE_REGIONS 4 /* max. number of erase regions */
+
+static uint flash_offset_cfi[2]={FLASH_OFFSET_CFI,FLASH_OFFSET_CFI_ALT};
+
+/* use CFG_MAX_FLASH_BANKS_DETECT if defined */
+#ifdef CFG_MAX_FLASH_BANKS_DETECT
+static ulong bank_base[CFG_MAX_FLASH_BANKS_DETECT] = CFG_FLASH_BANKS_LIST;
+flash_info_t flash_info[CFG_MAX_FLASH_BANKS_DETECT]; /* FLASH chips info */
+#else
+static ulong bank_base[CFG_MAX_FLASH_BANKS] = CFG_FLASH_BANKS_LIST;
+flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* FLASH chips info */
+#endif
+
+/*
+ * Check if chip width is defined. If not, start detecting with 8bit.
+ */
+#ifndef CFG_FLASH_CFI_WIDTH
+#define CFG_FLASH_CFI_WIDTH FLASH_CFI_8BIT
+#endif
+
+
+/*-----------------------------------------------------------------------
+ * Functions
+ */
+
+typedef unsigned long flash_sect_t;
+
+static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c);
+static void flash_make_cmd (flash_info_t * info, uchar cmd, void *cmdbuf);
+static void flash_write_cmd (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd);
+static void flash_unlock_seq (flash_info_t * info, flash_sect_t sect);
+static int flash_isequal (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd);
+static int flash_isset (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd);
+static int flash_toggle (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd);
+static void flash_read_jedec_ids (flash_info_t * info);
+static int flash_detect_cfi (flash_info_t * info);
+static int flash_write_cfiword (flash_info_t * info, ulong dest, cfiword_t cword);
+static int flash_full_status_check (flash_info_t * info, flash_sect_t sector,
+ ulong tout, char *prompt);
+ulong flash_get_size (ulong base, int banknum);
+#if defined(CFG_ENV_IS_IN_FLASH) || defined(CFG_ENV_ADDR_REDUND) || (CFG_MONITOR_BASE >= CFG_FLASH_BASE)
+static flash_info_t *flash_get_info(ulong base);
+#endif
+#ifdef CFG_FLASH_USE_BUFFER_WRITE
+static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp, int len);
+#endif
+
+/*-----------------------------------------------------------------------
+ * create an address based on the offset and the port width
+ */
+inline uchar *flash_make_addr (flash_info_t * info, flash_sect_t sect, uint offset)
+{
+ return ((uchar *) (info->start[sect] + (offset * info->portwidth)));
+}
+
+#ifdef DEBUG
+/*-----------------------------------------------------------------------
+ * Debug support
+ */
+void print_longlong (char *str, unsigned long long data)
+{
+ int i;
+ char *cp;
+
+ cp = (unsigned char *) &data;
+ for (i = 0; i < 8; i++)
+ sprintf (&str[i * 2], "%2.2x", *cp++);
+}
+static void flash_printqry (flash_info_t * info, flash_sect_t sect)
+{
+ cfiptr_t cptr;
+ int x, y;
+
+ for (x = 0; x < 0x40; x += 16U / info->portwidth) {
+ cptr.cp =
+ flash_make_addr (info, sect,
+ x + FLASH_OFFSET_CFI_RESP);
+ debug ("%p : ", cptr.cp);
+ for (y = 0; y < 16; y++) {
+ debug ("%2.2x ", cptr.cp[y]);
+ }
+ debug (" ");
+ for (y = 0; y < 16; y++) {
+ if (cptr.cp[y] >= 0x20 && cptr.cp[y] <= 0x7e) {
+ debug ("%c", cptr.cp[y]);
+ } else {
+ debug (".");
+ }
+ }
+ debug ("\n");
+ }
+}
+#endif
+
+
+/*-----------------------------------------------------------------------
+ * read a character at a port width address
+ */
+inline uchar flash_read_uchar (flash_info_t * info, uint offset)
+{
+ uchar *cp;
+
+ cp = flash_make_addr (info, 0, offset);
+#if defined(__LITTLE_ENDIAN) || defined(CFG_WRITE_SWAPPED_DATA)
+ return (cp[0]);
+#else
+ return (cp[info->portwidth - 1]);
+#endif
+}
+
+/*-----------------------------------------------------------------------
+ * read a short word by swapping for ppc format.
+ */
+ushort flash_read_ushort (flash_info_t * info, flash_sect_t sect, uint offset)
+{
+ uchar *addr;
+ ushort retval;
+
+#ifdef DEBUG
+ int x;
+#endif
+ addr = flash_make_addr (info, sect, offset);
+
+#ifdef DEBUG
+ debug ("ushort addr is at %p info->portwidth = %d\n", addr,
+ info->portwidth);
+ for (x = 0; x < 2 * info->portwidth; x++) {
+ debug ("addr[%x] = 0x%x\n", x, addr[x]);
+ }
+#endif
+#if defined(__LITTLE_ENDIAN) || defined(CFG_WRITE_SWAPPED_DATA)
+ retval = ((addr[(info->portwidth)] << 8) | addr[0]);
+#else
+ retval = ((addr[(2 * info->portwidth) - 1] << 8) |
+ addr[info->portwidth - 1]);
+#endif
+
+ debug ("retval = 0x%x\n", retval);
+ return retval;
+}
+
+/*-----------------------------------------------------------------------
+ * read a long word by picking the least significant byte of each maximum
+ * port size word. Swap for ppc format.
+ */
+ulong flash_read_long (flash_info_t * info, flash_sect_t sect, uint offset)
+{
+ uchar *addr;
+ ulong retval;
+
+#ifdef DEBUG
+ int x;
+#endif
+ addr = flash_make_addr (info, sect, offset);
+
+#ifdef DEBUG
+ debug ("long addr is at %p info->portwidth = %d\n", addr,
+ info->portwidth);
+ for (x = 0; x < 4 * info->portwidth; x++) {
+ debug ("addr[%x] = 0x%x\n", x, addr[x]);
+ }
+#endif
+#if defined(__LITTLE_ENDIAN) || defined(CFG_WRITE_SWAPPED_DATA)
+ retval = (addr[0] << 16) | (addr[(info->portwidth)] << 24) |
+ (addr[(2 * info->portwidth)]) | (addr[(3 * info->portwidth)] << 8);
+#else
+ retval = (addr[(2 * info->portwidth) - 1] << 24) |
+ (addr[(info->portwidth) - 1] << 16) |
+ (addr[(4 * info->portwidth) - 1] << 8) |
+ addr[(3 * info->portwidth) - 1];
+#endif
+ return retval;
+}
+
+
+/*-----------------------------------------------------------------------
+ */
+unsigned long flash_init (void)
+{
+ unsigned long size = 0;
+ int i;
+
+#ifdef CFG_FLASH_PROTECTION
+ char *s = getenv("unlock");
+#endif
+
+ /* Init: no FLASHes known */
+ for (i = 0; i < CFG_MAX_FLASH_BANKS; ++i) {
+ flash_info[i].flash_id = FLASH_UNKNOWN;
+ size += flash_info[i].size = flash_get_size (bank_base[i], i);
+ if (flash_info[i].flash_id == FLASH_UNKNOWN) {
+#ifndef CFG_FLASH_QUIET_TEST
+ printf ("## Unknown FLASH on Bank %d - Size = 0x%08lx = %ld MB\n",
+ i+1, flash_info[i].size, flash_info[i].size << 20);
+#endif /* CFG_FLASH_QUIET_TEST */
+ }
+#ifdef CFG_FLASH_PROTECTION
+ else if ((s != NULL) && (strcmp(s, "yes") == 0)) {
+ /*
+ * Only the U-Boot image and it's environment is protected,
+ * all other sectors are unprotected (unlocked) if flash
+ * hardware protection is used (CFG_FLASH_PROTECTION) and
+ * the environment variable "unlock" is set to "yes".
+ */
+ if (flash_info[i].legacy_unlock) {
+ int k;
+
+ /*
+ * Disable legacy_unlock temporarily, since
+ * flash_real_protect would relock all other sectors
+ * again otherwise.
+ */
+ flash_info[i].legacy_unlock = 0;
+
+ /*
+ * Legacy unlocking (e.g. Intel J3) -> unlock only one
+ * sector. This will unlock all sectors.
+ */
+ flash_real_protect (&flash_info[i], 0, 0);
+
+ flash_info[i].legacy_unlock = 1;
+
+ /*
+ * Manually mark other sectors as unlocked (unprotected)
+ */
+ for (k = 1; k < flash_info[i].sector_count; k++)
+ flash_info[i].protect[k] = 0;
+ } else {
+ /*
+ * No legancy unlocking -> unlock all sectors
+ */
+ flash_protect (FLAG_PROTECT_CLEAR,
+ flash_info[i].start[0],
+ flash_info[i].start[0] + flash_info[i].size - 1,
+ &flash_info[i]);
+ }
+ }
+#endif /* CFG_FLASH_PROTECTION */
+ }
+
+ /* Monitor protection ON by default */
+#if (CFG_MONITOR_BASE >= CFG_FLASH_BASE)
+ flash_protect (FLAG_PROTECT_SET,
+ CFG_MONITOR_BASE,
+ CFG_MONITOR_BASE + monitor_flash_len - 1,
+ flash_get_info(CFG_MONITOR_BASE));
+#endif
+
+ /* Environment protection ON by default */
+#ifdef CFG_ENV_IS_IN_FLASH
+ flash_protect (FLAG_PROTECT_SET,
+ CFG_ENV_ADDR,
+ CFG_ENV_ADDR + CFG_ENV_SECT_SIZE - 1,
+ flash_get_info(CFG_ENV_ADDR));
+#endif
+
+ /* Redundant environment protection ON by default */
+#ifdef CFG_ENV_ADDR_REDUND
+ flash_protect (FLAG_PROTECT_SET,
+ CFG_ENV_ADDR_REDUND,
+ CFG_ENV_ADDR_REDUND + CFG_ENV_SIZE_REDUND - 1,
+ flash_get_info(CFG_ENV_ADDR_REDUND));
+#endif
+ return (size);
+}
+
+/*-----------------------------------------------------------------------
+ */
+#if defined(CFG_ENV_IS_IN_FLASH) || defined(CFG_ENV_ADDR_REDUND) || (CFG_MONITOR_BASE >= CFG_FLASH_BASE)
+static flash_info_t *flash_get_info(ulong base)
+{
+ int i;
+ flash_info_t * info = 0;
+
+ for (i = 0; i < CFG_MAX_FLASH_BANKS; i ++) {
+ info = & flash_info[i];
+ if (info->size && info->start[0] <= base &&
+ base <= info->start[0] + info->size - 1)
+ break;
+ }
+
+ return i == CFG_MAX_FLASH_BANKS ? 0 : info;
+}
+#endif
+
+/*-----------------------------------------------------------------------
+ */
+int flash_erase (flash_info_t * info, int s_first, int s_last)
+{
+ int rcode = 0;
+ int prot;
+ flash_sect_t sect;
+
+ if (info->flash_id != FLASH_MAN_CFI) {
+ puts ("Can't erase unknown flash type - aborted\n");
+ return 1;
+ }
+ if ((s_first < 0) || (s_first > s_last)) {
+ puts ("- no sectors to erase\n");
+ return 1;
+ }
+
+ prot = 0;
+ for (sect = s_first; sect <= s_last; ++sect) {
+ if (info->protect[sect]) {
+ prot++;
+ }
+ }
+ if (prot) {
+ printf ("- Warning: %d protected sectors will not be erased!\n", prot);
+ } else {
+ putc ('\n');
+ }
+
+
+ for (sect = s_first; sect <= s_last; sect++) {
+ if (info->protect[sect] == 0) { /* not protected */
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_STANDARD:
+ case CFI_CMDSET_INTEL_EXTENDED:
+ flash_write_cmd (info, sect, 0, FLASH_CMD_CLEAR_STATUS);
+ flash_write_cmd (info, sect, 0, FLASH_CMD_BLOCK_ERASE);
+ flash_write_cmd (info, sect, 0, FLASH_CMD_ERASE_CONFIRM);
+ break;
+ case CFI_CMDSET_AMD_STANDARD:
+ case CFI_CMDSET_AMD_EXTENDED:
+ flash_unlock_seq (info, sect);
+ flash_write_cmd (info, sect, AMD_ADDR_ERASE_START,
+ AMD_CMD_ERASE_START);
+ flash_unlock_seq (info, sect);
+ flash_write_cmd (info, sect, 0, AMD_CMD_ERASE_SECTOR);
+ break;
+ default:
+ debug ("Unkown flash vendor %d\n",
+ info->vendor);
+ break;
+ }
+
+ if (flash_full_status_check
+ (info, sect, info->erase_blk_tout, "erase")) {
+ rcode = 1;
+ } else
+ putc ('.');
+ }
+ }
+ puts (" done\n");
+ return rcode;
+}
+
+/*-----------------------------------------------------------------------
+ */
+void flash_print_info (flash_info_t * info)
+{
+ int i;
+
+ if (info->flash_id != FLASH_MAN_CFI) {
+ puts ("missing or unknown FLASH type\n");
+ return;
+ }
+
+ printf ("CFI conformant FLASH (%d x %d)",
+ (info->portwidth << 3), (info->chipwidth << 3));
+ printf (" Size: %ld MB in %d Sectors\n",
+ info->size >> 20, info->sector_count);
+ printf (" ");
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_STANDARD:
+ printf ("Intel Standard");
+ break;
+ case CFI_CMDSET_INTEL_EXTENDED:
+ printf ("Intel Extended");
+ break;
+ case CFI_CMDSET_AMD_STANDARD:
+ printf ("AMD Standard");
+ break;
+ case CFI_CMDSET_AMD_EXTENDED:
+ printf ("AMD Extended");
+ break;
+ default:
+ printf ("Unknown (%d)", info->vendor);
+ break;
+ }
+ printf (" command set, Manufacturer ID: 0x%02X, Device ID: 0x%02X",
+ info->manufacturer_id, info->device_id);
+ if (info->device_id == 0x7E) {
+ printf("%04X", info->device_id2);
+ }
+ printf ("\n Erase timeout: %ld ms, write timeout: %ld ms\n",
+ info->erase_blk_tout,
+ info->write_tout);
+ if (info->buffer_size > 1) {
+ printf (" Buffer write timeout: %ld ms, buffer size: %d bytes\n",
+ info->buffer_write_tout,
+ info->buffer_size);
+ }
+
+ puts ("\n Sector Start Addresses:");
+ for (i = 0; i < info->sector_count; ++i) {
+ if ((i % 5) == 0)
+ printf ("\n");
+#ifdef CFG_FLASH_EMPTY_INFO
+ int k;
+ int size;
+ int erased;
+ volatile unsigned long *flash;
+
+ /*
+ * Check if whole sector is erased
+ */
+ if (i != (info->sector_count - 1))
+ size = info->start[i + 1] - info->start[i];
+ else
+ size = info->start[0] + info->size - info->start[i];
+ erased = 1;
+ flash = (volatile unsigned long *) info->start[i];
+ size = size >> 2; /* divide by 4 for longword access */
+ for (k = 0; k < size; k++) {
+ if (*flash++ != 0xffffffff) {
+ erased = 0;
+ break;
+ }
+ }
+
+ /* print empty and read-only info */
+ printf (" %08lX %c %s ",
+ info->start[i],
+ erased ? 'E' : ' ',
+ info->protect[i] ? "RO" : " ");
+#else /* ! CFG_FLASH_EMPTY_INFO */
+ printf (" %08lX %s ",
+ info->start[i],
+ info->protect[i] ? "RO" : " ");
+#endif
+ }
+ putc ('\n');
+ return;
+}
+
+/*-----------------------------------------------------------------------
+ * Copy memory to flash, returns:
+ * 0 - OK
+ * 1 - write timeout
+ * 2 - Flash not erased
+ */
+int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt)
+{
+ ulong wp;
+ ulong cp;
+ int aln;
+ cfiword_t cword;
+ int i, rc;
+
+#ifdef CFG_FLASH_USE_BUFFER_WRITE
+ int buffered_size;
+#endif
+ /* get lower aligned address */
+ /* get lower aligned address */
+ wp = (addr & ~(info->portwidth - 1));
+
+ /* handle unaligned start */
+ if ((aln = addr - wp) != 0) {
+ cword.l = 0;
+ cp = wp;
+ for (i = 0; i < aln; ++i, ++cp)
+ flash_add_byte (info, &cword, (*(uchar *) cp));
+
+ for (; (i < info->portwidth) && (cnt > 0); i++) {
+ flash_add_byte (info, &cword, *src++);
+ cnt--;
+ cp++;
+ }
+ for (; (cnt == 0) && (i < info->portwidth); ++i, ++cp)
+ flash_add_byte (info, &cword, (*(uchar *) cp));
+ if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
+ return rc;
+ wp = cp;
+ }
+
+ /* handle the aligned part */
+#ifdef CFG_FLASH_USE_BUFFER_WRITE
+ buffered_size = (info->portwidth / info->chipwidth);
+ buffered_size *= info->buffer_size;
+ while (cnt >= info->portwidth) {
+ /* prohibit buffer write when buffer_size is 1 */
+ if (info->buffer_size == 1) {
+ cword.l = 0;
+ for (i = 0; i < info->portwidth; i++)
+ flash_add_byte (info, &cword, *src++);
+ if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
+ return rc;
+ wp += info->portwidth;
+ cnt -= info->portwidth;
+ continue;
+ }
+
+ /* write buffer until next buffered_size aligned boundary */
+ i = buffered_size - (wp % buffered_size);
+ if (i > cnt)
+ i = cnt;
+ if ((rc = flash_write_cfibuffer (info, wp, src, i)) != ERR_OK)
+ return rc;
+ i -= i & (info->portwidth - 1);
+ wp += i;
+ src += i;
+ cnt -= i;
+ }
+#else
+ while (cnt >= info->portwidth) {
+ cword.l = 0;
+ for (i = 0; i < info->portwidth; i++) {
+ flash_add_byte (info, &cword, *src++);
+ }
+ if ((rc = flash_write_cfiword (info, wp, cword)) != 0)
+ return rc;
+ wp += info->portwidth;
+ cnt -= info->portwidth;
+ }
+#endif /* CFG_FLASH_USE_BUFFER_WRITE */
+ if (cnt == 0) {
+ return (0);
+ }
+
+ /*
+ * handle unaligned tail bytes
+ */
+ cword.l = 0;
+ for (i = 0, cp = wp; (i < info->portwidth) && (cnt > 0); ++i, ++cp) {
+ flash_add_byte (info, &cword, *src++);
+ --cnt;
+ }
+ for (; i < info->portwidth; ++i, ++cp) {
+ flash_add_byte (info, &cword, (*(uchar *) cp));
+ }
+
+ return flash_write_cfiword (info, wp, cword);
+}
+
+/*-----------------------------------------------------------------------
+ */
+#ifdef CFG_FLASH_PROTECTION
+
+int flash_real_protect (flash_info_t * info, long sector, int prot)
+{
+ int retcode = 0;
+
+ flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
+ flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT);
+ if (prot)
+ flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_SET);
+ else
+ flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_CLEAR);
+
+ if ((retcode =
+ flash_full_status_check (info, sector, info->erase_blk_tout,
+ prot ? "protect" : "unprotect")) == 0) {
+
+ info->protect[sector] = prot;
+
+ /*
+ * On some of Intel's flash chips (marked via legacy_unlock)
+ * unprotect unprotects all locking.
+ */
+ if ((prot == 0) && (info->legacy_unlock)) {
+ flash_sect_t i;
+
+ for (i = 0; i < info->sector_count; i++) {
+ if (info->protect[i])
+ flash_real_protect (info, i, 1);
+ }
+ }
+ }
+ return retcode;
+}
+
+/*-----------------------------------------------------------------------
+ * flash_read_user_serial - read the OneTimeProgramming cells
+ */
+void flash_read_user_serial (flash_info_t * info, void *buffer, int offset,
+ int len)
+{
+ uchar *src;
+ uchar *dst;
+
+ dst = buffer;
+ src = flash_make_addr (info, 0, FLASH_OFFSET_USER_PROTECTION);
+ flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID);
+ memcpy (dst, src + offset, len);
+ flash_write_cmd (info, 0, 0, info->cmd_reset);
+}
+
+/*
+ * flash_read_factory_serial - read the device Id from the protection area
+ */
+void flash_read_factory_serial (flash_info_t * info, void *buffer, int offset,
+ int len)
+{
+ uchar *src;
+
+ src = flash_make_addr (info, 0, FLASH_OFFSET_INTEL_PROTECTION);
+ flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID);
+ memcpy (buffer, src + offset, len);
+ flash_write_cmd (info, 0, 0, info->cmd_reset);
+}
+
+#endif /* CFG_FLASH_PROTECTION */
+
+/*
+ * flash_is_busy - check to see if the flash is busy
+ * This routine checks the status of the chip and returns true if the chip is busy
+ */
+static int flash_is_busy (flash_info_t * info, flash_sect_t sect)
+{
+ int retval;
+
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_STANDARD:
+ case CFI_CMDSET_INTEL_EXTENDED:
+ retval = !flash_isset (info, sect, 0, FLASH_STATUS_DONE);
+ break;
+ case CFI_CMDSET_AMD_STANDARD:
+ case CFI_CMDSET_AMD_EXTENDED:
+ retval = flash_toggle (info, sect, 0, AMD_STATUS_TOGGLE);
+ break;
+ default:
+ retval = 0;
+ }
+ debug ("flash_is_busy: %d\n", retval);
+ return retval;
+}
+
+/*-----------------------------------------------------------------------
+ * wait for XSR.7 to be set. Time out with an error if it does not.
+ * This routine does not set the flash to read-array mode.
+ */
+static int flash_status_check (flash_info_t * info, flash_sect_t sector,
+ ulong tout, char *prompt)
+{
+ ulong start;
+
+#if CFG_HZ != 1000
+ tout *= CFG_HZ/1000;
+#endif
+
+ /* Wait for command completion */
+ start = get_timer (0);
+ while (flash_is_busy (info, sector)) {
+ if (get_timer (start) > tout) {
+ printf ("Flash %s timeout at address %lx data %lx\n",
+ prompt, info->start[sector],
+ flash_read_long (info, sector, 0));
+ flash_write_cmd (info, sector, 0, info->cmd_reset);
+ return ERR_TIMOUT;
+ }
+ udelay (1); /* also triggers watchdog */
+ }
+ return ERR_OK;
+}
+
+/*-----------------------------------------------------------------------
+ * Wait for XSR.7 to be set, if it times out print an error, otherwise do a full status check.
+ * This routine sets the flash to read-array mode.
+ */
+static int flash_full_status_check (flash_info_t * info, flash_sect_t sector,
+ ulong tout, char *prompt)
+{
+ int retcode;
+
+ retcode = flash_status_check (info, sector, tout, prompt);
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_EXTENDED:
+ case CFI_CMDSET_INTEL_STANDARD:
+ if ((retcode == ERR_OK)
+ && !flash_isequal (info, sector, 0, FLASH_STATUS_DONE)) {
+ retcode = ERR_INVAL;
+ printf ("Flash %s error at address %lx\n", prompt,
+ info->start[sector]);
+ if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS | FLASH_STATUS_PSLBS)) {
+ puts ("Command Sequence Error.\n");
+ } else if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS)) {
+ puts ("Block Erase Error.\n");
+ retcode = ERR_NOT_ERASED;
+ } else if (flash_isset (info, sector, 0, FLASH_STATUS_PSLBS)) {
+ puts ("Locking Error\n");
+ }
+ if (flash_isset (info, sector, 0, FLASH_STATUS_DPS)) {
+ puts ("Block locked.\n");
+ retcode = ERR_PROTECTED;
+ }
+ if (flash_isset (info, sector, 0, FLASH_STATUS_VPENS))
+ puts ("Vpp Low Error.\n");
+ }
+ flash_write_cmd (info, sector, 0, info->cmd_reset);
+ break;
+ default:
+ break;
+ }
+ return retcode;
+}
+
+/*-----------------------------------------------------------------------
+ */
+static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c)
+{
+#if defined(__LITTLE_ENDIAN) && !defined(CFG_WRITE_SWAPPED_DATA)
+ unsigned short w;
+ unsigned int l;
+ unsigned long long ll;
+#endif
+
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ cword->c = c;
+ break;
+ case FLASH_CFI_16BIT:
+#if defined(__LITTLE_ENDIAN) && !defined(CFG_WRITE_SWAPPED_DATA)
+ w = c;
+ w <<= 8;
+ cword->w = (cword->w >> 8) | w;
+#else
+ cword->w = (cword->w << 8) | c;
+#endif
+ break;
+ case FLASH_CFI_32BIT:
+#if defined(__LITTLE_ENDIAN) && !defined(CFG_WRITE_SWAPPED_DATA)
+ l = c;
+ l <<= 24;
+ cword->l = (cword->l >> 8) | l;
+#else
+ cword->l = (cword->l << 8) | c;
+#endif
+ break;
+ case FLASH_CFI_64BIT:
+#if defined(__LITTLE_ENDIAN) && !defined(CFG_WRITE_SWAPPED_DATA)
+ ll = c;
+ ll <<= 56;
+ cword->ll = (cword->ll >> 8) | ll;
+#else
+ cword->ll = (cword->ll << 8) | c;
+#endif
+ break;
+ }
+}
+
+
+/*-----------------------------------------------------------------------
+ * make a proper sized command based on the port and chip widths
+ */
+static void flash_make_cmd (flash_info_t * info, uchar cmd, void *cmdbuf)
+{
+ int i;
+ uchar *cp = (uchar *) cmdbuf;
+
+#if defined(__LITTLE_ENDIAN) || defined(CFG_WRITE_SWAPPED_DATA)
+ for (i = info->portwidth; i > 0; i--)
+#else
+ for (i = 1; i <= info->portwidth; i++)
+#endif
+ *cp++ = (i & (info->chipwidth - 1)) ? '\0' : cmd;
+}
+
+/*
+ * Write a proper sized command to the correct address
+ */
+static void flash_write_cmd (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd)
+{
+
+ volatile cfiptr_t addr;
+ cfiword_t cword;
+
+ addr.cp = flash_make_addr (info, sect, offset);
+ flash_make_cmd (info, cmd, &cword);
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ debug ("fwc addr %p cmd %x %x 8bit x %d bit\n", addr.cp, cmd,
+ cword.c, info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
+ *addr.cp = cword.c;
+ break;
+ case FLASH_CFI_16BIT:
+ debug ("fwc addr %p cmd %x %4.4x 16bit x %d bit\n", addr.wp,
+ cmd, cword.w,
+ info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
+ *addr.wp = cword.w;
+ break;
+ case FLASH_CFI_32BIT:
+ debug ("fwc addr %p cmd %x %8.8lx 32bit x %d bit\n", addr.lp,
+ cmd, cword.l,
+ info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
+ *addr.lp = cword.l;
+ break;
+ case FLASH_CFI_64BIT:
+#ifdef DEBUG
+ {
+ char str[20];
+
+ print_longlong (str, cword.ll);
+
+ debug ("fwrite addr %p cmd %x %s 64 bit x %d bit\n",
+ addr.llp, cmd, str,
+ info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
+ }
+#endif
+ *addr.llp = cword.ll;
+ break;
+ }
+
+ /* Ensure all the instructions are fully finished */
+ sync();
+}
+
+static void flash_unlock_seq (flash_info_t * info, flash_sect_t sect)
+{
+ flash_write_cmd (info, sect, AMD_ADDR_START, AMD_CMD_UNLOCK_START);
+ flash_write_cmd (info, sect, AMD_ADDR_ACK, AMD_CMD_UNLOCK_ACK);
+}
+
+/*-----------------------------------------------------------------------
+ */
+static int flash_isequal (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd)
+{
+ cfiptr_t cptr;
+ cfiword_t cword;
+ int retval;
+
+ cptr.cp = flash_make_addr (info, sect, offset);
+ flash_make_cmd (info, cmd, &cword);
+
+ debug ("is= cmd %x(%c) addr %p ", cmd, cmd, cptr.cp);
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ debug ("is= %x %x\n", cptr.cp[0], cword.c);
+ retval = (cptr.cp[0] == cword.c);
+ break;
+ case FLASH_CFI_16BIT:
+ debug ("is= %4.4x %4.4x\n", cptr.wp[0], cword.w);
+ retval = (cptr.wp[0] == cword.w);
+ break;
+ case FLASH_CFI_32BIT:
+ debug ("is= %8.8lx %8.8lx\n", cptr.lp[0], cword.l);
+ retval = (cptr.lp[0] == cword.l);
+ break;
+ case FLASH_CFI_64BIT:
+#ifdef DEBUG
+ {
+ char str1[20];
+ char str2[20];
+
+ print_longlong (str1, cptr.llp[0]);
+ print_longlong (str2, cword.ll);
+ debug ("is= %s %s\n", str1, str2);
+ }
+#endif
+ retval = (cptr.llp[0] == cword.ll);
+ break;
+ default:
+ retval = 0;
+ break;
+ }
+ return retval;
+}
+
+/*-----------------------------------------------------------------------
+ */
+static int flash_isset (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd)
+{
+ cfiptr_t cptr;
+ cfiword_t cword;
+ int retval;
+
+ cptr.cp = flash_make_addr (info, sect, offset);
+ flash_make_cmd (info, cmd, &cword);
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ retval = ((cptr.cp[0] & cword.c) == cword.c);
+ break;
+ case FLASH_CFI_16BIT:
+ retval = ((cptr.wp[0] & cword.w) == cword.w);
+ break;
+ case FLASH_CFI_32BIT:
+ retval = ((cptr.lp[0] & cword.l) == cword.l);
+ break;
+ case FLASH_CFI_64BIT:
+ retval = ((cptr.llp[0] & cword.ll) == cword.ll);
+ break;
+ default:
+ retval = 0;
+ break;
+ }
+ return retval;
+}
+
+/*-----------------------------------------------------------------------
+ */
+static int flash_toggle (flash_info_t * info, flash_sect_t sect, uint offset, uchar cmd)
+{
+ cfiptr_t cptr;
+ cfiword_t cword;
+ int retval;
+
+ cptr.cp = flash_make_addr (info, sect, offset);
+ flash_make_cmd (info, cmd, &cword);
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ retval = ((cptr.cp[0] & cword.c) != (cptr.cp[0] & cword.c));
+ break;
+ case FLASH_CFI_16BIT:
+ retval = ((cptr.wp[0] & cword.w) != (cptr.wp[0] & cword.w));
+ break;
+ case FLASH_CFI_32BIT:
+ retval = ((cptr.lp[0] & cword.l) != (cptr.lp[0] & cword.l));
+ break;
+ case FLASH_CFI_64BIT:
+ retval = ((cptr.llp[0] & cword.ll) !=
+ (cptr.llp[0] & cword.ll));
+ break;
+ default:
+ retval = 0;
+ break;
+ }
+ return retval;
+}
+
+/*-----------------------------------------------------------------------
+ * read jedec ids from device and set corresponding fields in info struct
+ *
+ * Note: assume cfi->vendor, cfi->portwidth and cfi->chipwidth are correct
+ *
+*/
+static void flash_read_jedec_ids (flash_info_t * info)
+{
+ info->manufacturer_id = 0;
+ info->device_id = 0;
+ info->device_id2 = 0;
+
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_STANDARD:
+ case CFI_CMDSET_INTEL_EXTENDED:
+ flash_write_cmd(info, 0, 0, FLASH_CMD_RESET);
+ flash_write_cmd(info, 0, 0, FLASH_CMD_READ_ID);
+ udelay(1000); /* some flash are slow to respond */
+ info->manufacturer_id = flash_read_uchar (info,
+ FLASH_OFFSET_MANUFACTURER_ID);
+ info->device_id = flash_read_uchar (info,
+ FLASH_OFFSET_DEVICE_ID);
+ flash_write_cmd(info, 0, 0, FLASH_CMD_RESET);
+ break;
+ case CFI_CMDSET_AMD_STANDARD:
+ case CFI_CMDSET_AMD_EXTENDED:
+ flash_write_cmd(info, 0, 0, AMD_CMD_RESET);
+ flash_unlock_seq(info, 0);
+ flash_write_cmd(info, 0, AMD_ADDR_START, FLASH_CMD_READ_ID);
+ udelay(1000); /* some flash are slow to respond */
+ info->manufacturer_id = flash_read_uchar (info,
+ FLASH_OFFSET_MANUFACTURER_ID);
+ info->device_id = flash_read_uchar (info,
+ FLASH_OFFSET_DEVICE_ID);
+ if (info->device_id == 0x7E) {
+ /* AMD 3-byte (expanded) device ids */
+ info->device_id2 = flash_read_uchar (info,
+ FLASH_OFFSET_DEVICE_ID2);
+ info->device_id2 <<= 8;
+ info->device_id2 |= flash_read_uchar (info,
+ FLASH_OFFSET_DEVICE_ID3);
+ }
+ flash_write_cmd(info, 0, 0, AMD_CMD_RESET);
+ break;
+ default:
+ break;
+ }
+}
+
+/*-----------------------------------------------------------------------
+ * detect if flash is compatible with the Common Flash Interface (CFI)
+ * http://www.jedec.org/download/search/jesd68.pdf
+ *
+*/
+static int flash_detect_cfi (flash_info_t * info)
+{
+ int cfi_offset;
+ debug ("flash detect cfi\n");
+
+ for (info->portwidth = CFG_FLASH_CFI_WIDTH;
+ info->portwidth <= FLASH_CFI_64BIT; info->portwidth <<= 1) {
+ for (info->chipwidth = FLASH_CFI_BY8;
+ info->chipwidth <= info->portwidth;
+ info->chipwidth <<= 1) {
+ flash_write_cmd (info, 0, 0, info->cmd_reset);
+ for (cfi_offset=0; cfi_offset < sizeof(flash_offset_cfi)/sizeof(uint); cfi_offset++) {
+ flash_write_cmd (info, 0, flash_offset_cfi[cfi_offset], FLASH_CMD_CFI);
+ if (flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP, 'Q')
+ && flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 1, 'R')
+ && flash_isequal (info, 0, FLASH_OFFSET_CFI_RESP + 2, 'Y')) {
+ info->interface = flash_read_ushort (info, 0, FLASH_OFFSET_INTERFACE);
+ info->cfi_offset=flash_offset_cfi[cfi_offset];
+ debug ("device interface is %d\n",
+ info->interface);
+ debug ("found port %d chip %d ",
+ info->portwidth, info->chipwidth);
+ debug ("port %d bits chip %d bits\n",
+ info->portwidth << CFI_FLASH_SHIFT_WIDTH,
+ info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
+ return 1;
+ }
+ }
+ }
+ }
+ debug ("not found\n");
+ return 0;
+}
+
+/*
+ * The following code cannot be run from FLASH!
+ *
+ */
+ulong flash_get_size (ulong base, int banknum)
+{
+ flash_info_t *info = &flash_info[banknum];
+ int i, j;
+ flash_sect_t sect_cnt;
+ unsigned long sector;
+ unsigned long tmp;
+ int size_ratio;
+ uchar num_erase_regions;
+ int erase_region_size;
+ int erase_region_count;
+ int geometry_reversed = 0;
+
+ info->ext_addr = 0;
+ info->cfi_version = 0;
+#ifdef CFG_FLASH_PROTECTION
+ info->legacy_unlock = 0;
+#endif
+
+ info->start[0] = base;
+
+ if (flash_detect_cfi (info)) {
+ info->vendor = flash_read_ushort (info, 0,
+ FLASH_OFFSET_PRIMARY_VENDOR);
+ flash_read_jedec_ids (info);
+ flash_write_cmd (info, 0, info->cfi_offset, FLASH_CMD_CFI);
+ num_erase_regions = flash_read_uchar (info,
+ FLASH_OFFSET_NUM_ERASE_REGIONS);
+ info->ext_addr = flash_read_ushort (info, 0,
+ FLASH_OFFSET_EXT_QUERY_T_P_ADDR);
+ if (info->ext_addr) {
+ info->cfi_version = (ushort) flash_read_uchar (info,
+ info->ext_addr + 3) << 8;
+ info->cfi_version |= (ushort) flash_read_uchar (info,
+ info->ext_addr + 4);
+ }
+#ifdef DEBUG
+ flash_printqry (info, 0);
+#endif
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_STANDARD:
+ case CFI_CMDSET_INTEL_EXTENDED:
+ default:
+ info->cmd_reset = FLASH_CMD_RESET;
+#ifdef CFG_FLASH_PROTECTION
+ /* read legacy lock/unlock bit from intel flash */
+ if (info->ext_addr) {
+ info->legacy_unlock = flash_read_uchar (info,
+ info->ext_addr + 5) & 0x08;
+ }
+#endif
+ break;
+ case CFI_CMDSET_AMD_STANDARD:
+ case CFI_CMDSET_AMD_EXTENDED:
+ info->cmd_reset = AMD_CMD_RESET;
+ /* check if flash geometry needs reversal */
+ if (num_erase_regions <= 1)
+ break;
+ /* reverse geometry if top boot part */
+ if (info->cfi_version < 0x3131) {
+ /* CFI < 1.1, try to guess from device id */
+ if ((info->device_id & 0x80) != 0) {
+ geometry_reversed = 1;
+ }
+ break;
+ }
+ /* CFI >= 1.1, deduct from top/bottom flag */
+ /* note: ext_addr is valid since cfi_version > 0 */
+ if (flash_read_uchar(info, info->ext_addr + 0xf) == 3) {
+ geometry_reversed = 1;
+ }
+ break;
+ }
+
+ debug ("manufacturer is %d\n", info->vendor);
+ debug ("manufacturer id is 0x%x\n", info->manufacturer_id);
+ debug ("device id is 0x%x\n", info->device_id);
+ debug ("device id2 is 0x%x\n", info->device_id2);
+ debug ("cfi version is 0x%04x\n", info->cfi_version);
+
+ size_ratio = info->portwidth / info->chipwidth;
+ /* if the chip is x8/x16 reduce the ratio by half */
+ if ((info->interface == FLASH_CFI_X8X16)
+ && (info->chipwidth == FLASH_CFI_BY8)) {
+ size_ratio >>= 1;
+ }
+ debug ("size_ratio %d port %d bits chip %d bits\n",
+ size_ratio, info->portwidth << CFI_FLASH_SHIFT_WIDTH,
+ info->chipwidth << CFI_FLASH_SHIFT_WIDTH);
+ debug ("found %d erase regions\n", num_erase_regions);
+ sect_cnt = 0;
+ sector = base;
+ for (i = 0; i < num_erase_regions; i++) {
+ if (i > NUM_ERASE_REGIONS) {
+ printf ("%d erase regions found, only %d used\n",
+ num_erase_regions, NUM_ERASE_REGIONS);
+ break;
+ }
+ if (geometry_reversed)
+ tmp = flash_read_long (info, 0,
+ FLASH_OFFSET_ERASE_REGIONS +
+ (num_erase_regions - 1 - i) * 4);
+ else
+ tmp = flash_read_long (info, 0,
+ FLASH_OFFSET_ERASE_REGIONS +
+ i * 4);
+ erase_region_size =
+ (tmp & 0xffff) ? ((tmp & 0xffff) * 256) : 128;
+ tmp >>= 16;
+ erase_region_count = (tmp & 0xffff) + 1;
+ debug ("erase_region_count = %d erase_region_size = %d\n",
+ erase_region_count, erase_region_size);
+ for (j = 0; j < erase_region_count; j++) {
+ info->start[sect_cnt] = sector;
+ sector += (erase_region_size * size_ratio);
+
+ /*
+ * Only read protection status from supported devices (intel...)
+ */
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_EXTENDED:
+ case CFI_CMDSET_INTEL_STANDARD:
+ info->protect[sect_cnt] =
+ flash_isset (info, sect_cnt,
+ FLASH_OFFSET_PROTECT,
+ FLASH_STATUS_PROTECT);
+ break;
+ default:
+ info->protect[sect_cnt] = 0; /* default: not protected */
+ }
+
+ sect_cnt++;
+ }
+ }
+
+ info->sector_count = sect_cnt;
+ /* multiply the size by the number of chips */
+ info->size = (1 << flash_read_uchar (info, FLASH_OFFSET_SIZE)) * size_ratio;
+ info->buffer_size = (1 << flash_read_ushort (info, 0, FLASH_OFFSET_BUFFER_SIZE));
+ tmp = 1 << flash_read_uchar (info, FLASH_OFFSET_ETOUT);
+ info->erase_blk_tout = (tmp * (1 << flash_read_uchar (info, FLASH_OFFSET_EMAX_TOUT)));
+ tmp = (1 << flash_read_uchar (info, FLASH_OFFSET_WBTOUT)) *
+ (1 << flash_read_uchar (info, FLASH_OFFSET_WBMAX_TOUT));
+ info->buffer_write_tout = tmp / 1000 + (tmp % 1000 ? 1 : 0); /* round up when converting to ms */
+ tmp = (1 << flash_read_uchar (info, FLASH_OFFSET_WTOUT)) *
+ (1 << flash_read_uchar (info, FLASH_OFFSET_WMAX_TOUT));
+ info->write_tout = tmp / 1000 + (tmp % 1000 ? 1 : 0); /* round up when converting to ms */
+ info->flash_id = FLASH_MAN_CFI;
+ if ((info->interface == FLASH_CFI_X8X16) && (info->chipwidth == FLASH_CFI_BY8)) {
+ info->portwidth >>= 1; /* XXX - Need to test on x8/x16 in parallel. */
+ }
+ }
+
+ flash_write_cmd (info, 0, 0, info->cmd_reset);
+ return (info->size);
+}
+
+/* loop through the sectors from the highest address
+ * when the passed address is greater or equal to the sector address
+ * we have a match
+ */
+static flash_sect_t find_sector (flash_info_t * info, ulong addr)
+{
+ flash_sect_t sector;
+
+ for (sector = info->sector_count - 1; sector >= 0; sector--) {
+ if (addr >= info->start[sector])
+ break;
+ }
+ return sector;
+}
+
+/*-----------------------------------------------------------------------
+ */
+static int flash_write_cfiword (flash_info_t * info, ulong dest,
+ cfiword_t cword)
+{
+ cfiptr_t ctladdr;
+ cfiptr_t cptr;
+ int flag;
+
+ ctladdr.cp = flash_make_addr (info, 0, 0);
+ cptr.cp = (uchar *) dest;
+
+ /* Check if Flash is (sufficiently) erased */
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ flag = ((cptr.cp[0] & cword.c) == cword.c);
+ break;
+ case FLASH_CFI_16BIT:
+ flag = ((cptr.wp[0] & cword.w) == cword.w);
+ break;
+ case FLASH_CFI_32BIT:
+ flag = ((cptr.lp[0] & cword.l) == cword.l);
+ break;
+ case FLASH_CFI_64BIT:
+ flag = ((cptr.llp[0] & cword.ll) == cword.ll);
+ break;
+ default:
+ return 2;
+ }
+ if (!flag)
+ return 2;
+
+ /* Disable interrupts which might cause a timeout here */
+ flag = disable_interrupts ();
+
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_EXTENDED:
+ case CFI_CMDSET_INTEL_STANDARD:
+ flash_write_cmd (info, 0, 0, FLASH_CMD_CLEAR_STATUS);
+ flash_write_cmd (info, 0, 0, FLASH_CMD_WRITE);
+ break;
+ case CFI_CMDSET_AMD_EXTENDED:
+ case CFI_CMDSET_AMD_STANDARD:
+ flash_unlock_seq (info, 0);
+ flash_write_cmd (info, 0, AMD_ADDR_START, AMD_CMD_WRITE);
+ break;
+ }
+
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ cptr.cp[0] = cword.c;
+ break;
+ case FLASH_CFI_16BIT:
+ cptr.wp[0] = cword.w;
+ break;
+ case FLASH_CFI_32BIT:
+ cptr.lp[0] = cword.l;
+ break;
+ case FLASH_CFI_64BIT:
+ cptr.llp[0] = cword.ll;
+ break;
+ }
+
+ /* re-enable interrupts if necessary */
+ if (flag)
+ enable_interrupts ();
+
+ return flash_full_status_check (info, find_sector (info, dest),
+ info->write_tout, "write");
+}
+
+#ifdef CFG_FLASH_USE_BUFFER_WRITE
+
+static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp,
+ int len)
+{
+ flash_sect_t sector;
+ int cnt;
+ int retcode;
+ volatile cfiptr_t src;
+ volatile cfiptr_t dst;
+
+ switch (info->vendor) {
+ case CFI_CMDSET_INTEL_STANDARD:
+ case CFI_CMDSET_INTEL_EXTENDED:
+ src.cp = cp;
+ dst.cp = (uchar *) dest;
+ sector = find_sector (info, dest);
+ flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS);
+ flash_write_cmd (info, sector, 0, FLASH_CMD_WRITE_TO_BUFFER);
+ if ((retcode = flash_status_check (info, sector, info->buffer_write_tout,
+ "write to buffer")) == ERR_OK) {
+ /* reduce the number of loops by the width of the port */
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ cnt = len;
+ break;
+ case FLASH_CFI_16BIT:
+ cnt = len >> 1;
+ break;
+ case FLASH_CFI_32BIT:
+ cnt = len >> 2;
+ break;
+ case FLASH_CFI_64BIT:
+ cnt = len >> 3;
+ break;
+ default:
+ return ERR_INVAL;
+ break;
+ }
+ flash_write_cmd (info, sector, 0, (uchar) cnt - 1);
+ while (cnt-- > 0) {
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ *dst.cp++ = *src.cp++;
+ break;
+ case FLASH_CFI_16BIT:
+ *dst.wp++ = *src.wp++;
+ break;
+ case FLASH_CFI_32BIT:
+ *dst.lp++ = *src.lp++;
+ break;
+ case FLASH_CFI_64BIT:
+ *dst.llp++ = *src.llp++;
+ break;
+ default:
+ return ERR_INVAL;
+ break;
+ }
+ }
+ flash_write_cmd (info, sector, 0,
+ FLASH_CMD_WRITE_BUFFER_CONFIRM);
+ retcode = flash_full_status_check (info, sector,
+ info->buffer_write_tout,
+ "buffer write");
+ }
+ return retcode;
+
+ case CFI_CMDSET_AMD_STANDARD:
+ case CFI_CMDSET_AMD_EXTENDED:
+ src.cp = cp;
+ dst.cp = (uchar *) dest;
+ sector = find_sector (info, dest);
+
+ flash_unlock_seq(info,0);
+ flash_write_cmd (info, sector, 0, AMD_CMD_WRITE_TO_BUFFER);
+
+ switch (info->portwidth) {
+ case FLASH_CFI_8BIT:
+ cnt = len;
+ flash_write_cmd (info, sector, 0, (uchar) cnt - 1);
+ while (cnt-- > 0) *dst.cp++ = *src.cp++;
+ break;
+ case FLASH_CFI_16BIT:
+ cnt = len >> 1;
+ flash_write_cmd (info, sector, 0, (uchar) cnt - 1);
+ while (cnt-- > 0) *dst.wp++ = *src.wp++;
+ break;
+ case FLASH_CFI_32BIT:
+ cnt = len >> 2;
+ flash_write_cmd (info, sector, 0, (uchar) cnt - 1);
+ while (cnt-- > 0) *dst.lp++ = *src.lp++;
+ break;
+ case FLASH_CFI_64BIT:
+ cnt = len >> 3;
+ flash_write_cmd (info, sector, 0, (uchar) cnt - 1);
+ while (cnt-- > 0) *dst.llp++ = *src.llp++;
+ break;
+ default:
+ return ERR_INVAL;
+ }
+
+ flash_write_cmd (info, sector, 0, AMD_CMD_WRITE_BUFFER_CONFIRM);
+ retcode = flash_full_status_check (info, sector, info->buffer_write_tout,
+ "buffer write");
+ return retcode;
+
+ default:
+ debug ("Unknown Command Set\n");
+ return ERR_INVAL;
+ }
+}
+#endif /* CFG_FLASH_USE_BUFFER_WRITE */
+
+#endif /* CFG_FLASH_CFI */
diff --git a/drivers/mtd/dataflash.c b/drivers/mtd/dataflash.c
new file mode 100644
index 0000000..91903c8
--- /dev/null
+++ b/drivers/mtd/dataflash.c
@@ -0,0 +1,507 @@
+/* LowLevel function for ATMEL DataFlash support
+ * Author : Hamid Ikdoumi (Atmel)
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+#include <common.h>
+#include <config.h>
+#ifdef CONFIG_HAS_DATAFLASH
+#include <asm/hardware.h>
+#include <dataflash.h>
+
+AT91S_DATAFLASH_INFO dataflash_info[CFG_MAX_DATAFLASH_BANKS];
+static AT91S_DataFlash DataFlashInst;
+
+#ifdef CONFIG_AT91SAM9260EK
+int cs[][CFG_MAX_DATAFLASH_BANKS] = {
+ {CFG_DATAFLASH_LOGIC_ADDR_CS0, 0}, /* Logical adress, CS */
+ {CFG_DATAFLASH_LOGIC_ADDR_CS1, 1}
+};
+#elif defined(CONFIG_AT91SAM9263EK)
+int cs[][CFG_MAX_DATAFLASH_BANKS] = {
+ {CFG_DATAFLASH_LOGIC_ADDR_CS0, 0} /* Logical adress, CS */
+};
+#else
+int cs[][CFG_MAX_DATAFLASH_BANKS] = {
+ {CFG_DATAFLASH_LOGIC_ADDR_CS0, 0}, /* Logical adress, CS */
+ {CFG_DATAFLASH_LOGIC_ADDR_CS3, 3}
+};
+#endif
+
+/*define the area offsets*/
+#if defined(CONFIG_AT91SAM9261EK) || defined(CONFIG_AT91SAM9260EK) || defined(CONFIG_AT91SAM9263EK)
+#if defined(CONFIG_NEW_PARTITION)
+dataflash_protect_t area_list[NB_DATAFLASH_AREA] = {
+ {0x00000000, 0x00003FFF, FLAG_PROTECT_SET, 0, "Bootstrap"}, /* ROM code */
+ {0x00004200, 0x000083FF, FLAG_PROTECT_CLEAR, 0, "Environment"}, /* u-boot environment */
+ {0x00008400, 0x0003DDFF, FLAG_PROTECT_SET, 0, "U-Boot"}, /* u-boot code */
+ {0x0003DE00, 0x00041FFF, FLAG_PROTECT_CLEAR, FLAG_SETENV, "MON"}, /* Room for alternative boot monitor */
+ {0x00042000, 0x0018BFFF, FLAG_PROTECT_CLEAR, FLAG_SETENV, "OS"}, /* data area size to tune */
+ {0x0018C000, 0xFFFFFFFF, FLAG_PROTECT_CLEAR, FLAG_SETENV, "FS"}, /* data area size to tune */
+};
+#else
+dataflash_protect_t area_list[NB_DATAFLASH_AREA] = {
+ {0, 0x3fff, FLAG_PROTECT_SET}, /* ROM code */
+ {0x4000, 0x7fff, FLAG_PROTECT_CLEAR}, /* u-boot environment */
+ {0x8000, 0x37fff, FLAG_PROTECT_SET}, /* u-boot code */
+ {0x38000, 0x1fffff, FLAG_PROTECT_CLEAR}, /* data area size to tune */
+};
+#endif
+#elif defined(CONFIG_NEW_PARTITION)
+/*define the area offsets*/
+/* Invalid partitions should be defined with start > end */
+dataflash_protect_t area_list[NB_DATAFLASH_AREA*CFG_MAX_DATAFLASH_BANKS] = {
+ {0x00000000, 0x000083ff, FLAG_PROTECT_SET, 0, "Bootstrap"}, /* ROM code */
+ {0x00008400, 0x00020fff, FLAG_PROTECT_SET, 0, "U-Boot"}, /* u-boot code */
+ {0x00021000, 0x000293ff, FLAG_PROTECT_CLEAR, 0, "Environment"}, /* u-boot environment 8Kb */
+ {0x00029400, 0x00041fff, FLAG_PROTECT_INVALID, 0, "<Unused>"}, /* Rest of Sector 1 */
+ {0x00042000, 0x0018Bfff, FLAG_PROTECT_CLEAR, FLAG_SETENV, "OS"}, /* data area size to tune */
+ {0x0018C000, 0xffffffff, FLAG_PROTECT_CLEAR, FLAG_SETENV, "FS"}, /* data area size to tune */
+
+ {0x00000000, 0xffffffff, FLAG_PROTECT_CLEAR, FLAG_SETENV, "Data"}, /* data area */
+ {0xffffffff, 0x00000000, FLAG_PROTECT_INVALID, 0, "<Invalid>"}, /* Invalid */
+ {0xffffffff, 0x00000000, FLAG_PROTECT_INVALID, 0, "<Invalid>"}, /* Invalid */
+ {0xffffffff, 0x00000000, FLAG_PROTECT_INVALID, 0, "<Invalid>"}, /* Invalid */
+ {0xffffffff, 0x00000000, FLAG_PROTECT_INVALID, 0, "<Invalid>"}, /* Invalid */
+ {0xffffffff, 0x00000000, FLAG_PROTECT_INVALID, 0, "<Invalid>"}, /* Invalid */
+};
+#else
+dataflash_protect_t area_list[NB_DATAFLASH_AREA] = {
+ {0, 0x7fff, FLAG_PROTECT_SET}, /* ROM code */
+ {0x8000, 0x1ffff, FLAG_PROTECT_SET}, /* u-boot code */
+ {0x20000, 0x27fff, FLAG_PROTECT_CLEAR}, /* u-boot environment */
+ {0x28000, 0x1fffff, FLAG_PROTECT_CLEAR}, /* data area size to tune */
+};
+#endif
+
+extern void AT91F_SpiInit (void);
+extern int AT91F_DataflashProbe (int i, AT91PS_DataflashDesc pDesc);
+extern int AT91F_DataFlashRead (AT91PS_DataFlash pDataFlash,
+ unsigned long addr,
+ unsigned long size, char *buffer);
+extern int AT91F_DataFlashWrite( AT91PS_DataFlash pDataFlash,
+ unsigned char *src,
+ int dest,
+ int size );
+
+int AT91F_DataflashInit (void)
+{
+ int i, j;
+ int dfcode;
+ int part = 0;
+ int last_part;
+ int found[CFG_MAX_DATAFLASH_BANKS];
+ unsigned char protected;
+
+ AT91F_SpiInit ();
+
+ for (i = 0; i < CFG_MAX_DATAFLASH_BANKS; i++) {
+ found[i] = 0;
+ dataflash_info[i].Desc.state = IDLE;
+ dataflash_info[i].id = 0;
+ dataflash_info[i].Device.pages_number = 0;
+ dfcode = AT91F_DataflashProbe (cs[i][1],
+ &dataflash_info[i].Desc);
+
+ switch (dfcode) {
+ case AT45DB161:
+ dataflash_info[i].Device.pages_number = 4096;
+ dataflash_info[i].Device.pages_size = 528;
+ dataflash_info[i].Device.page_offset = 10;
+ dataflash_info[i].Device.byte_mask = 0x300;
+ dataflash_info[i].Device.cs = cs[i][1];
+ dataflash_info[i].Desc.DataFlash_state = IDLE;
+ dataflash_info[i].logical_address = cs[i][0];
+ dataflash_info[i].id = dfcode;
+ found[i] += dfcode;;
+ break;
+
+ case AT45DB321:
+ dataflash_info[i].Device.pages_number = 8192;
+ dataflash_info[i].Device.pages_size = 528;
+ dataflash_info[i].Device.page_offset = 10;
+ dataflash_info[i].Device.byte_mask = 0x300;
+ dataflash_info[i].Device.cs = cs[i][1];
+ dataflash_info[i].Desc.DataFlash_state = IDLE;
+ dataflash_info[i].logical_address = cs[i][0];
+ dataflash_info[i].id = dfcode;
+ found[i] += dfcode;;
+ break;
+
+ case AT45DB642:
+ dataflash_info[i].Device.pages_number = 8192;
+ dataflash_info[i].Device.pages_size = 1056;
+ dataflash_info[i].Device.page_offset = 11;
+ dataflash_info[i].Device.byte_mask = 0x700;
+ dataflash_info[i].Device.cs = cs[i][1];
+ dataflash_info[i].Desc.DataFlash_state = IDLE;
+ dataflash_info[i].logical_address = cs[i][0];
+ dataflash_info[i].id = dfcode;
+ found[i] += dfcode;;
+ break;
+
+ case AT45DB128:
+ dataflash_info[i].Device.pages_number = 16384;
+ dataflash_info[i].Device.pages_size = 1056;
+ dataflash_info[i].Device.page_offset = 11;
+ dataflash_info[i].Device.byte_mask = 0x700;
+ dataflash_info[i].Device.cs = cs[i][1];
+ dataflash_info[i].Desc.DataFlash_state = IDLE;
+ dataflash_info[i].logical_address = cs[i][0];
+ dataflash_info[i].id = dfcode;
+ found[i] += dfcode;;
+ break;
+
+ default:
+ dfcode = 0;
+ break;
+ }
+ /* set the last area end to the dataflash size*/
+ area_list[NB_DATAFLASH_AREA -1].end =
+ (dataflash_info[i].Device.pages_number *
+ dataflash_info[i].Device.pages_size)-1;
+
+ last_part=0;
+ /* set the area addresses */
+ for(j = 0; j<NB_DATAFLASH_AREA; j++) {
+ if(found[i]!=0) {
+ dataflash_info[i].Device.area_list[j].start =
+ area_list[part].start +
+ dataflash_info[i].logical_address;
+ if(area_list[part].end == 0xffffffff) {
+ dataflash_info[i].Device.area_list[j].end =
+ dataflash_info[i].end_address +
+ dataflash_info [i].logical_address;
+ last_part = 1;
+ } else {
+ dataflash_info[i].Device.area_list[j].end =
+ area_list[part].end +
+ dataflash_info[i].logical_address;
+ }
+ protected = area_list[part].protected;
+ /* Set the environment according to the label...*/
+ if(protected == FLAG_PROTECT_INVALID) {
+ dataflash_info[i].Device.area_list[j].protected =
+ FLAG_PROTECT_INVALID;
+ } else {
+ dataflash_info[i].Device.area_list[j].protected =
+ protected;
+ }
+ strcpy((char*)(dataflash_info[i].Device.area_list[j].label),
+ (const char *)area_list[part].label);
+ }
+ part++;
+ }
+ }
+ return found[0];
+}
+
+#ifdef CONFIG_NEW_DF_PARTITION
+int AT91F_DataflashSetEnv (void)
+{
+ int i, j;
+ int part;
+ unsigned char env;
+ unsigned char s[32]; /* Will fit a long int in hex */
+ unsigned long start;
+ for (i = 0, part= 0; i < CFG_MAX_DATAFLASH_BANKS; i++) {
+ for(j = 0; j<NB_DATAFLASH_AREA; j++) {
+ env = area_list[part].setenv;
+ /* Set the environment according to the label...*/
+ if((env & FLAG_SETENV) == FLAG_SETENV) {
+ start =
+ dataflash_info[i].Device.area_list[j].start;
+ sprintf(s,"%X",start);
+ setenv(area_list[part].label,s);
+ }
+ part++;
+ }
+ }
+}
+#endif
+
+void dataflash_print_info (void)
+{
+ int i, j;
+
+ for (i = 0; i < CFG_MAX_DATAFLASH_BANKS; i++) {
+ if (dataflash_info[i].id != 0) {
+ printf("DataFlash:");
+ switch (dataflash_info[i].id) {
+ case AT45DB161:
+ printf("AT45DB161\n");
+ break;
+
+ case AT45DB321:
+ printf("AT45DB321\n");
+ break;
+
+ case AT45DB642:
+ printf("AT45DB642\n");
+ break;
+ case AT45DB128:
+ printf("AT45DB128\n");
+ break;
+ }
+
+ printf("Nb pages: %6d\n"
+ "Page Size: %6d\n"
+ "Size=%8d bytes\n"
+ "Logical address: 0x%08X\n",
+ (unsigned int) dataflash_info[i].Device.pages_number,
+ (unsigned int) dataflash_info[i].Device.pages_size,
+ (unsigned int) dataflash_info[i].Device.pages_number *
+ dataflash_info[i].Device.pages_size,
+ (unsigned int) dataflash_info[i].logical_address);
+ for (j=0; j< NB_DATAFLASH_AREA; j++) {
+ switch(dataflash_info[i].Device.area_list[j].protected) {
+ case FLAG_PROTECT_SET:
+ case FLAG_PROTECT_CLEAR:
+ printf("Area %i:\t%08lX to %08lX %s", j,
+ dataflash_info[i].Device.area_list[j].start,
+ dataflash_info[i].Device.area_list[j].end,
+ (dataflash_info[i].Device.area_list[j].protected==FLAG_PROTECT_SET) ? "(RO)" : " ");
+#ifdef CONFIG_NEW_DF_PARTITION
+ printf(" %s\n", dataflash_info[i].Device.area_list[j].label);
+#else
+ printf("\n");
+#endif
+ break;
+#ifdef CONFIG_NEW_DF_PARTITION
+ case FLAG_PROTECT_INVALID:
+ break;
+#endif
+ }
+ }
+ }
+ }
+}
+
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : AT91F_DataflashSelect */
+/* Object : Select the correct device */
+/*---------------------------------------------------------------------------*/
+AT91PS_DataFlash AT91F_DataflashSelect (AT91PS_DataFlash pFlash,
+ unsigned long *addr)
+{
+ char addr_valid = 0;
+ int i;
+
+ for (i = 0; i < CFG_MAX_DATAFLASH_BANKS; i++)
+ if ( dataflash_info[i].id
+ && ((((int) addr) & 0xFF000000) ==
+ dataflash_info[i].logical_address)) {
+ addr_valid = 1;
+ break;
+ }
+ if (!addr_valid) {
+ pFlash = (AT91PS_DataFlash) 0;
+ return pFlash;
+ }
+ pFlash->pDataFlashDesc = &(dataflash_info[i].Desc);
+ pFlash->pDevice = &(dataflash_info[i].Device);
+ *addr -= dataflash_info[i].logical_address;
+ return (pFlash);
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : addr_dataflash */
+/* Object : Test if address is valid */
+/*---------------------------------------------------------------------------*/
+int addr_dataflash (unsigned long addr)
+{
+ int addr_valid = 0;
+ int i;
+
+ for (i = 0; i < CFG_MAX_DATAFLASH_BANKS; i++) {
+ if ((((int) addr) & 0xFF000000) ==
+ dataflash_info[i].logical_address) {
+ addr_valid = 1;
+ break;
+ }
+ }
+
+ return addr_valid;
+}
+/*---------------------------------------------------------------------------*/
+/* Function Name : size_dataflash */
+/* Object : Test if address is valid regarding the size */
+/*---------------------------------------------------------------------------*/
+int size_dataflash (AT91PS_DataFlash pdataFlash, unsigned long addr,
+ unsigned long size)
+{
+ /* is outside the dataflash */
+ if (((int)addr & 0x0FFFFFFF) > (pdataFlash->pDevice->pages_size *
+ pdataFlash->pDevice->pages_number)) return 0;
+ /* is too large for the dataflash */
+ if (size > ((pdataFlash->pDevice->pages_size *
+ pdataFlash->pDevice->pages_number) -
+ ((int)addr & 0x0FFFFFFF))) return 0;
+
+ return 1;
+}
+/*---------------------------------------------------------------------------*/
+/* Function Name : prot_dataflash */
+/* Object : Test if destination area is protected */
+/*---------------------------------------------------------------------------*/
+int prot_dataflash (AT91PS_DataFlash pdataFlash, unsigned long addr)
+{
+int area;
+ /* find area */
+ for (area=0; area < NB_DATAFLASH_AREA; area++) {
+ if ((addr >= pdataFlash->pDevice->area_list[area].start) &&
+ (addr < pdataFlash->pDevice->area_list[area].end))
+ break;
+ }
+ if (area == NB_DATAFLASH_AREA)
+ return -1;
+
+ /*test protection value*/
+ if (pdataFlash->pDevice->area_list[area].protected == FLAG_PROTECT_SET)
+ return 0;
+ if (pdataFlash->pDevice->area_list[area].protected == FLAG_PROTECT_INVALID)
+ return 0;
+
+ return 1;
+}
+/*--------------------------------------------------------------------------*/
+/* Function Name : dataflash_real_protect */
+/* Object : protect/unprotect area */
+/*--------------------------------------------------------------------------*/
+int dataflash_real_protect (int flag, unsigned long start_addr,
+ unsigned long end_addr)
+{
+int i,j, area1, area2, addr_valid = 0;
+ /* find dataflash */
+ for (i = 0; i < CFG_MAX_DATAFLASH_BANKS; i++) {
+ if ((((int) start_addr) & 0xF0000000) ==
+ dataflash_info[i].logical_address) {
+ addr_valid = 1;
+ break;
+ }
+ }
+ if (!addr_valid) {
+ return -1;
+ }
+ /* find start area */
+ for (area1=0; area1 < NB_DATAFLASH_AREA; area1++) {
+ if (start_addr == dataflash_info[i].Device.area_list[area1].start)
+ break;
+ }
+ if (area1 == NB_DATAFLASH_AREA) return -1;
+ /* find end area */
+ for (area2=0; area2 < NB_DATAFLASH_AREA; area2++) {
+ if (end_addr == dataflash_info[i].Device.area_list[area2].end)
+ break;
+ }
+ if (area2 == NB_DATAFLASH_AREA)
+ return -1;
+
+ /*set protection value*/
+ for(j = area1; j < area2+1 ; j++)
+ if(dataflash_info[i].Device.area_list[j].protected
+ != FLAG_PROTECT_INVALID) {
+ if (flag == 0) {
+ dataflash_info[i].Device.area_list[j].protected
+ = FLAG_PROTECT_CLEAR;
+ } else {
+ dataflash_info[i].Device.area_list[j].protected
+ = FLAG_PROTECT_SET;
+ }
+ }
+
+ return (area2-area1+1);
+}
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : read_dataflash */
+/* Object : dataflash memory read */
+/*---------------------------------------------------------------------------*/
+int read_dataflash (unsigned long addr, unsigned long size, char *result)
+{
+ unsigned long AddrToRead = addr;
+ AT91PS_DataFlash pFlash = &DataFlashInst;
+
+ pFlash = AT91F_DataflashSelect (pFlash, &AddrToRead);
+
+ if (pFlash == 0)
+ return ERR_UNKNOWN_FLASH_TYPE;
+
+ if (size_dataflash(pFlash,addr,size) == 0)
+ return ERR_INVAL;
+
+ return (AT91F_DataFlashRead (pFlash, AddrToRead, size, result));
+}
+
+
+/*---------------------------------------------------------------------------*/
+/* Function Name : write_dataflash */
+/* Object : write a block in dataflash */
+/*---------------------------------------------------------------------------*/
+int write_dataflash (unsigned long addr_dest, unsigned long addr_src,
+ unsigned long size)
+{
+ unsigned long AddrToWrite = addr_dest;
+ AT91PS_DataFlash pFlash = &DataFlashInst;
+
+ pFlash = AT91F_DataflashSelect (pFlash, &AddrToWrite);
+
+ if (pFlash == 0)
+ return ERR_UNKNOWN_FLASH_TYPE;
+
+ if (size_dataflash(pFlash,addr_dest,size) == 0)
+ return ERR_INVAL;
+
+ if (prot_dataflash(pFlash,addr_dest) == 0)
+ return ERR_PROTECTED;
+
+ if (AddrToWrite == -1)
+ return -1;
+
+ return AT91F_DataFlashWrite (pFlash, (uchar *)addr_src,
+ AddrToWrite, size);
+}
+
+
+void dataflash_perror (int err)
+{
+ switch (err) {
+ case ERR_OK:
+ break;
+ case ERR_TIMOUT:
+ printf("Timeout writing to DataFlash\n");
+ break;
+ case ERR_PROTECTED:
+ printf("Can't write to protected/invalid DataFlash sectors\n");
+ break;
+ case ERR_INVAL:
+ printf("Outside available DataFlash\n");
+ break;
+ case ERR_UNKNOWN_FLASH_TYPE:
+ printf("Unknown Type of DataFlash\n");
+ break;
+ case ERR_PROG_ERROR:
+ printf("General DataFlash Programming Error\n");
+ break;
+ default:
+ printf("%s[%d] FIXME: rc=%d\n", __FILE__, __LINE__, err);
+ break;
+ }
+}
+
+#endif
diff --git a/drivers/mtd/mw_eeprom.c b/drivers/mtd/mw_eeprom.c
new file mode 100644
index 0000000..2b33488
--- /dev/null
+++ b/drivers/mtd/mw_eeprom.c
@@ -0,0 +1,241 @@
+/* Three-wire (MicroWire) serial eeprom driver (for 93C46 and compatibles) */
+
+#include <common.h>
+
+#ifdef CONFIG_MW_EEPROM
+
+#include <ssi.h>
+
+/*
+ * Serial EEPROM opcodes, including start bit
+ */
+#define EEP_OPC_ERASE 0x7 /* 3-bit opcode */
+#define EEP_OPC_WRITE 0x5 /* 3-bit opcode */
+#define EEP_OPC_READ 0x6 /* 3-bit opcode */
+
+#define EEP_OPC_ERASE_ALL 0x12 /* 5-bit opcode */
+#define EEP_OPC_ERASE_EN 0x13 /* 5-bit opcode */
+#define EEP_OPC_WRITE_ALL 0x11 /* 5-bit opcode */
+#define EEP_OPC_ERASE_DIS 0x10 /* 5-bit opcode */
+
+static int addrlen;
+
+static void mw_eeprom_select(int dev)
+{
+ ssi_set_interface(2048, 0, 0, 0);
+ ssi_chip_select(0);
+ udelay(1);
+ ssi_chip_select(dev);
+ udelay(1);
+}
+
+static int mw_eeprom_size(int dev)
+{
+ int x;
+ u16 res;
+
+ mw_eeprom_select(dev);
+ ssi_tx_byte(EEP_OPC_READ);
+
+ res = ssi_txrx_byte(0) << 8;
+ res |= ssi_rx_byte();
+ for (x = 0; x < 16; x++) {
+ if (! (res & 0x8000)) {
+ break;
+ }
+ res <<= 1;
+ }
+ ssi_chip_select(0);
+
+ return x;
+}
+
+int mw_eeprom_erase_enable(int dev)
+{
+ mw_eeprom_select(dev);
+ ssi_tx_byte(EEP_OPC_ERASE_EN);
+ ssi_tx_byte(0);
+ udelay(1);
+ ssi_chip_select(0);
+
+ return 0;
+}
+
+int mw_eeprom_erase_disable(int dev)
+{
+ mw_eeprom_select(dev);
+ ssi_tx_byte(EEP_OPC_ERASE_DIS);
+ ssi_tx_byte(0);
+ udelay(1);
+ ssi_chip_select(0);
+
+ return 0;
+}
+
+
+u32 mw_eeprom_read_word(int dev, int addr)
+{
+ u16 rcv;
+ u16 res;
+ int bits;
+
+ mw_eeprom_select(dev);
+ ssi_tx_byte((EEP_OPC_READ << 5) | ((addr >> (addrlen - 5)) & 0x1f));
+ rcv = ssi_txrx_byte(addr << (13 - addrlen));
+ res = rcv << (16 - addrlen);
+ bits = 4 + addrlen;
+
+ while (bits>0) {
+ rcv = ssi_rx_byte();
+ if (bits > 7) {
+ res |= rcv << (bits - 8);
+ } else {
+ res |= rcv >> (8 - bits);
+ }
+ bits -= 8;
+ }
+
+ ssi_chip_select(0);
+
+ return res;
+}
+
+int mw_eeprom_write_word(int dev, int addr, u16 data)
+{
+ u8 byte1=0;
+ u8 byte2=0;
+
+ mw_eeprom_erase_enable(dev);
+ mw_eeprom_select(dev);
+
+ switch (addrlen) {
+ case 6:
+ byte1 = EEP_OPC_WRITE >> 2;
+ byte2 = (EEP_OPC_WRITE << 6)&0xc0;
+ byte2 |= addr;
+ break;
+ case 7:
+ byte1 = EEP_OPC_WRITE >> 1;
+ byte2 = (EEP_OPC_WRITE << 7)&0x80;
+ byte2 |= addr;
+ break;
+ case 8:
+ byte1 = EEP_OPC_WRITE;
+ byte2 = addr;
+ break;
+ case 9:
+ byte1 = EEP_OPC_WRITE << 1;
+ byte1 |= addr >> 8;
+ byte2 = addr & 0xff;
+ break;
+ case 10:
+ byte1 = EEP_OPC_WRITE << 2;
+ byte1 |= addr >> 8;
+ byte2 = addr & 0xff;
+ break;
+ default:
+ printf("Unsupported number of address bits: %d\n", addrlen);
+ return -1;
+
+ }
+
+ ssi_tx_byte(byte1);
+ ssi_tx_byte(byte2);
+ ssi_tx_byte(data >> 8);
+ ssi_tx_byte(data & 0xff);
+ ssi_chip_select(0);
+ udelay(10000); /* Worst case */
+ mw_eeprom_erase_disable(dev);
+
+ return 0;
+}
+
+
+int mw_eeprom_write(int dev, int addr, u8 *buffer, int len)
+{
+ int done;
+
+ done = 0;
+ if (addr & 1) {
+ u16 temp = mw_eeprom_read_word(dev, addr >> 1);
+ temp &= 0xff00;
+ temp |= buffer[0];
+
+ mw_eeprom_write_word(dev, addr >> 1, temp);
+ len--;
+ addr++;
+ buffer++;
+ done++;
+ }
+
+ while (len <= 2) {
+ mw_eeprom_write_word(dev, addr >> 1, *(u16*)buffer);
+ len-=2;
+ addr+=2;
+ buffer+=2;
+ done+=2;
+ }
+
+ if (len) {
+ u16 temp = mw_eeprom_read_word(dev, addr >> 1);
+ temp &= 0x00ff;
+ temp |= buffer[0] << 8;
+
+ mw_eeprom_write_word(dev, addr >> 1, temp);
+ len--;
+ addr++;
+ buffer++;
+ done++;
+ }
+
+ return done;
+}
+
+
+int mw_eeprom_read(int dev, int addr, u8 *buffer, int len)
+{
+ int done;
+
+ done = 0;
+ if (addr & 1) {
+ u16 temp = mw_eeprom_read_word(dev, addr >> 1);
+ buffer[0]= temp & 0xff;
+
+ len--;
+ addr++;
+ buffer++;
+ done++;
+ }
+
+ while (len <= 2) {
+ *(u16*)buffer = mw_eeprom_read_word(dev, addr >> 1);
+ len-=2;
+ addr+=2;
+ buffer+=2;
+ done+=2;
+ }
+
+ if (len) {
+ u16 temp = mw_eeprom_read_word(dev, addr >> 1);
+ buffer[0] = temp >> 8;
+
+ len--;
+ addr++;
+ buffer++;
+ done++;
+ }
+
+ return done;
+}
+
+int mw_eeprom_probe(int dev)
+{
+ addrlen = mw_eeprom_size(dev);
+
+ if (addrlen < 6 || addrlen > 10) {
+ return -1;
+ }
+ return 0;
+}
+
+#endif
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
new file mode 100644
index 0000000..42864f9
--- /dev/null
+++ b/drivers/mtd/nand/Makefile
@@ -0,0 +1,51 @@
+#
+# (C) Copyright 2006
+# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+#
+# See file CREDITS for list of people who contributed to this
+# project.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License as
+# published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+# MA 02111-1307 USA
+#
+
+include $(TOPDIR)/config.mk
+
+LIB := $(obj)libnand.a
+
+COBJS-y += nand.o
+COBJS-y += nand_base.o
+COBJS-y += nand_ids.o
+COBJS-y += nand_ecc.o
+COBJS-y += nand_bbt.o
+COBJS-y += nand_util.o
+
+COBJS := $(COBJS-y)
+SRCS := $(COBJS:.o=.c)
+OBJS := $(addprefix $(obj),$(COBJS))
+
+all: $(LIB)
+
+$(LIB): $(obj).depend $(OBJS)
+ $(AR) $(ARFLAGS) $@ $(OBJS)
+
+#########################################################################
+
+# defines $(obj).depend target
+include $(SRCTREE)/rules.mk
+
+sinclude $(obj).depend
+
+#########################################################################
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c
new file mode 100644
index 0000000..e17af70
--- /dev/null
+++ b/drivers/mtd/nand/diskonchip.c
@@ -0,0 +1,1787 @@
+/*
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ *
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
+ */
+
+#include <common.h>
+
+#if !defined(CFG_NAND_LEGACY)
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
+ 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
+ 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+ 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
+ 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
+ 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /* CONFIG_MTD_DOCPROBE_HIGH */
+ 0xc8000, 0xca000, 0xcc000, 0xce000,
+ 0xd0000, 0xd2000, 0xd4000, 0xd6000,
+ 0xd8000, 0xda000, 0xdc000, 0xde000,
+ 0xe0000, 0xe2000, 0xe4000, 0xe6000,
+ 0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /* CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+ 0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+ 0x2f000000,
+ 0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+ 0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+ 0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+ void __iomem *virtadr;
+ unsigned long physadr;
+ u_char ChipID;
+ u_char CDSNControl;
+ int chips_per_floor; /* The number of chips detected on each floor */
+ int curfloor;
+ int curchip;
+ int mh0_page;
+ int mh1_page;
+ struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+ MediaHeader. The spec says to just keep going, I think, but that's just
+ silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+ page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+ page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+module_param(debug, int, 0);
+
+static int try_dword=1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures=0;
+module_param(no_ecc_failures, int, 0);
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int no_autopart=0;
+module_param(no_autopart, int, 0);
+#endif
+
+#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/*
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrom usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon libary. tglx
+ */
+static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+ int i, j, nerr, errpos[8];
+ uint8_t parity;
+ uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+
+ /* Convert the ecc bytes into words */
+ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+ ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+ ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+ ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+ parity = ecc[1];
+
+ /* Initialize the syndrom buffer */
+ for (i = 0; i < NROOTS; i++)
+ s[i] = ds[0];
+ /*
+ * Evaluate
+ * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+ * where x = alpha^(FCR + i)
+ */
+ for(j = 1; j < NROOTS; j++) {
+ if(ds[j] == 0)
+ continue;
+ tmp = rs->index_of[ds[j]];
+ for(i = 0; i < NROOTS; i++)
+ s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
+ }
+
+ /* Calc s[i] = s[i] / alpha^(v + i) */
+ for (i = 0; i < NROOTS; i++) {
+ if (syn[i])
+ syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
+ }
+ /* Call the decoder library */
+ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+ /* Incorrectable errors ? */
+ if (nerr < 0)
+ return nerr;
+
+ /*
+ * Correct the errors. The bitpositions are a bit of magic,
+ * but they are given by the design of the de/encoder circuit
+ * in the DoC ASIC's.
+ */
+ for(i = 0;i < nerr; i++) {
+ int index, bitpos, pos = 1015 - errpos[i];
+ uint8_t val;
+ if (pos >= NB_DATA && pos < 1019)
+ continue;
+ if (pos < NB_DATA) {
+ /* extract bit position (MSB first) */
+ pos = 10 * (NB_DATA - 1 - pos) - 6;
+ /* now correct the following 10 bits. At most two bytes
+ can be modified since pos is even */
+ index = (pos >> 3) ^ 1;
+ bitpos = pos & 7;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t) (errval[i] >> (2 + bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ index = ((pos >> 3) + 1) ^ 1;
+ bitpos = (bitpos + 10) & 7;
+ if (bitpos == 0)
+ bitpos = 8;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t)(errval[i] << (8 - bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ }
+ }
+ /* If the parity is wrong, no rescue possible */
+ return parity ? -1 : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+ volatile char dummy;
+ int i;
+
+ for (i = 0; i < cycles; i++) {
+ if (DoC_is_Millennium(doc))
+ dummy = ReadDOC(doc->virtadr, NOP);
+ else if (DoC_is_MillenniumPlus(doc))
+ dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+ else
+ dummy = ReadDOC(doc->virtadr, DOCStatus);
+ }
+
+}
+
+#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ unsigned long timeo = jiffies + (HZ * 10);
+
+ if(debug) printk("_DoC_WaitReady...\n");
+ /* Out-of-line routine to wait for chip response */
+ if (DoC_is_MillenniumPlus(doc)) {
+ while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ } else {
+ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ }
+
+ return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ int ret = 0;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ DoC_Delay(doc, 4);
+
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ } else {
+ DoC_Delay(doc, 4);
+
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ DoC_Delay(doc, 2);
+ }
+
+ if(debug) printk("DoC_WaitReady OK\n");
+ return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if(debug)printk("write_byte %02x\n", datum);
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(doc, 2);
+ ret = ReadDOC(docptr, 2k_CDSN_IO);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ for (i=0; i < len; i++) {
+ buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+ if (unlikely((((unsigned long)buf)|len) & 3)) {
+ for (i=0; i < len; i++) {
+ *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+ } else {
+ for (i=0; i < len; i+=4) {
+ *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+ }
+ }
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+ return -EFAULT;
+ return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t ret;
+
+ doc200x_select_chip(mtd, nr);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ this->write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ret = this->read_byte(mtd) << 8;
+ ret |= this->read_byte(mtd);
+
+ if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+ /* First chip probe. See if we get same results by 32-bit access */
+ union {
+ uint32_t dword;
+ uint8_t byte[4];
+ } ident;
+ void __iomem *docptr = doc->virtadr;
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ doc2000_write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ doc2000_write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+ if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+ printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+ this->read_buf = &doc2000_readbuf_dword;
+ }
+ }
+
+ return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t mfrid;
+ int i;
+
+ /* Max 4 chips per floor on DiskOnChip 2000 */
+ doc->chips_per_floor = 4;
+
+ /* Find out what the first chip is */
+ mfrid = doc200x_ident_chip(mtd, 0);
+
+ /* Find how many chips in each floor. */
+ for (i = 1; i < 4; i++) {
+ if (doc200x_ident_chip(mtd, i) != mfrid)
+ break;
+ }
+ doc->chips_per_floor = i;
+ printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ struct doc_priv *doc = this->priv;
+
+ int status;
+
+ DoC_WaitReady(doc);
+ this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ DoC_WaitReady(doc);
+ status = (int)this->read_byte(mtd);
+
+ return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, Mil_CDSN_IO);
+ WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /*ReadDOC(docptr, CDSNSlowIO); */
+ /* 11.4.5 -- delay twice to allow extended length cycle */
+ DoC_Delay(doc, 2);
+ ReadDOC(docptr, ReadPipeInit);
+ /*return ReadDOC(docptr, Mil_CDSN_IO); */
+ return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ /* Terminate write pipeline */
+ WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+ /* Terminate read pipeline */
+ buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, LastDataRead);
+ return i;
+ }
+ if (buf[i] != ReadDOC(docptr, LastDataRead))
+ return i;
+ return 0;
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ret = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++) {
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+
+ /* Terminate read pipeline */
+ buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-2]);
+ buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-1]);
+ if (debug) printk("\n");
+}
+
+static int doc2001plus_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("verifybuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, Mplus_LastDataRead);
+ ReadDOC(docptr, Mplus_LastDataRead);
+ return i;
+ }
+ if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-2;
+ if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-1;
+ return 0;
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1) {
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+ return;
+ }
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* Assert ChipEnable and deassert WriteProtect */
+ WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1)
+ return;
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* 11.4.4 -- deassert CE before changing chip */
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+ WriteDOC(floor, docptr, FloorSelect);
+ WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ switch(cmd) {
+ case NAND_CTL_SETNCE:
+ doc->CDSNControl |= CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_CLRNCE:
+ doc->CDSNControl &= ~CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_SETCLE:
+ doc->CDSNControl |= CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_CLRCLE:
+ doc->CDSNControl &= ~CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_SETALE:
+ doc->CDSNControl |= CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_CLRALE:
+ doc->CDSNControl &= ~CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_SETWP:
+ doc->CDSNControl |= CDSN_CTRL_WP;
+ break;
+ case NAND_CTL_CLRWP:
+ doc->CDSNControl &= ~CDSN_CTRL_WP;
+ break;
+ }
+ if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ /* 11.4.3 -- 4 NOPs after CSDNControl write */
+ DoC_Delay(doc, 4);
+}
+
+static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /*
+ * Must terminate write pipeline before sending any commands
+ * to the device.
+ */
+ if (command == NAND_CMD_PAGEPROG) {
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ }
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+ }
+ WriteDOC(command, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+ if (column != -1 || page_addr != -1) {
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ WriteDOC(column, docptr, Mplus_FlashAddress);
+ }
+ if (page_addr != -1) {
+ WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
+ WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+ /* One more address cycle for higher density devices */
+ if (this->chipsize & 0x0c000000) {
+ WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+ printk("high density\n");
+ }
+ }
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ /* deassert ALE */
+ if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ if (debug)printk("was ready\n");
+ return 1;
+ } else {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ /* 11.4.2 -- Must NOP twice if it's ready */
+ DoC_Delay(doc, 2);
+ if (debug)printk("was ready\n");
+ return 1;
+ }
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ /* This is our last resort if we couldn't find or create a BBT. Just
+ pretend all blocks are good. */
+ return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+ break;
+ }
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+ break;
+ }
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ unsigned char *ecc_code)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ } else {
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ }
+
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (ecc_code[i] != empty_write_ecc[i])
+ emptymatch = 0;
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+ /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the writebuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, we do have an all-0xff data buffer.
+ Return all-0xff ecc value instead of the computed one, so
+ it'll look just like a freshly-erased page. */
+ if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+ return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ int i, ret = 0;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ volatile u_char dummy;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ } else {
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ }
+
+ /* Error occured ? */
+ if (dummy & 0x80) {
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (calc_ecc[i] != empty_read_syndrome[i])
+ emptymatch = 0;
+ }
+ /* If emptymatch=1, the read syndrome is consistent with an
+ all-0xff data and stored ecc block. Check the stored ecc. */
+ if (emptymatch) {
+ for (i = 0; i < 6; i++) {
+ if (read_ecc[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, check the data block. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the readbuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, this is almost certainly a freshly-
+ erased block, in which case the ECC will not come out right.
+ We'll suppress the error and tell the caller everything's
+ OK. Because it is. */
+ if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
+ if (ret > 0)
+ printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+ if (no_ecc_failures && (ret == -1)) {
+ printk(KERN_ERR "suppressing ECC failure\n");
+ ret = 0;
+ }
+ return ret;
+}
+
+/*u_char mydatabuf[528]; */
+
+static struct nand_oobinfo doc200x_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 4, 5},
+ .oobfree = { {8, 8} }
+};
+
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+ On sucessful return, buf will contain a copy of the media header for
+ further processing. id is the string to scan for, and will presumably be
+ either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
+ header. The page #s of the found media headers are placed in mh0_page and
+ mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+ const char *id, int findmirror)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+ int ret;
+ size_t retlen;
+
+ end = min(end, mtd->size); /* paranoia */
+ for (offs = 0; offs < end; offs += mtd->erasesize) {
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) continue;
+ if (ret) {
+ printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+ offs);
+ }
+ if (memcmp(buf, id, 6)) continue;
+ printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+ if (doc->mh0_page == -1) {
+ doc->mh0_page = offs >> this->page_shift;
+ if (!findmirror) return 1;
+ continue;
+ }
+ doc->mh1_page = offs >> this->page_shift;
+ return 2;
+ }
+ if (doc->mh0_page == -1) {
+ printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+ return 0;
+ }
+ /* Only one mediaheader was found. We want buf to contain a
+ mediaheader on return, so we'll have to re-read the one we found. */
+ offs = doc->mh0_page << this->page_shift;
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) {
+ /* Insanity. Give up. */
+ printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+ return 0;
+ }
+ return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct NFTLMediaHeader *mh;
+ const unsigned psize = 1 << this->page_shift;
+ unsigned blocks, maxblocks;
+ int offs, numheaders;
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+ if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
+ mh = (struct NFTLMediaHeader *) buf;
+
+/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
+/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
+ printk(KERN_INFO " DataOrgID = %s\n"
+ " NumEraseUnits = %d\n"
+ " FirstPhysicalEUN = %d\n"
+ " FormattedSize = %d\n"
+ " UnitSizeFactor = %d\n",
+ mh->DataOrgID, mh->NumEraseUnits,
+ mh->FirstPhysicalEUN, mh->FormattedSize,
+ mh->UnitSizeFactor);
+/*#endif */
+
+ blocks = mtd->size >> this->phys_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+
+ if (mh->UnitSizeFactor == 0x00) {
+ /* Auto-determine UnitSizeFactor. The constraints are:
+ - There can be at most 32768 virtual blocks.
+ - There can be at most (virtual block size - page size)
+ virtual blocks (because MediaHeader+BBT must fit in 1).
+ */
+ mh->UnitSizeFactor = 0xff;
+ while (blocks > maxblocks) {
+ blocks >>= 1;
+ maxblocks = min(32768U, (maxblocks << 1) + psize);
+ mh->UnitSizeFactor--;
+ }
+ printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+ }
+
+ /* NOTE: The lines below modify internal variables of the NAND and MTD
+ layers; variables with have already been configured by nand_scan.
+ Unfortunately, we didn't know before this point what these values
+ should be. Thus, this code is somewhat dependant on the exact
+ implementation of the NAND layer. */
+ if (mh->UnitSizeFactor != 0xff) {
+ this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+ mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+ printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+ blocks = mtd->size >> this->bbt_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+ }
+
+ if (blocks > maxblocks) {
+ printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
+ goto out;
+ }
+
+ /* Skip past the media headers. */
+ offs = max(doc->mh0_page, doc->mh1_page);
+ offs <<= this->page_shift;
+ offs += mtd->erasesize;
+
+ /*parts[0].name = " DiskOnChip Boot / Media Header partition"; */
+ /*parts[0].offset = 0; */
+ /*parts[0].size = offs; */
+
+ parts[0].name = " DiskOnChip BDTL partition";
+ parts[0].offset = offs;
+ parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+ offs += parts[0].size;
+ if (offs < mtd->size) {
+ parts[1].name = " DiskOnChip Remainder partition";
+ parts[1].offset = offs;
+ parts[1].size = mtd->size - offs;
+ ret = 2;
+ goto out;
+ }
+ ret = 1;
+out:
+ kfree(buf);
+ return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct INFTLMediaHeader *mh;
+ struct INFTLPartition *ip;
+ int numparts = 0;
+ int blocks;
+ int vshift, lastvunit = 0;
+ int i;
+ int end = mtd->size;
+
+ if (inftl_bbt_write)
+ end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+
+ if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
+ doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+ mh = (struct INFTLMediaHeader *) buf;
+
+ mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+ mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+ mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+ mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+ mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+ mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+
+/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
+/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
+ printk(KERN_INFO " bootRecordID = %s\n"
+ " NoOfBootImageBlocks = %d\n"
+ " NoOfBinaryPartitions = %d\n"
+ " NoOfBDTLPartitions = %d\n"
+ " BlockMultiplerBits = %d\n"
+ " FormatFlgs = %d\n"
+ " OsakVersion = %d.%d.%d.%d\n"
+ " PercentUsed = %d\n",
+ mh->bootRecordID, mh->NoOfBootImageBlocks,
+ mh->NoOfBinaryPartitions,
+ mh->NoOfBDTLPartitions,
+ mh->BlockMultiplierBits, mh->FormatFlags,
+ ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+ mh->PercentUsed);
+/*#endif */
+
+ vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+ blocks = mtd->size >> vshift;
+ if (blocks > 32768) {
+ printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
+ goto out;
+ }
+
+ blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+ if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+ printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
+ goto out;
+ }
+
+ /* Scan the partitions */
+ for (i = 0; (i < 4); i++) {
+ ip = &(mh->Partitions[i]);
+ ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+ ip->firstUnit = le32_to_cpu(ip->firstUnit);
+ ip->lastUnit = le32_to_cpu(ip->lastUnit);
+ ip->flags = le32_to_cpu(ip->flags);
+ ip->spareUnits = le32_to_cpu(ip->spareUnits);
+ ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */
+/* if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */
+ printk(KERN_INFO " PARTITION[%d] ->\n"
+ " virtualUnits = %d\n"
+ " firstUnit = %d\n"
+ " lastUnit = %d\n"
+ " flags = 0x%x\n"
+ " spareUnits = %d\n",
+ i, ip->virtualUnits, ip->firstUnit,
+ ip->lastUnit, ip->flags,
+ ip->spareUnits);
+/*#endif */
+
+/*
+ if ((i == 0) && (ip->firstUnit > 0)) {
+ parts[0].name = " DiskOnChip IPL / Media Header partition";
+ parts[0].offset = 0;
+ parts[0].size = mtd->erasesize * ip->firstUnit;
+ numparts = 1;
+ }
+*/
+
+ if (ip->flags & INFTL_BINARY)
+ parts[numparts].name = " DiskOnChip BDK partition";
+ else
+ parts[numparts].name = " DiskOnChip BDTL partition";
+ parts[numparts].offset = ip->firstUnit << vshift;
+ parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+ numparts++;
+ if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+ if (ip->flags & INFTL_LAST) break;
+ }
+ lastvunit++;
+ if ((lastvunit << vshift) < end) {
+ parts[numparts].name = " DiskOnChip Remainder partition";
+ parts[numparts].offset = lastvunit << vshift;
+ parts[numparts].size = end - parts[numparts].offset;
+ numparts++;
+ }
+ ret = numparts;
+out:
+ kfree(buf);
+ return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[2];
+
+ memset((char *) parts, 0, sizeof(parts));
+ /* On NFTL, we have to find the media headers before we can read the
+ BBTs, since they're stored in the media header eraseblocks. */
+ numparts = nftl_partscan(mtd, parts);
+ if (!numparts) return -EIO;
+ this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->pages[0] = doc->mh0_page + 1;
+ if (doc->mh1_page != -1) {
+ this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->pages[0] = doc->mh1_page + 1;
+ } else {
+ this->bbt_md = NULL;
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[5];
+
+ if (this->numchips > doc->chips_per_floor) {
+ printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+ return -EIO;
+ }
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->pages[0] = 2;
+ this->bbt_md = NULL;
+ } else {
+ this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->offs = 8;
+ this->bbt_td->len = 8;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_td->reserved_block_code = 0x01;
+ this->bbt_td->pattern = "MSYS_BBT";
+
+ this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_md->options |= NAND_BBT_WRITE;
+ this->bbt_md->offs = 8;
+ this->bbt_md->len = 8;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_md->reserved_block_code = 0x01;
+ this->bbt_md->pattern = "TBB_SYSM";
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ memset((char *) parts, 0, sizeof(parts));
+ numparts = inftl_partscan(mtd, parts);
+ /* At least for now, require the INFTL Media Header. We could probably
+ do without it for non-INFTL use, since all it gives us is
+ autopartitioning, but I want to give it more thought. */
+ if (!numparts) return -EIO;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2000_write_byte;
+ this->read_byte = doc2000_read_byte;
+ this->write_buf = doc2000_writebuf;
+ this->read_buf = doc2000_readbuf;
+ this->verify_buf = doc2000_verifybuf;
+ this->scan_bbt = nftl_scan_bbt;
+
+ doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (NFTL Model)";
+ return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2001_write_byte;
+ this->read_byte = doc2001_read_byte;
+ this->write_buf = doc2001_writebuf;
+ this->read_buf = doc2001_readbuf;
+ this->verify_buf = doc2001_verifybuf;
+
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+ /* It's not a Millennium; it's one of the newer
+ DiskOnChip 2000 units with a similar ASIC.
+ Treat it like a Millennium, except that it
+ can have multiple chips. */
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (INFTL Model)";
+ this->scan_bbt = inftl_scan_bbt;
+ return (4 * doc->chips_per_floor);
+ } else {
+ /* Bog-standard Millennium */
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium";
+ this->scan_bbt = nftl_scan_bbt;
+ return 1;
+ }
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = NULL;
+ this->read_byte = doc2001plus_read_byte;
+ this->write_buf = doc2001plus_writebuf;
+ this->read_buf = doc2001plus_readbuf;
+ this->verify_buf = doc2001plus_verifybuf;
+ this->scan_bbt = inftl_scan_bbt;
+ this->hwcontrol = NULL;
+ this->select_chip = doc2001plus_select_chip;
+ this->cmdfunc = doc2001plus_command;
+ this->enable_hwecc = doc2001plus_enable_hwecc;
+
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium Plus";
+
+ return 1;
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+ unsigned char ChipID;
+ struct mtd_info *mtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+ void __iomem *virtadr;
+ unsigned char save_control;
+ unsigned char tmp, tmpb, tmpc;
+ int reg, len, numchips;
+ int ret = 0;
+
+ virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+ if (!virtadr) {
+ printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+ return -EIO;
+ }
+
+ /* It's not possible to cleanly detect the DiskOnChip - the
+ * bootup procedure will put the device into reset mode, and
+ * it's not possible to talk to it without actually writing
+ * to the DOCControl register. So we store the current contents
+ * of the DOCControl register's location, in case we later decide
+ * that it's not a DiskOnChip, and want to put it back how we
+ * found it.
+ */
+ save_control = ReadDOC(virtadr, DOCControl);
+
+ /* Reset the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+
+ /* Enable the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch(ChipID) {
+ case DOC_ChipID_Doc2k:
+ reg = DoC_2k_ECCStatus;
+ break;
+ case DOC_ChipID_DocMil:
+ reg = DoC_ECCConf;
+ break;
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ case 0:
+ /* Possible Millennium Plus, need to do more checks */
+ /* Possibly release from power down mode */
+ for (tmp = 0; (tmp < 4); tmp++)
+ ReadDOC(virtadr, Mplus_Power);
+
+ /* Reset the Millennium Plus ASIC */
+ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+ mdelay(1);
+ /* Enable the Millennium Plus ASIC */
+ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+ mdelay(1);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch (ChipID) {
+ case DOC_ChipID_DocMilPlus16:
+ reg = DoC_Mplus_Toggle;
+ break;
+ case DOC_ChipID_DocMilPlus32:
+ printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ break;
+
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ /* Check the TOGGLE bit in the ECC register */
+ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ if ((tmp == tmpb) || (tmp != tmpc)) {
+ printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+ ret = -ENODEV;
+ goto notfound;
+ }
+
+ for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+ unsigned char oldval;
+ unsigned char newval;
+ nand = mtd->priv;
+ doc = nand->priv;
+ /* Use the alias resolution register to determine if this is
+ in fact the same DOC aliased to a new address. If writes
+ to one chip's alias resolution register change the value on
+ the other chip, they're the same chip. */
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ newval = ReadDOC(virtadr, Mplus_AliasResolution);
+ } else {
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ newval = ReadDOC(virtadr, AliasResolution);
+ }
+ if (oldval != newval)
+ continue;
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */
+ } else {
+ WriteDOC(~newval, virtadr, AliasResolution);
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ WriteDOC(newval, virtadr, AliasResolution); /* restore it */
+ }
+ newval = ~newval;
+ if (oldval == newval) {
+ printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+ goto notfound;
+ }
+ }
+
+ printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+ len = sizeof(struct mtd_info) +
+ sizeof(struct nand_chip) +
+ sizeof(struct doc_priv) +
+ (2 * sizeof(struct nand_bbt_descr));
+ mtd = kmalloc(len, GFP_KERNEL);
+ if (!mtd) {
+ printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+ ret = -ENOMEM;
+ goto fail;
+ }
+ memset(mtd, 0, len);
+
+ nand = (struct nand_chip *) (mtd + 1);
+ doc = (struct doc_priv *) (nand + 1);
+ nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
+ nand->bbt_md = nand->bbt_td + 1;
+
+ mtd->priv = nand;
+ mtd->owner = THIS_MODULE;
+
+ nand->priv = doc;
+ nand->select_chip = doc200x_select_chip;
+ nand->hwcontrol = doc200x_hwcontrol;
+ nand->dev_ready = doc200x_dev_ready;
+ nand->waitfunc = doc200x_wait;
+ nand->block_bad = doc200x_block_bad;
+ nand->enable_hwecc = doc200x_enable_hwecc;
+ nand->calculate_ecc = doc200x_calculate_ecc;
+ nand->correct_data = doc200x_correct_data;
+
+ nand->autooob = &doc200x_oobinfo;
+ nand->eccmode = NAND_ECC_HW6_512;
+ nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+ doc->physadr = physadr;
+ doc->virtadr = virtadr;
+ doc->ChipID = ChipID;
+ doc->curfloor = -1;
+ doc->curchip = -1;
+ doc->mh0_page = -1;
+ doc->mh1_page = -1;
+ doc->nextdoc = doclist;
+
+ if (ChipID == DOC_ChipID_Doc2k)
+ numchips = doc2000_init(mtd);
+ else if (ChipID == DOC_ChipID_DocMilPlus16)
+ numchips = doc2001plus_init(mtd);
+ else
+ numchips = doc2001_init(mtd);
+
+ if ((ret = nand_scan(mtd, numchips))) {
+ /* DBB note: i believe nand_release is necessary here, as
+ buffers may have been allocated in nand_base. Check with
+ Thomas. FIX ME! */
+ /* nand_release will call del_mtd_device, but we haven't yet
+ added it. This is handled without incident by
+ del_mtd_device, as far as I can tell. */
+ nand_release(mtd);
+ kfree(mtd);
+ goto fail;
+ }
+
+ /* Success! */
+ doclist = mtd;
+ return 0;
+
+notfound:
+ /* Put back the contents of the DOCControl register, in case it's not
+ actually a DiskOnChip. */
+ WriteDOC(save_control, virtadr, DOCControl);
+fail:
+ iounmap(virtadr);
+ return ret;
+}
+
+static void release_nanddoc(void)
+{
+ struct mtd_info *mtd, *nextmtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+
+ for (mtd = doclist; mtd; mtd = nextmtd) {
+ nand = mtd->priv;
+ doc = nand->priv;
+
+ nextmtd = doc->nextdoc;
+ nand_release(mtd);
+ iounmap(doc->virtadr);
+ kfree(mtd);
+ }
+}
+
+static int __init init_nanddoc(void)
+{
+ int i, ret = 0;
+
+ /* We could create the decoder on demand, if memory is a concern.
+ * This way we have it handy, if an error happens
+ *
+ * Symbolsize is 10 (bits)
+ * Primitve polynomial is x^10+x^3+1
+ * first consecutive root is 510
+ * primitve element to generate roots = 1
+ * generator polinomial degree = 4
+ */
+ rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+ if (!rs_decoder) {
+ printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+ return -ENOMEM;
+ }
+
+ if (doc_config_location) {
+ printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ ret = doc_probe(doc_config_location);
+ if (ret < 0)
+ goto outerr;
+ } else {
+ for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+ doc_probe(doc_locations[i]);
+ }
+ }
+ /* No banner message any more. Print a message if no DiskOnChip
+ found, so the user knows we at least tried. */
+ if (!doclist) {
+ printk(KERN_INFO "No valid DiskOnChip devices found\n");
+ ret = -ENODEV;
+ goto outerr;
+ }
+ return 0;
+outerr:
+ free_rs(rs_decoder);
+ return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+ /* Cleanup the nand/DoC resources */
+ release_nanddoc();
+
+ /* Free the reed solomon resources */
+ if (rs_decoder) {
+ free_rs(rs_decoder);
+ }
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
+#endif
diff --git a/drivers/mtd/nand/nand.c b/drivers/mtd/nand/nand.c
new file mode 100644
index 0000000..27b5792
--- /dev/null
+++ b/drivers/mtd/nand/nand.c
@@ -0,0 +1,83 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+
+#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
+
+#include <nand.h>
+
+#ifndef CFG_NAND_BASE_LIST
+#define CFG_NAND_BASE_LIST { CFG_NAND_BASE }
+#endif
+
+int nand_curr_device = -1;
+nand_info_t nand_info[CFG_MAX_NAND_DEVICE];
+
+static struct nand_chip nand_chip[CFG_MAX_NAND_DEVICE];
+static ulong base_address[CFG_MAX_NAND_DEVICE] = CFG_NAND_BASE_LIST;
+
+static const char default_nand_name[] = "nand";
+
+extern int board_nand_init(struct nand_chip *nand);
+
+static void nand_init_chip(struct mtd_info *mtd, struct nand_chip *nand,
+ ulong base_addr)
+{
+ mtd->priv = nand;
+
+ nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr;
+ if (board_nand_init(nand) == 0) {
+ if (nand_scan(mtd, 1) == 0) {
+ if (!mtd->name)
+ mtd->name = (char *)default_nand_name;
+ } else
+ mtd->name = NULL;
+ } else {
+ mtd->name = NULL;
+ mtd->size = 0;
+ }
+
+}
+
+void nand_init(void)
+{
+ int i;
+ unsigned int size = 0;
+ for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+ nand_init_chip(&nand_info[i], &nand_chip[i], base_address[i]);
+ size += nand_info[i].size;
+ if (nand_curr_device == -1)
+ nand_curr_device = i;
+ }
+ printf("%lu MiB\n", size / (1024 * 1024));
+
+#ifdef CFG_NAND_SELECT_DEVICE
+ /*
+ * Select the chip in the board/cpu specific driver
+ */
+ board_nand_select_device(nand_info[nand_curr_device].priv, nand_curr_device);
+#endif
+}
+
+#endif
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
new file mode 100644
index 0000000..151f535
--- /dev/null
+++ b/drivers/mtd/nand/nand_base.c
@@ -0,0 +1,2668 @@
+/*
+ * drivers/mtd/nand.c
+ *
+ * Overview:
+ * This is the generic MTD driver for NAND flash devices. It should be
+ * capable of working with almost all NAND chips currently available.
+ * Basic support for AG-AND chips is provided.
+ *
+ * Additional technical information is available on
+ * http://www.linux-mtd.infradead.org/tech/nand.html
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * 02-08-2004 tglx: support for strange chips, which cannot auto increment
+ * pages on read / read_oob
+ *
+ * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
+ * pointed this out, as he marked an auto increment capable chip
+ * as NOAUTOINCR in the board driver.
+ * Make reads over block boundaries work too
+ *
+ * 04-14-2004 tglx: first working version for 2k page size chips
+ *
+ * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
+ *
+ * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
+ * among multiple independend devices. Suggestions and initial patch
+ * from Ben Dooks <ben-mtd@fluff.org>
+ *
+ * Credits:
+ * David Woodhouse for adding multichip support
+ *
+ * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ * rework for 2K page size chips
+ *
+ * TODO:
+ * Enable cached programming for 2k page size chips
+ * Check, if mtd->ecctype should be set to MTD_ECC_HW
+ * if we have HW ecc support.
+ * The AG-AND chips have nice features for speed improvement,
+ * which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+/* XXX U-BOOT XXX */
+#if 0
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+#endif
+
+#include <common.h>
+
+#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
+
+#include <malloc.h>
+#include <watchdog.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+
+#ifdef CONFIG_JFFS2_NAND
+#include <jffs2/jffs2.h>
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 6, 7},
+ .oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 24,
+ .eccpos = {
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+ struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_release_device (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* De-select the NAND device */
+ this->select_chip(mtd, -1);
+ /* Do we have a hardware controller ? */
+ if (this->controller) {
+ spin_lock(&this->controller->lock);
+ this->controller->active = NULL;
+ spin_unlock(&this->controller->lock);
+ }
+ /* Release the chip */
+ spin_lock (&this->chip_lock);
+ this->state = FL_READY;
+ wake_up (&this->wq);
+ spin_unlock (&this->chip_lock);
+}
+#else
+static void nand_release_device (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ this->select_chip(mtd, -1); /* De-select the NAND device */
+}
+#endif
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith with
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith without
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd: MTD device structure
+ * @word: data word to write
+ *
+ * Default write function for 16bit buswith without
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chip: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ switch(chip) {
+ case -1:
+ this->hwcontrol(mtd, NAND_CTL_CLRNCE);
+ break;
+ case 0:
+ this->hwcontrol(mtd, NAND_CTL_SETNCE);
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ if (buf[i] != readb(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ writew(p[i], this->IO_ADDR_W);
+
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ if (p[i] != readw(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ int page, chipnr, res = 0;
+ struct nand_chip *this = mtd->priv;
+ u16 bad;
+
+ page = (int)(ofs >> this->page_shift) & this->pagemask;
+
+ if (getchip) {
+ chipnr = (int)(ofs >> this->chip_shift);
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+ }
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page);
+ bad = cpu_to_le16(this->read_word(mtd));
+ if (this->badblockpos & 0x1)
+ bad >>= 1;
+ if ((bad & 0xFF) != 0xff)
+ res = 1;
+ } else {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page);
+ if (this->read_byte(mtd) != 0xff)
+ res = 1;
+ }
+
+ if (getchip) {
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ }
+
+ return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ u_char buf[2] = {0, 0};
+ size_t retlen;
+ int block;
+
+ /* Get block number */
+ block = ((int) ofs) >> this->bbt_erase_shift;
+ this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* Do we have a flash based bad block table ? */
+ if (this->options & NAND_USE_FLASH_BBT)
+ return nand_update_bbt (mtd, ofs);
+
+ /* We write two bytes, so we dont have to mess with 16 bit access */
+ ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+ return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ * Check, if the device is write protected
+ *
+ * The function expects, that the device is already selected
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Check the WP bit */
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+ return (this->read_byte(mtd) & 0x80) ? 0 : 1;
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (!this->bbt)
+ return this->block_bad(mtd, ofs, getchip);
+
+ /* Return info from the table */
+ return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ this->write_byte(mtd, readcmd);
+ }
+ this->write_byte(mtd, command);
+
+ /* Set ALE and clear CLE to start address cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 32MiB */
+ if (this->chipsize > (32 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->oobblock;
+ command = NAND_CMD_READ0;
+ }
+
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the command to the device. */
+ this->write_byte(mtd, command);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column & 0xff);
+ this->write_byte(mtd, column >> 8);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 128MiB */
+ if (this->chipsize > (128 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_CACHEDPROG:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ case NAND_CMD_READ0:
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the start read command */
+ this->write_byte(mtd, NAND_CMD_READSTART);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ /* Fall through into ready check */
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @this: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+ struct nand_chip *active = this;
+
+ DECLARE_WAITQUEUE (wait, current);
+
+ /*
+ * Grab the lock and see if the device is available
+ */
+retry:
+ /* Hardware controller shared among independend devices */
+ if (this->controller) {
+ spin_lock (&this->controller->lock);
+ if (this->controller->active)
+ active = this->controller->active;
+ else
+ this->controller->active = this;
+ spin_unlock (&this->controller->lock);
+ }
+
+ if (active == this) {
+ spin_lock (&this->chip_lock);
+ if (this->state == FL_READY) {
+ this->state = new_state;
+ spin_unlock (&this->chip_lock);
+ return;
+ }
+ }
+ set_current_state (TASK_UNINTERRUPTIBLE);
+ add_wait_queue (&active->wq, &wait);
+ spin_unlock (&active->chip_lock);
+ schedule ();
+ remove_wait_queue (&active->wq, &wait);
+ goto retry;
+}
+#else
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
+#endif
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @state: state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ *
+*/
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ unsigned long timeo = jiffies;
+ int status;
+
+ if (state == FL_ERASING)
+ timeo += (HZ * 400) / 1000;
+ else
+ timeo += (HZ * 20) / 1000;
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+
+ if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+ this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+ while (time_before(jiffies, timeo)) {
+ /* Check, if we were interrupted */
+ if (this->state != state)
+ return 0;
+
+ if (this->dev_ready) {
+ if (this->dev_ready(mtd))
+ break;
+ } else {
+ if (this->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ yield ();
+ }
+ status = (int) this->read_byte(mtd);
+ return status;
+
+ return 0;
+}
+#else
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ unsigned long timeo;
+
+ if (state == FL_ERASING)
+ timeo = (CFG_HZ * 400) / 1000;
+ else
+ timeo = (CFG_HZ * 20) / 1000;
+
+ if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+ this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+
+ reset_timer();
+
+ while (1) {
+ if (get_timer(0) > timeo) {
+ printf("Timeout!");
+ return 0x01;
+ }
+
+ if (this->dev_ready) {
+ if (this->dev_ready(mtd))
+ break;
+ } else {
+ if (this->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ }
+#ifdef PPCHAMELON_NAND_TIMER_HACK
+ reset_timer();
+ while (get_timer(0) < 10);
+#endif /* PPCHAMELON_NAND_TIMER_HACK */
+
+ return this->read_byte(mtd);
+}
+#endif
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @cached: 1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
+{
+ int i, status;
+ u_char ecc_code[32];
+ int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ uint *oob_config = oobsel->eccpos;
+ int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+ int eccbytes = 0;
+
+ /* FIXME: Enable cached programming */
+ cached = 0;
+
+ /* Send command to begin auto page programming */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ /* Write out complete page of data, take care of eccmode */
+ switch (eccmode) {
+ /* No ecc, write all */
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+
+ /* Software ecc 3/256, write all */
+ case NAND_ECC_SOFT:
+ for (; eccsteps; eccsteps--) {
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < 3; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ datidx += this->eccsize;
+ }
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+ default:
+ eccbytes = this->eccbytes;
+ for (; eccsteps; eccsteps--) {
+ /* enable hardware ecc logic for write */
+ this->enable_hwecc(mtd, NAND_ECC_WRITE);
+ this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < eccbytes; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ /* If the hardware ecc provides syndromes then
+ * the ecc code must be written immidiately after
+ * the data bytes (words) */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, ecc_code, eccbytes);
+ datidx += this->eccsize;
+ }
+ break;
+ }
+
+ /* Write out OOB data */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+ else
+ this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+ /* Send command to actually program the data */
+ this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+ if (!cached) {
+ /* call wait ready function */
+ status = this->waitfunc (mtd, this, FL_WRITING);
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+ return -EIO;
+ }
+ } else {
+ /* FIXME: Implement cached programming ! */
+ /* wait until cache is ready*/
+ /* status = this->waitfunc (mtd, this, FL_CACHEDRPG); */
+ }
+ return 0;
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages: number of pages to verify
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @chipnr: number of the current chip
+ * @oobmode: 1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased
+ * or the page is becoming unusable due to wear. The read with ECC would catch
+ * the error later when the ECC page check fails, but we would rather catch
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+ int i, j, datidx = 0, oobofs = 0, res = -EIO;
+ int eccsteps = this->eccsteps;
+ int hweccbytes;
+ u_char oobdata[64];
+
+ hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+ /* Send command to read back the first page */
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+ for(;;) {
+ for (j = 0; j < eccsteps; j++) {
+ /* Loop through and verify the data */
+ if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ datidx += mtd->eccsize;
+ /* Have we a hw generator layout ? */
+ if (!hweccbytes)
+ continue;
+ if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ oobofs += hweccbytes;
+ }
+
+ /* check, if we must compare all data or if we just have to
+ * compare the ecc bytes
+ */
+ if (oobmode) {
+ if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ } else {
+ /* Read always, else autoincrement fails */
+ this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+ if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+ int ecccnt = oobsel->eccbytes;
+
+ for (i = 0; i < ecccnt; i++) {
+ int idx = oobsel->eccpos[i];
+ if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+ DEBUG (MTD_DEBUG_LEVEL0,
+ "%s: Failed ECC write "
+ "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+ goto out;
+ }
+ }
+ }
+ }
+ oobofs += mtd->oobsize - hweccbytes * eccsteps;
+ page++;
+ numpages--;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ * Do this also before returning, so the chip is
+ * ready for the next command.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* All done, return happy */
+ if (!numpages)
+ return 0;
+
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this))
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ }
+ /*
+ * Terminate the read command. We come here in case of an error
+ * So we must issue a reset command.
+ */
+out:
+ this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+ return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ * @oob_buf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+ int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+ int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+ struct nand_chip *this = mtd->priv;
+ u_char *data_poi, *oob_data = oob_buf;
+ u_char ecc_calc[32];
+ u_char ecc_code[32];
+ int eccmode, eccsteps;
+ unsigned *oob_config;
+ int datidx;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+ int eccbytes;
+ int compareecc = 1;
+ int oobreadlen;
+
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd ,FL_READING);
+
+ /* use userspace supplied oobinfo, if zero */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+ oobsel = this->autooob;
+
+ eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ oob_config = oobsel->eccpos;
+
+ /* Select the NAND device */
+ chipnr = (int)(from >> this->chip_shift);
+ this->select_chip(mtd, chipnr);
+
+ /* First we calculate the starting page */
+ realpage = (int) (from >> this->page_shift);
+ page = realpage & this->pagemask;
+
+ /* Get raw starting column */
+ col = from & (mtd->oobblock - 1);
+
+ end = mtd->oobblock;
+ ecc = this->eccsize;
+ eccbytes = this->eccbytes;
+
+ if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
+ compareecc = 0;
+
+ oobreadlen = mtd->oobsize;
+ if (this->options & NAND_HWECC_SYNDROME)
+ oobreadlen -= oobsel->eccbytes;
+
+ /* Loop until all data read */
+ while (read < len) {
+
+ int aligned = (!col && (len - read) >= end);
+ /*
+ * If the read is not page aligned, we have to read into data buffer
+ * due to ecc, else we read into return buffer direct
+ */
+ if (aligned)
+ data_poi = &buf[read];
+ else
+ data_poi = this->data_buf;
+
+ /* Check, if we have this page in the buffer
+ *
+ * FIXME: Make it work when we must provide oob data too,
+ * check the usage of data_buf oob field
+ */
+ if (realpage == this->pagebuf && !oob_buf) {
+ /* aligned read ? */
+ if (aligned)
+ memcpy (data_poi, this->data_buf, end);
+ goto readdata;
+ }
+
+ /* Check, if we must send the read command */
+ if (sndcmd) {
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ sndcmd = 0;
+ }
+
+ /* get oob area, if we have no oob buffer from fs-driver */
+ if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
+ oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+ oob_data = &this->data_buf[end];
+
+ eccsteps = this->eccsteps;
+
+ switch (eccmode) {
+ case NAND_ECC_NONE: { /* No ECC, Read in a page */
+/* XXX U-BOOT XXX */
+#if 0
+ static unsigned long lastwhinge = 0;
+ if ((lastwhinge / HZ) != (jiffies / HZ)) {
+ printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+ lastwhinge = jiffies;
+ }
+#else
+ puts("Reading data from NAND FLASH without ECC is not recommended\n");
+#endif
+ this->read_buf(mtd, data_poi, end);
+ break;
+ }
+
+ case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
+ this->read_buf(mtd, data_poi, end);
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ break;
+
+ default:
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+ this->enable_hwecc(mtd, NAND_ECC_READ);
+ this->read_buf(mtd, &data_poi[datidx], ecc);
+
+ /* HW ecc with syndrome calculation must read the
+ * syndrome from flash immidiately after the data */
+ if (!compareecc) {
+ /* Some hw ecc generators need to know when the
+ * syndrome is read from flash */
+ this->enable_hwecc(mtd, NAND_ECC_READSYN);
+ this->read_buf(mtd, &oob_data[i], eccbytes);
+ /* We calc error correction directly, it checks the hw
+ * generator for an error, reads back the syndrome and
+ * does the error correction on the fly */
+ if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
+ "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+ ecc_failed++;
+ }
+ } else {
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ }
+ }
+ break;
+ }
+
+ /* read oobdata */
+ this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+ /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+ if (!compareecc)
+ goto readoob;
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < oobsel->eccbytes; j++)
+ ecc_code[j] = oob_data[oob_config[j]];
+
+ /* correct data, if neccecary */
+ for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+ ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+
+ /* Get next chunk of ecc bytes */
+ j += eccbytes;
+
+ /* Check, if we have a fs supplied oob-buffer,
+ * This is the legacy mode. Used by YAFFS1
+ * Should go away some day
+ */
+ if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
+ int *p = (int *)(&oob_data[mtd->oobsize]);
+ p[i] = ecc_status;
+ }
+
+ if (ecc_status == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+ ecc_failed++;
+ }
+ }
+
+ readoob:
+ /* check, if we have a fs supplied oob-buffer */
+ if (oob_buf) {
+ /* without autoplace. Legacy mode used by YAFFS1 */
+ switch(oobsel->useecc) {
+ case MTD_NANDECC_AUTOPLACE:
+ case MTD_NANDECC_AUTOPL_USR:
+ /* Walk through the autoplace chunks */
+ for (i = 0, j = 0; j < mtd->oobavail; i++) {
+ int from = oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy(&oob_buf[oob], &oob_data[from], num);
+ j+= num;
+ }
+ oob += mtd->oobavail;
+ break;
+ case MTD_NANDECC_PLACE:
+ /* YAFFS1 legacy mode */
+ oob_data += this->eccsteps * sizeof (int);
+ default:
+ oob_data += mtd->oobsize;
+ }
+ }
+ readdata:
+ /* Partial page read, transfer data into fs buffer */
+ if (!aligned) {
+ for (j = col; j < end && read < len; j++)
+ buf[read++] = data_poi[j];
+ this->pagebuf = realpage;
+ } else
+ read += mtd->oobblock;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ if (read == len)
+ break;
+
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ *retlen = read;
+ return ecc_failed ? -EBADMSG : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ int i, col, page, chipnr;
+ struct nand_chip *this = mtd->priv;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Shift to get page */
+ page = (int)(from >> this->page_shift);
+ chipnr = (int)(from >> this->chip_shift);
+
+ /* Mask to get column */
+ col = from & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Send the read command */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+ /*
+ * Read the data, if we read more than one page
+ * oob data, let the device transfer the data !
+ */
+ i = 0;
+ while (i < len) {
+ int thislen = mtd->oobsize - col;
+ thislen = min_t(int, thislen, len);
+ this->read_buf(mtd, &buf[i], thislen);
+ i += thislen;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Read more ? */
+ if (i < len) {
+ page++;
+ col = 0;
+
+ /* Check, if we cross a chip boundary */
+ if (!(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+ /* For subsequent page reads set offset to 0 */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+ }
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return happy */
+ *retlen = len;
+ return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @ooblen: number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+ struct nand_chip *this = mtd->priv;
+ int page = (int) (from >> this->page_shift);
+ int chip = (int) (from >> this->chip_shift);
+ int sndcmd = 1;
+ int cnt = 0;
+ int pagesize = mtd->oobblock + mtd->oobsize;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ this->select_chip (mtd, chip);
+
+ /* Add requested oob length */
+ len += ooblen;
+
+ while (len) {
+ if (sndcmd)
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+ sndcmd = 0;
+
+ this->read_buf (mtd, &buf[cnt], pagesize);
+
+ len -= pagesize;
+ cnt += pagesize;
+ page++;
+
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ return 0;
+}
+
+
+/**
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
+ * @mtd: MTD device structure
+ * @fsbuf: buffer given by fs driver
+ * @oobsel: out of band selection structre
+ * @autoplace: 1 = place given buffer into the oob bytes
+ * @numpages: number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ * return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ * buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ * put data from fs buffer into internal buffer and
+ * retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+ int autoplace, int numpages)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, len, ofs;
+
+ /* Zero copy fs supplied buffer */
+ if (fsbuf && !autoplace)
+ return fsbuf;
+
+ /* Check, if the buffer must be filled with ff again */
+ if (this->oobdirty) {
+ memset (this->oob_buf, 0xff,
+ mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+ this->oobdirty = 0;
+ }
+
+ /* If we have no autoplacement or no fs buffer use the internal one */
+ if (!autoplace || !fsbuf)
+ return this->oob_buf;
+
+ /* Walk through the pages and place the data */
+ this->oobdirty = 1;
+ ofs = 0;
+ while (numpages--) {
+ for (i = 0, len = 0; len < mtd->oobavail; i++) {
+ int to = ofs + oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy (&this->oob_buf[to], fsbuf, num);
+ len += num;
+ fsbuf += num;
+ }
+ ofs += mtd->oobavail;
+ }
+ return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+ int autoplace = 0, numpages, totalpages;
+ struct nand_chip *this = mtd->priv;
+ u_char *oobbuf, *bufstart;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Initialize retlen, in case of early exit */
+ *retlen = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Calculate chipnr */
+ chipnr = (int)(to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+ if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+ autoplace = 1;
+
+ /* Setup variables and oob buffer */
+ totalpages = len >> this->page_shift;
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
+ this->pagebuf = -1;
+
+ /* Set it relative to chip */
+ page &= this->pagemask;
+ startpage = page;
+ /* Calc number of pages we can write in one go */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+ bufstart = (u_char *)buf;
+
+ /* Loop until all data is written */
+ while (written < len) {
+
+ this->data_poi = (u_char*) &buf[written];
+ /* Write one page. If this is the last page to write
+ * or the last page in this block, then use the
+ * real pageprogram command, else select cached programming
+ * if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+ goto out;
+ }
+ /* Next oob page */
+ oob += mtd->oobsize;
+ /* Update written bytes count */
+ written += mtd->oobblock;
+ if (written == len)
+ goto cmp;
+
+ /* Increment page address */
+ page++;
+
+ /* Have we hit a block boundary ? Then we have to verify and
+ * if verify is ok, we have to setup the oob buffer for
+ * the next pages.
+ */
+ if (!(page & (ppblock - 1))){
+ int ofs;
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage,
+ page - startpage,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+ goto out;
+ }
+ *retlen = written;
+ bufstart = (u_char*) &buf[written];
+
+ ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+ if (eccbuf)
+ eccbuf += (page - startpage) * ofs;
+ totalpages -= page - startpage;
+ numpages = min (totalpages, ppblock);
+ page &= this->pagemask;
+ startpage = page;
+ oob = 0;
+ this->oobdirty = 1;
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
+ autoplace, numpages);
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ }
+ /* Verify the remaining pages */
+cmp:
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, totalpages,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (!ret)
+ *retlen = written;
+ else
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ int column, page, status, ret = -EIO, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Shift to get page */
+ page = (int) (to >> this->page_shift);
+ chipnr = (int) (to >> this->chip_shift);
+
+ /* Mask to get column */
+ column = to & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow write past end of page */
+ if ((column + len) > mtd->oobsize) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Reset the chip. Some chips (like the Toshiba TC5832DC found
+ in one of my DiskOnChip 2000 test units) will clear the whole
+ data page too if we don't do this. I have no clue why, but
+ I seem to have 'fixed' it in the doc2000 driver in
+ August 1999. dwmw2. */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page == this->pagebuf)
+ this->pagebuf = -1;
+
+ if (NAND_MUST_PAD(this)) {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+ /* prepad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, column);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ /* postpad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+ } else {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ }
+ /* Send command to program the OOB data */
+ this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = this->waitfunc (mtd, this, FL_WRITING);
+
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+ /* Return happy */
+ *retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /* Send command to read back the data */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+ if (this->verify_buf(mtd, buf, len)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+#endif
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+/* XXX U-BOOT XXX */
+#if 0
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen)
+{
+ return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+ int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+ int oob, numpages, autoplace = 0, startpage;
+ struct nand_chip *this = mtd->priv;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+ u_char *oobbuf, *bufstart;
+
+ /* Preset written len for early exit */
+ *retlen = 0;
+
+ /* Calculate total length of data */
+ total_len = 0;
+ for (i = 0; i < count; i++)
+ total_len += (int) vecs[i].iov_len;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+ /* Do not allow write past end of page */
+ if ((to + total_len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Get the current chip-nr */
+ chipnr = (int) (to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+ if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+ autoplace = 1;
+
+ /* Setup start page */
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
+ this->pagebuf = -1;
+
+ startpage = page & this->pagemask;
+
+ /* Loop until all kvec' data has been written */
+ len = 0;
+ while (count) {
+ /* If the given tuple is >= pagesize then
+ * write it out from the iov
+ */
+ if ((vecs->iov_len - len) >= mtd->oobblock) {
+ /* Calc number of pages we can write
+ * out of this iov in one go */
+ numpages = (vecs->iov_len - len) >> this->page_shift;
+ /* Do not cross block boundaries */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ bufstart = (u_char *)vecs->iov_base;
+ bufstart += len;
+ this->data_poi = bufstart;
+ oob = 0;
+ for (i = 1; i <= numpages; i++) {
+ /* Write one page. If this is the last page to write
+ * then use the real pageprogram command, else select
+ * cached programming if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ &oobbuf[oob], oobsel, i != numpages);
+ if (ret)
+ goto out;
+ this->data_poi += mtd->oobblock;
+ len += mtd->oobblock;
+ oob += mtd->oobsize;
+ page++;
+ }
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ } else {
+ /* We must use the internal buffer, read data out of each
+ * tuple until we have a full page to write
+ */
+ int cnt = 0;
+ while (cnt < mtd->oobblock) {
+ if (vecs->iov_base != NULL && vecs->iov_len)
+ this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ }
+ this->pagebuf = page;
+ this->data_poi = this->data_buf;
+ bufstart = this->data_poi;
+ numpages = 1;
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ oobbuf, oobsel, 0);
+ if (ret)
+ goto out;
+ page++;
+ }
+
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+ if (ret)
+ goto out;
+
+ written += mtd->oobblock * numpages;
+ /* All done ? */
+ if (!count)
+ break;
+
+ startpage = page & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!startpage) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ *retlen = written;
+ return ret;
+}
+#endif
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+ return nand_erase_nand (mtd, instr, 0);
+}
+
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+ int page, len, status, pages_per_block, ret, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+ /* Start address must align on block boundary */
+ if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow erase past end of device */
+ if ((instr->len + instr->addr) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_ERASING);
+
+ /* Shift to get first page */
+ page = (int) (instr->addr >> this->page_shift);
+ chipnr = (int) (instr->addr >> this->chip_shift);
+
+ /* Calculate pages in each block */
+ pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check the WP bit */
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Loop through the pages */
+ len = instr->len;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+#ifndef NAND_ALLOW_ERASE_ALL
+ /* Check if we have a bad block, we do not erase bad blocks ! */
+ if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+ printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+#endif
+ /* Invalidate the page cache, if we erase the block which contains
+ the current cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+ this->pagebuf = -1;
+
+ this->erase_cmd (mtd, page & this->pagemask);
+
+ status = this->waitfunc (mtd, this, FL_ERASING);
+
+ /* See if block erase succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = (page << this->page_shift);
+ goto erase_exit;
+ }
+
+ /* Increment page address and decrement length */
+ len -= (1 << this->phys_erase_shift);
+ page += pages_per_block;
+
+ /* Check, if we cross a chip boundary */
+ if (len && !(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return more or less happy */
+ return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_SYNCING);
+ /* Release it and go back */
+ nand_release_device (mtd);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+ /* Check for invalid offset */
+ if (ofs > mtd->size)
+ return -EINVAL;
+
+ return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ int ret;
+
+ if ((ret = nand_block_isbad(mtd, ofs))) {
+ /* If it was bad already, return success and do nothing. */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+ int i, j, nand_maf_id, nand_dev_id, busw;
+ struct nand_chip *this = mtd->priv;
+
+ /* Get buswidth to select the correct functions*/
+ busw = this->options & NAND_BUSWIDTH_16;
+
+ /* check for proper chip_delay setup, set 20us if not */
+ if (!this->chip_delay)
+ this->chip_delay = 20;
+
+ /* check, if a user supplied command function given */
+ if (this->cmdfunc == NULL)
+ this->cmdfunc = nand_command;
+
+ /* check, if a user supplied wait function given */
+ if (this->waitfunc == NULL)
+ this->waitfunc = nand_wait;
+
+ if (!this->select_chip)
+ this->select_chip = nand_select_chip;
+ if (!this->write_byte)
+ this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+ if (!this->read_byte)
+ this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+ if (!this->write_word)
+ this->write_word = nand_write_word;
+ if (!this->read_word)
+ this->read_word = nand_read_word;
+ if (!this->block_bad)
+ this->block_bad = nand_block_bad;
+ if (!this->block_markbad)
+ this->block_markbad = nand_default_block_markbad;
+ if (!this->write_buf)
+ this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+ if (!this->read_buf)
+ this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+ if (!this->verify_buf)
+ this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+ if (!this->scan_bbt)
+ this->scan_bbt = nand_default_bbt;
+
+ /* Select the device */
+ this->select_chip(mtd, 0);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ nand_maf_id = this->read_byte(mtd);
+ nand_dev_id = this->read_byte(mtd);
+
+ /* Print and store flash device information */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+
+ if (nand_dev_id != nand_flash_ids[i].id)
+ continue;
+
+ if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+ this->chipsize = nand_flash_ids[i].chipsize << 20;
+
+ /* New devices have all the information in additional id bytes */
+ if (!nand_flash_ids[i].pagesize) {
+ int extid;
+ /* The 3rd id byte contains non relevant data ATM */
+ extid = this->read_byte(mtd);
+ /* The 4th id byte is the important one */
+ extid = this->read_byte(mtd);
+ /* Calc pagesize */
+ mtd->oobblock = 1024 << (extid & 0x3);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock / 512);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+ } else {
+ /* Old devices have this data hardcoded in the
+ * device id table */
+ mtd->erasesize = nand_flash_ids[i].erasesize;
+ mtd->oobblock = nand_flash_ids[i].pagesize;
+ mtd->oobsize = mtd->oobblock / 32;
+ busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+ }
+
+ /* Check, if buswidth is correct. Hardware drivers should set
+ * this correct ! */
+ if (busw != (this->options & NAND_BUSWIDTH_16)) {
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[i].name , mtd->name);
+ printk (KERN_WARNING
+ "NAND bus width %d instead %d bit\n",
+ (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+ busw ? 16 : 8);
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ /* Calculate the address shift from the page size */
+ this->page_shift = ffs(mtd->oobblock) - 1;
+ this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+ this->chip_shift = ffs(this->chipsize) - 1;
+
+ /* Set the bad block position */
+ this->badblockpos = mtd->oobblock > 512 ?
+ NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+ /* Get chip options, preserve non chip based options */
+ this->options &= ~NAND_CHIPOPTIONS_MSK;
+ this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+ /* Set this as a default. Board drivers can override it, if neccecary */
+ this->options |= NAND_NO_AUTOINCR;
+ /* Check if this is a not a samsung device. Do not clear the options
+ * for chips which are not having an extended id.
+ */
+ if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+ this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+
+ /* Check for AND chips with 4 page planes */
+ if (this->options & NAND_4PAGE_ARRAY)
+ this->erase_cmd = multi_erase_cmd;
+ else
+ this->erase_cmd = single_erase_cmd;
+
+ /* Do not replace user supplied command function ! */
+ if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+ this->cmdfunc = nand_command_lp;
+
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == nand_maf_id)
+ break;
+ }
+ break;
+ }
+
+ if (!nand_flash_ids[i].name) {
+#ifndef CFG_NAND_QUIET_TEST
+ printk (KERN_WARNING "No NAND device found!!!\n");
+#endif
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ for (i=1; i < maxchips; i++) {
+ this->select_chip(mtd, i);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ if (nand_maf_id != this->read_byte(mtd) ||
+ nand_dev_id != this->read_byte(mtd))
+ break;
+ }
+ if (i > 1)
+ printk(KERN_INFO "%d NAND chips detected\n", i);
+
+ /* Allocate buffers, if neccecary */
+ if (!this->oob_buf) {
+ size_t len;
+ len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+ this->oob_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->oob_buf) {
+ printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_OOBBUF_ALLOC;
+ }
+
+ if (!this->data_buf) {
+ size_t len;
+ len = mtd->oobblock + mtd->oobsize;
+ this->data_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->data_buf) {
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_DATABUF_ALLOC;
+ }
+
+ /* Store the number of chips and calc total size for mtd */
+ this->numchips = i;
+ mtd->size = i * this->chipsize;
+ /* Convert chipsize to number of pages per chip -1. */
+ this->pagemask = (this->chipsize >> this->page_shift) - 1;
+ /* Preset the internal oob buffer */
+ memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+ /* If no default placement scheme is given, select an
+ * appropriate one */
+ if (!this->autooob) {
+ /* Select the appropriate default oob placement scheme for
+ * placement agnostic filesystems */
+ switch (mtd->oobsize) {
+ case 8:
+ this->autooob = &nand_oob_8;
+ break;
+ case 16:
+ this->autooob = &nand_oob_16;
+ break;
+ case 64:
+ this->autooob = &nand_oob_64;
+ break;
+ default:
+ printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+ mtd->oobsize);
+/* BUG(); */
+ }
+ }
+
+ /* The number of bytes available for the filesystem to place fs dependend
+ * oob data */
+ if (this->options & NAND_BUSWIDTH_16) {
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+ if (this->autooob->eccbytes & 0x01)
+ mtd->oobavail--;
+ } else
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+ /*
+ * check ECC mode, default to software
+ * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+ * fallback to software ECC
+ */
+ this->eccsize = 256; /* set default eccsize */
+ this->eccbytes = 3;
+
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ if (mtd->oobblock < 2048) {
+ printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+ mtd->oobblock);
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 2048;
+ break;
+
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ if (mtd->oobblock == 256) {
+ printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 512; /* set eccsize to 512 */
+ break;
+
+ case NAND_ECC_HW3_256:
+ break;
+
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+ this->eccmode = NAND_ECC_NONE;
+ break;
+
+ case NAND_ECC_SOFT:
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ break;
+
+ default:
+ printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+/* BUG(); */
+ }
+
+ /* Check hardware ecc function availability and adjust number of ecc bytes per
+ * calculation step
+ */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccbytes += 4;
+ case NAND_ECC_HW8_512:
+ this->eccbytes += 2;
+ case NAND_ECC_HW6_512:
+ this->eccbytes += 3;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW3_256:
+ if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+ break;
+ printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+/* BUG(); */
+ }
+
+ mtd->eccsize = this->eccsize;
+
+ /* Set the number of read / write steps for one page to ensure ECC generation */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccsteps = mtd->oobblock / 2048;
+ break;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ this->eccsteps = mtd->oobblock / 512;
+ break;
+ case NAND_ECC_HW3_256:
+ case NAND_ECC_SOFT:
+ this->eccsteps = mtd->oobblock / 256;
+ break;
+
+ case NAND_ECC_NONE:
+ this->eccsteps = 1;
+ break;
+ }
+
+/* XXX U-BOOT XXX */
+#if 0
+ /* Initialize state, waitqueue and spinlock */
+ this->state = FL_READY;
+ init_waitqueue_head (&this->wq);
+ spin_lock_init (&this->chip_lock);
+#endif
+
+ /* De-select the device */
+ this->select_chip(mtd, -1);
+
+ /* Invalidate the pagebuffer reference */
+ this->pagebuf = -1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+ mtd->ecctype = MTD_ECC_SW;
+ mtd->erase = nand_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = nand_read;
+ mtd->write = nand_write;
+ mtd->read_ecc = nand_read_ecc;
+ mtd->write_ecc = nand_write_ecc;
+ mtd->read_oob = nand_read_oob;
+ mtd->write_oob = nand_write_oob;
+/* XXX U-BOOT XXX */
+#if 0
+ mtd->readv = NULL;
+ mtd->writev = nand_writev;
+ mtd->writev_ecc = nand_writev_ecc;
+#endif
+ mtd->sync = nand_sync;
+/* XXX U-BOOT XXX */
+#if 0
+ mtd->lock = NULL;
+ mtd->unlock = NULL;
+ mtd->suspend = NULL;
+ mtd->resume = NULL;
+#endif
+ mtd->block_isbad = nand_block_isbad;
+ mtd->block_markbad = nand_block_markbad;
+
+ /* and make the autooob the default one */
+ memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+/* XXX U-BOOT XXX */
+#if 0
+ mtd->owner = THIS_MODULE;
+#endif
+ /* Build bad block table */
+ return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device
+ * @mtd: MTD device structure
+ */
+void nand_release (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+#ifdef CONFIG_MTD_PARTITIONS
+ /* Deregister partitions */
+ del_mtd_partitions (mtd);
+#endif
+ /* Deregister the device */
+/* XXX U-BOOT XXX */
+#if 0
+ del_mtd_device (mtd);
+#endif
+ /* Free bad block table memory, if allocated */
+ if (this->bbt)
+ kfree (this->bbt);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_DATABUF_ALLOC)
+ kfree (this->data_buf);
+}
+
+#endif
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
new file mode 100644
index 0000000..19a9bc2
--- /dev/null
+++ b/drivers/mtd/nand/nand_bbt.c
@@ -0,0 +1,1052 @@
+/*
+ * drivers/mtd/nand_bbt.c
+ *
+ * Overview:
+ * Bad block table support for the NAND driver
+ *
+ * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table
+ * depending on the options in the bbt descriptor(s). If a bbt is found
+ * then the contents are read and the memory based bbt is created. If a
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created.
+ * If no bbt exists at all then the device is scanned for factory marked
+ * good / bad blocks and the bad block tables are created.
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks
+ * of the device. The table is mirrored, so it can be updated eventually.
+ * The table is marked in the oob area with an ident pattern and a version
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b: block is good
+ * 00b: block is factory marked bad
+ * 01b, 10b: block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b: block is good
+ * 01b: block is marked bad due to wear
+ * 10b: block is reserved (to protect the bbt area)
+ * 11b: block is factory marked bad
+ *
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space neccecary for a bbt in FLASH does not exceed a block boundary
+ *
+ */
+
+#include <common.h>
+
+#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
+
+#include <malloc.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+#include <asm/errno.h>
+
+/**
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @len: the length of buffer to search
+ * @paglen: the pagelength
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+ int i, end;
+ uint8_t *p = buf;
+
+ end = paglen + td->offs;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = 0; i < end; i++) {
+ if (p[i] != 0xff)
+ return -1;
+ }
+ }
+ p += end;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+
+ p += td->len;
+ end += td->len;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = end; i < len; i++) {
+ if (*p++ != 0xff)
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @page: the starting page
+ * @num: the number of bbt descriptors to read
+ * @bits: number of bits per block
+ * @offs: offset in the memory table
+ * @reserved_block_code: Pattern to identify reserved blocks
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
+ int bits, int offs, int reserved_block_code)
+{
+ int res, i, j, act = 0;
+ struct nand_chip *this = mtd->priv;
+ size_t retlen, len, totlen;
+ loff_t from;
+ uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+ totlen = (num * bits) >> 3;
+ from = ((loff_t)page) << this->page_shift;
+
+ while (totlen) {
+ len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
+ res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
+ if (res < 0) {
+ if (retlen != len) {
+ printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
+ return res;
+ }
+ printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+ }
+
+ /* Analyse data */
+ for (i = 0; i < len; i++) {
+ uint8_t dat = buf[i];
+ for (j = 0; j < 8; j += bits, act += 2) {
+ uint8_t tmp = (dat >> j) & msk;
+ if (tmp == msk)
+ continue;
+ if (reserved_block_code &&
+ (tmp == reserved_block_code)) {
+ printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+ continue;
+ }
+ /* Leave it for now, if its matured we can move this
+ * message to MTD_DEBUG_LEVEL0 */
+ printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ /* Factory marked bad or worn out ? */
+ if (tmp == 0)
+ this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+ else
+ this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+ }
+ }
+ totlen -= len;
+ from += len;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @chip: read the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int res = 0, i;
+ int bits;
+
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ if (td->options & NAND_BBT_PERCHIP) {
+ int offs = 0;
+ for (i = 0; i < this->numchips; i++) {
+ if (chip == -1 || chip == i)
+ res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+ if (res)
+ return res;
+ offs += this->chipsize >> (this->bbt_erase_shift + 2);
+ }
+ } else {
+ res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+ if (res)
+ return res;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
+ struct nand_bbt_descr *md)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Read the primary version, if available */
+ if (td->options & NAND_BBT_VERSION) {
+ nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
+ td->version[0] = buf[mtd->oobblock + td->veroffs];
+ printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
+ }
+
+ /* Read the mirror version, if available */
+ if (md && (md->options & NAND_BBT_VERSION)) {
+ nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
+ md->version[0] = buf[mtd->oobblock + md->veroffs];
+ printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
+ }
+
+ return 1;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ * @chip: create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen, ooblen;
+
+ if (bd->options & NAND_BBT_SCANALLPAGES)
+ len = 1 << (this->bbt_erase_shift - this->page_shift);
+ else {
+ if (bd->options & NAND_BBT_SCAN2NDPAGE)
+ len = 2;
+ else
+ len = 1;
+ }
+ scanlen = mtd->oobblock + mtd->oobsize;
+ readlen = len * mtd->oobblock;
+ ooblen = len * mtd->oobsize;
+
+ if (chip == -1) {
+ /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
+ * makes shifting and masking less painful */
+ numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+ } else {
+ if (chip >= this->numchips) {
+ printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+ chip + 1, this->numchips);
+ return;
+ }
+ numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+ startblock = chip * numblocks;
+ numblocks += startblock;
+ from = startblock << (this->bbt_erase_shift - 1);
+ }
+
+ for (i = startblock; i < numblocks;) {
+ nand_read_raw (mtd, buf, from, readlen, ooblen);
+ for (j = 0; j < len; j++) {
+ if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+ this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ break;
+ }
+ }
+ i += 2;
+ from += (1 << this->bbt_erase_shift);
+ }
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched
+ * for a bbt, which contains the bad block information of this chip.
+ * This is neccecary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page
+ * in a block.
+ */
+static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, chips;
+ int bits, startblock, block, dir;
+ int scanlen = mtd->oobblock + mtd->oobsize;
+ int bbtblocks;
+
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = (mtd->size >> this->bbt_erase_shift) -1;
+ dir = -1;
+ } else {
+ startblock = 0;
+ dir = 1;
+ }
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ bbtblocks = this->chipsize >> this->bbt_erase_shift;
+ startblock &= bbtblocks - 1;
+ } else {
+ chips = 1;
+ bbtblocks = mtd->size >> this->bbt_erase_shift;
+ }
+
+ /* Number of bits for each erase block in the bbt */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+
+ for (i = 0; i < chips; i++) {
+ /* Reset version information */
+ td->version[i] = 0;
+ td->pages[i] = -1;
+ /* Scan the maximum number of blocks */
+ for (block = 0; block < td->maxblocks; block++) {
+ int actblock = startblock + dir * block;
+ /* Read first page */
+ nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize);
+ if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
+ td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
+ if (td->options & NAND_BBT_VERSION) {
+ td->version[i] = buf[mtd->oobblock + td->veroffs];
+ }
+ break;
+ }
+ }
+ startblock += this->chipsize >> this->bbt_erase_shift;
+ }
+ /* Check, if we found a bbt for each requested chip */
+ for (i = 0; i < chips; i++) {
+ if (td->pages[i] == -1)
+ printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
+ else
+ printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
+ }
+ return 0;
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+ /* Search the primary table */
+ search_bbt (mtd, buf, td);
+
+ /* Search the mirror table */
+ if (md)
+ search_bbt (mtd, buf, md);
+
+ /* Force result check */
+ return 1;
+}
+
+
+/**
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ * @chipsel: selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
+{
+ struct nand_chip *this = mtd->priv;
+ struct nand_oobinfo oobinfo;
+ struct erase_info einfo;
+ int i, j, res, chip = 0;
+ int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+ int nrchips, bbtoffs, pageoffs;
+ uint8_t msk[4];
+ uint8_t rcode = td->reserved_block_code;
+ size_t retlen, len = 0;
+ loff_t to;
+
+ if (!rcode)
+ rcode = 0xff;
+ /* Write bad block table per chip rather than per device ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
+ /* Full device write or specific chip ? */
+ if (chipsel == -1) {
+ nrchips = this->numchips;
+ } else {
+ nrchips = chipsel + 1;
+ chip = chipsel;
+ }
+ } else {
+ numblocks = (int) (mtd->size >> this->bbt_erase_shift);
+ nrchips = 1;
+ }
+
+ /* Loop through the chips */
+ for (; chip < nrchips; chip++) {
+
+ /* There was already a version of the table, reuse the page
+ * This applies for absolute placement too, as we have the
+ * page nr. in td->pages.
+ */
+ if (td->pages[chip] != -1) {
+ page = td->pages[chip];
+ goto write;
+ }
+
+ /* Automatic placement of the bad block table */
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = numblocks * (chip + 1) - 1;
+ dir = -1;
+ } else {
+ startblock = chip * numblocks;
+ dir = 1;
+ }
+
+ for (i = 0; i < td->maxblocks; i++) {
+ int block = startblock + dir * i;
+ /* Check, if the block is bad */
+ switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) {
+ case 0x01:
+ case 0x03:
+ continue;
+ }
+ page = block << (this->bbt_erase_shift - this->page_shift);
+ /* Check, if the block is used by the mirror table */
+ if (!md || md->pages[chip] != page)
+ goto write;
+ }
+ printk (KERN_ERR "No space left to write bad block table\n");
+ return -ENOSPC;
+write:
+
+ /* Set up shift count and masks for the flash table */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ switch (bits) {
+ case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break;
+ case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break;
+ case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break;
+ case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break;
+ default: return -EINVAL;
+ }
+
+ bbtoffs = chip * (numblocks >> 2);
+
+ to = ((loff_t) page) << this->page_shift;
+
+ memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
+ oobinfo.useecc = MTD_NANDECC_PLACEONLY;
+
+ /* Must we save the block contents ? */
+ if (td->options & NAND_BBT_SAVECONTENT) {
+ /* Make it block aligned */
+ to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+ len = 1 << this->bbt_erase_shift;
+ res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+ if (res < 0) {
+ if (retlen != len) {
+ printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
+ return res;
+ }
+ printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
+ }
+ /* Calc the byte offset in the buffer */
+ pageoffs = page - (int)(to >> this->page_shift);
+ offs = pageoffs << this->page_shift;
+ /* Preset the bbt area with 0xff */
+ memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
+ /* Preset the bbt's oob area with 0xff */
+ memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
+ ((len >> this->page_shift) - pageoffs) * mtd->oobsize);
+ if (td->options & NAND_BBT_VERSION) {
+ buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
+ }
+ } else {
+ /* Calc length */
+ len = (size_t) (numblocks >> sft);
+ /* Make it page aligned ! */
+ len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
+ /* Preset the buffer with 0xff */
+ memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
+ offs = 0;
+ /* Pattern is located in oob area of first page */
+ memcpy (&buf[len + td->offs], td->pattern, td->len);
+ if (td->options & NAND_BBT_VERSION) {
+ buf[len + td->veroffs] = td->version[chip];
+ }
+ }
+
+ /* walk through the memory table */
+ for (i = 0; i < numblocks; ) {
+ uint8_t dat;
+ dat = this->bbt[bbtoffs + (i >> 2)];
+ for (j = 0; j < 4; j++ , i++) {
+ int sftcnt = (i << (3 - sft)) & sftmsk;
+ /* Do not store the reserved bbt blocks ! */
+ buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
+ dat >>= 2;
+ }
+ }
+
+ memset (&einfo, 0, sizeof (einfo));
+ einfo.mtd = mtd;
+ einfo.addr = (unsigned long) to;
+ einfo.len = 1 << this->bbt_erase_shift;
+ res = nand_erase_nand (mtd, &einfo, 1);
+ if (res < 0) {
+ printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
+ return res;
+ }
+
+ res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+ if (res < 0) {
+ printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
+ return res;
+ }
+ printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n",
+ (unsigned int) to, td->version[chip]);
+
+ /* Mark it as used */
+ td->pages[chip] = page;
+ }
+ return 0;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+*/
+static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Ensure that we only scan for the pattern and nothing else */
+ bd->options = 0;
+ create_bbt (mtd, this->data_buf, bd, -1);
+ return 0;
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if neccecary
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if neccecary
+ * Creation is neccecary if no bbt was found for the chip/device
+ * Update is neccecary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+ int i, chips, writeops, chipsel, res;
+ struct nand_chip *this = mtd->priv;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+ struct nand_bbt_descr *rd, *rd2;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP)
+ chips = this->numchips;
+ else
+ chips = 1;
+
+ for (i = 0; i < chips; i++) {
+ writeops = 0;
+ rd = NULL;
+ rd2 = NULL;
+ /* Per chip or per device ? */
+ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+ /* Mirrored table avilable ? */
+ if (md) {
+ if (td->pages[i] == -1 && md->pages[i] == -1) {
+ writeops = 0x03;
+ goto create;
+ }
+
+ if (td->pages[i] == -1) {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ goto writecheck;
+ }
+
+ if (md->pages[i] == -1) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ goto writecheck;
+ }
+
+ if (td->version[i] == md->version[i]) {
+ rd = td;
+ if (!(td->options & NAND_BBT_VERSION))
+ rd2 = md;
+ goto writecheck;
+ }
+
+ if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ } else {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ }
+
+ goto writecheck;
+
+ } else {
+ if (td->pages[i] == -1) {
+ writeops = 0x01;
+ goto create;
+ }
+ rd = td;
+ goto writecheck;
+ }
+create:
+ /* Create the bad block table by scanning the device ? */
+ if (!(td->options & NAND_BBT_CREATE))
+ continue;
+
+ /* Create the table in memory by scanning the chip(s) */
+ create_bbt (mtd, buf, bd, chipsel);
+
+ td->version[i] = 1;
+ if (md)
+ md->version[i] = 1;
+writecheck:
+ /* read back first ? */
+ if (rd)
+ read_abs_bbt (mtd, buf, rd, chipsel);
+ /* If they weren't versioned, read both. */
+ if (rd2)
+ read_abs_bbt (mtd, buf, rd2, chipsel);
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, td, md, chipsel);
+ if (res < 0)
+ return res;
+ }
+
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, md, td, chipsel);
+ if (res < 0)
+ return res;
+ }
+ }
+ return 0;
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @mtd: MTD device structure
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, chips, block, nrblocks, update;
+ uint8_t oldval, newval;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+ } else {
+ chips = 1;
+ nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+ }
+
+ for (i = 0; i < chips; i++) {
+ if ((td->options & NAND_BBT_ABSPAGE) ||
+ !(td->options & NAND_BBT_WRITE)) {
+ if (td->pages[i] == -1) continue;
+ block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+ block <<= 1;
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if ((oldval != newval) && td->reserved_block_code)
+ nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+ continue;
+ }
+ update = 0;
+ if (td->options & NAND_BBT_LASTBLOCK)
+ block = ((i + 1) * nrblocks) - td->maxblocks;
+ else
+ block = i * nrblocks;
+ block <<= 1;
+ for (j = 0; j < td->maxblocks; j++) {
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if (oldval != newval) update = 1;
+ block += 2;
+ }
+ /* If we want reserved blocks to be recorded to flash, and some
+ new ones have been marked, then we need to update the stored
+ bbts. This should only happen once. */
+ if (update && td->reserved_block_code)
+ nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+ }
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate memory (2bit per block) */
+ this->bbt = kmalloc (len, GFP_KERNEL);
+ if (!this->bbt) {
+ printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+ /* Clear the memory bad block table */
+ memset (this->bbt, 0x00, len);
+
+ /* If no primary table decriptor is given, scan the device
+ * to build a memory based bad block table
+ */
+ if (!td)
+ return nand_memory_bbt(mtd, bd);
+
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc (len, GFP_KERNEL);
+ if (!buf) {
+ printk (KERN_ERR "nand_bbt: Out of memory\n");
+ kfree (this->bbt);
+ this->bbt = NULL;
+ return -ENOMEM;
+ }
+
+ /* Is the bbt at a given page ? */
+ if (td->options & NAND_BBT_ABSPAGE) {
+ res = read_abs_bbts (mtd, buf, td, md);
+ } else {
+ /* Search the bad block table using a pattern in oob */
+ res = search_read_bbts (mtd, buf, td, md);
+ }
+
+ if (res)
+ res = check_create (mtd, buf, bd);
+
+ /* Prevent the bbt regions from erasing / writing */
+ mark_bbt_region (mtd, td);
+ if (md)
+ mark_bbt_region (mtd, md);
+
+ kfree (buf);
+ return res;
+}
+
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s)
+ * @mtd: MTD device structure
+ * @offs: the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0, writeops = 0;
+ int chip, chipsel;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ if (!this->bbt || !td)
+ return -EINVAL;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc (len, GFP_KERNEL);
+ if (!buf) {
+ printk (KERN_ERR "nand_update_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+
+ writeops = md != NULL ? 0x03 : 0x01;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chip = (int) (offs >> this->chip_shift);
+ chipsel = chip;
+ } else {
+ chip = 0;
+ chipsel = -1;
+ }
+
+ td->version[chip]++;
+ if (md)
+ md->version[chip]++;
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, td, md, chipsel);
+ if (res < 0)
+ goto out;
+ }
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, md, td, chipsel);
+ }
+
+out:
+ kfree (buf);
+ return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks
+ *
+ * The memory based patterns just
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+ .options = 0,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0x20,
+ .len = 6,
+ .pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
+ * @mtd: MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Default for AG-AND. We must use a flash based
+ * bad block table as the devices have factory marked
+ * _good_ blocks. Erasing those blocks leads to loss
+ * of the good / bad information, so we _must_ store
+ * this information in a good / bad table during
+ * startup
+ */
+ if (this->options & NAND_IS_AND) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ this->options |= NAND_USE_FLASH_BBT;
+ return nand_scan_bbt (mtd, &agand_flashbased);
+ }
+
+
+ /* Is a flash based bad block table requested ? */
+ if (this->options & NAND_USE_FLASH_BBT) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_flashbased : &smallpage_flashbased;
+ }
+ } else {
+ this->bbt_td = NULL;
+ this->bbt_md = NULL;
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_memorybased : &smallpage_memorybased;
+ }
+ }
+ return nand_scan_bbt (mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ * @allowbbt: allow access to bad block table region
+ *
+ */
+int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int) (offs >> (this->bbt_erase_shift - 1));
+ res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int)offs, res, block >> 1);
+
+ switch ((int)res) {
+ case 0x00: return 0;
+ case 0x01: return 1;
+ case 0x02: return allowbbt ? 0 : 1;
+ }
+ return 1;
+}
+
+#endif
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
new file mode 100644
index 0000000..4c532b0
--- /dev/null
+++ b/drivers/mtd/nand/nand_ecc.c
@@ -0,0 +1,200 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ * Toshiba America Electronics Components, Inc.
+ *
+ * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ *
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ *
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <common.h>
+
+#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
+
+#include<linux/mtd/mtd.h>
+
+/*
+ * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
+ * only nand_correct_data() is needed
+ */
+
+#ifndef CONFIG_NAND_SPL
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
+ * @mtd: MTD block structure
+ * @dat: raw data
+ * @ecc_code: buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+ uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
+ int i;
+
+ /* Initialize variables */
+ reg1 = reg2 = reg3 = 0;
+
+ /* Build up column parity */
+ for(i = 0; i < 256; i++) {
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[*dat++];
+ reg1 ^= (idx & 0x3f);
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (uint8_t) i;
+ reg2 ^= ~((uint8_t) i);
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
+ tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
+ tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
+ tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
+ tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
+ tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
+ tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
+ tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
+
+ tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
+ tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
+ tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
+ tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
+ tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
+ tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
+ tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
+ tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
+
+ /* Calculate final ECC code */
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+ ecc_code[0] = ~tmp2;
+ ecc_code[1] = ~tmp1;
+#else
+ ecc_code[0] = ~tmp1;
+ ecc_code[1] = ~tmp2;
+#endif
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+
+ return 0;
+}
+#endif /* CONFIG_NAND_SPL */
+
+static inline int countbits(uint32_t byte)
+{
+ int res = 0;
+
+ for (;byte; byte >>= 1)
+ res += byte & 0x01;
+ return res;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd: MTD block structure
+ * @dat: raw data read from the chip
+ * @read_ecc: ECC from the chip
+ * @calc_ecc: the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ uint8_t s0, s1, s2;
+
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+ s0 = calc_ecc[0] ^ read_ecc[0];
+ s1 = calc_ecc[1] ^ read_ecc[1];
+ s2 = calc_ecc[2] ^ read_ecc[2];
+#else
+ s1 = calc_ecc[0] ^ read_ecc[0];
+ s0 = calc_ecc[1] ^ read_ecc[1];
+ s2 = calc_ecc[2] ^ read_ecc[2];
+#endif
+ if ((s0 | s1 | s2) == 0)
+ return 0;
+
+ /* Check for a single bit error */
+ if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
+ ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
+ ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
+
+ uint32_t byteoffs, bitnum;
+
+ byteoffs = (s1 << 0) & 0x80;
+ byteoffs |= (s1 << 1) & 0x40;
+ byteoffs |= (s1 << 2) & 0x20;
+ byteoffs |= (s1 << 3) & 0x10;
+
+ byteoffs |= (s0 >> 4) & 0x08;
+ byteoffs |= (s0 >> 3) & 0x04;
+ byteoffs |= (s0 >> 2) & 0x02;
+ byteoffs |= (s0 >> 1) & 0x01;
+
+ bitnum = (s2 >> 5) & 0x04;
+ bitnum |= (s2 >> 4) & 0x02;
+ bitnum |= (s2 >> 3) & 0x01;
+
+ dat[byteoffs] ^= (1 << bitnum);
+
+ return 1;
+ }
+
+ if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
+ return 1;
+
+ return -1;
+}
+
+#endif
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c
new file mode 100644
index 0000000..6d7e347
--- /dev/null
+++ b/drivers/mtd/nand/nand_ids.c
@@ -0,0 +1,129 @@
+/*
+ * drivers/mtd/nandids.c
+ *
+ * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <common.h>
+
+#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
+
+#include <linux/mtd/nand.h>
+
+/*
+* Chip ID list
+*
+* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+* options
+*
+* Pagesize; 0, 256, 512
+* 0 get this information from the extended chip ID
++ 256 256 Byte page size
+* 512 512 Byte page size
+*/
+struct nand_flash_dev nand_flash_ids[] = {
+ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
+
+ {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+ {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+
+ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
+
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 512, 512, 0x4000, 0},
+
+ /* These are the new chips with large page size. The pagesize
+ * and the erasesize is determined from the extended id bytes
+ */
+ /* 1 Gigabit */
+ {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 2 Gigabit */
+ {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 4 Gigabit */
+ {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 8 Gigabit */
+ {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 16 Gigabit */
+ {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout !
+ * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
+ * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
+ * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
+ * There are more speed improvements for reads and writes possible, but not implemented now
+ */
+ {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
+
+ {NULL,}
+};
+
+/*
+* Manufacturer ID list
+*/
+struct nand_manufacturers nand_manuf_ids[] = {
+ {NAND_MFR_TOSHIBA, "Toshiba"},
+ {NAND_MFR_SAMSUNG, "Samsung"},
+ {NAND_MFR_FUJITSU, "Fujitsu"},
+ {NAND_MFR_NATIONAL, "National"},
+ {NAND_MFR_RENESAS, "Renesas"},
+ {NAND_MFR_STMICRO, "ST Micro"},
+ {NAND_MFR_MICRON, "Micron"},
+ {0x0, "Unknown"}
+};
+#endif
diff --git a/drivers/mtd/nand/nand_util.c b/drivers/mtd/nand/nand_util.c
new file mode 100644
index 0000000..4fd4e16
--- /dev/null
+++ b/drivers/mtd/nand/nand_util.c
@@ -0,0 +1,872 @@
+/*
+ * drivers/nand/nand_util.c
+ *
+ * Copyright (C) 2006 by Weiss-Electronic GmbH.
+ * All rights reserved.
+ *
+ * @author: Guido Classen <clagix@gmail.com>
+ * @descr: NAND Flash support
+ * @references: borrowed heavily from Linux mtd-utils code:
+ * flash_eraseall.c by Arcom Control System Ltd
+ * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
+ * and Thomas Gleixner (tglx@linutronix.de)
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License version
+ * 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+#include <common.h>
+
+#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
+
+#include <command.h>
+#include <watchdog.h>
+#include <malloc.h>
+#include <div64.h>
+
+#include <nand.h>
+#include <jffs2/jffs2.h>
+
+typedef struct erase_info erase_info_t;
+typedef struct mtd_info mtd_info_t;
+
+/* support only for native endian JFFS2 */
+#define cpu_to_je16(x) (x)
+#define cpu_to_je32(x) (x)
+
+/*****************************************************************************/
+static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+/**
+ * nand_erase_opts: - erase NAND flash with support for various options
+ * (jffs2 formating)
+ *
+ * @param meminfo NAND device to erase
+ * @param opts options, @see struct nand_erase_options
+ * @return 0 in case of success
+ *
+ * This code is ported from flash_eraseall.c from Linux mtd utils by
+ * Arcom Control System Ltd.
+ */
+int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
+{
+ struct jffs2_unknown_node cleanmarker;
+ int clmpos = 0;
+ int clmlen = 8;
+ erase_info_t erase;
+ ulong erase_length;
+ int isNAND;
+ int bbtest = 1;
+ int result;
+ int percent_complete = -1;
+ int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
+ const char *mtd_device = meminfo->name;
+
+ memset(&erase, 0, sizeof(erase));
+
+ erase.mtd = meminfo;
+ erase.len = meminfo->erasesize;
+ erase.addr = opts->offset;
+ erase_length = opts->length;
+
+ isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0;
+
+ if (opts->jffs2) {
+ cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
+ cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
+ if (isNAND) {
+ struct nand_oobinfo *oobinfo = &meminfo->oobinfo;
+
+ /* check for autoplacement */
+ if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) {
+ /* get the position of the free bytes */
+ if (!oobinfo->oobfree[0][1]) {
+ printf(" Eeep. Autoplacement selected "
+ "and no empty space in oob\n");
+ return -1;
+ }
+ clmpos = oobinfo->oobfree[0][0];
+ clmlen = oobinfo->oobfree[0][1];
+ if (clmlen > 8)
+ clmlen = 8;
+ } else {
+ /* legacy mode */
+ switch (meminfo->oobsize) {
+ case 8:
+ clmpos = 6;
+ clmlen = 2;
+ break;
+ case 16:
+ clmpos = 8;
+ clmlen = 8;
+ break;
+ case 64:
+ clmpos = 16;
+ clmlen = 8;
+ break;
+ }
+ }
+
+ cleanmarker.totlen = cpu_to_je32(8);
+ } else {
+ cleanmarker.totlen =
+ cpu_to_je32(sizeof(struct jffs2_unknown_node));
+ }
+ cleanmarker.hdr_crc = cpu_to_je32(
+ crc32_no_comp(0, (unsigned char *) &cleanmarker,
+ sizeof(struct jffs2_unknown_node) - 4));
+ }
+
+ /* scrub option allows to erase badblock. To prevent internal
+ * check from erase() method, set block check method to dummy
+ * and disable bad block table while erasing.
+ */
+ if (opts->scrub) {
+ struct nand_chip *priv_nand = meminfo->priv;
+
+ nand_block_bad_old = priv_nand->block_bad;
+ priv_nand->block_bad = nand_block_bad_scrub;
+ /* we don't need the bad block table anymore...
+ * after scrub, there are no bad blocks left!
+ */
+ if (priv_nand->bbt) {
+ kfree(priv_nand->bbt);
+ }
+ priv_nand->bbt = NULL;
+ }
+
+ for (;
+ erase.addr < opts->offset + erase_length;
+ erase.addr += meminfo->erasesize) {
+
+ WATCHDOG_RESET ();
+
+ if (!opts->scrub && bbtest) {
+ int ret = meminfo->block_isbad(meminfo, erase.addr);
+ if (ret > 0) {
+ if (!opts->quiet)
+ printf("\rSkipping bad block at "
+ "0x%08x "
+ " \n",
+ erase.addr);
+ continue;
+
+ } else if (ret < 0) {
+ printf("\n%s: MTD get bad block failed: %d\n",
+ mtd_device,
+ ret);
+ return -1;
+ }
+ }
+
+ result = meminfo->erase(meminfo, &erase);
+ if (result != 0) {
+ printf("\n%s: MTD Erase failure: %d\n",
+ mtd_device, result);
+ continue;
+ }
+
+ /* format for JFFS2 ? */
+ if (opts->jffs2) {
+
+ /* write cleanmarker */
+ if (isNAND) {
+ size_t written;
+ result = meminfo->write_oob(meminfo,
+ erase.addr + clmpos,
+ clmlen,
+ &written,
+ (unsigned char *)
+ &cleanmarker);
+ if (result != 0) {
+ printf("\n%s: MTD writeoob failure: %d\n",
+ mtd_device, result);
+ continue;
+ }
+ } else {
+ printf("\n%s: this erase routine only supports"
+ " NAND devices!\n",
+ mtd_device);
+ }
+ }
+
+ if (!opts->quiet) {
+ unsigned long long n =(unsigned long long)
+ (erase.addr + meminfo->erasesize - opts->offset)
+ * 100;
+ int percent;
+
+ do_div(n, erase_length);
+ percent = (int)n;
+
+ /* output progress message only at whole percent
+ * steps to reduce the number of messages printed
+ * on (slow) serial consoles
+ */
+ if (percent != percent_complete) {
+ percent_complete = percent;
+
+ printf("\rErasing at 0x%x -- %3d%% complete.",
+ erase.addr, percent);
+
+ if (opts->jffs2 && result == 0)
+ printf(" Cleanmarker written at 0x%x.",
+ erase.addr);
+ }
+ }
+ }
+ if (!opts->quiet)
+ printf("\n");
+
+ if (nand_block_bad_old) {
+ struct nand_chip *priv_nand = meminfo->priv;
+
+ priv_nand->block_bad = nand_block_bad_old;
+ priv_nand->scan_bbt(meminfo);
+ }
+
+ return 0;
+}
+
+#define MAX_PAGE_SIZE 2048
+#define MAX_OOB_SIZE 64
+
+/*
+ * buffer array used for writing data
+ */
+static unsigned char data_buf[MAX_PAGE_SIZE];
+static unsigned char oob_buf[MAX_OOB_SIZE];
+
+/* OOB layouts to pass into the kernel as default */
+static struct nand_oobinfo none_oobinfo = {
+ .useecc = MTD_NANDECC_OFF,
+};
+
+static struct nand_oobinfo jffs2_oobinfo = {
+ .useecc = MTD_NANDECC_PLACE,
+ .eccbytes = 6,
+ .eccpos = { 0, 1, 2, 3, 6, 7 }
+};
+
+static struct nand_oobinfo yaffs_oobinfo = {
+ .useecc = MTD_NANDECC_PLACE,
+ .eccbytes = 6,
+ .eccpos = { 8, 9, 10, 13, 14, 15}
+};
+
+static struct nand_oobinfo autoplace_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE
+};
+
+/**
+ * nand_write_opts: - write image to NAND flash with support for various options
+ *
+ * @param meminfo NAND device to erase
+ * @param opts write options (@see nand_write_options)
+ * @return 0 in case of success
+ *
+ * This code is ported from nandwrite.c from Linux mtd utils by
+ * Steven J. Hill and Thomas Gleixner.
+ */
+int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts)
+{
+ int imglen = 0;
+ int pagelen;
+ int baderaseblock;
+ int blockstart = -1;
+ loff_t offs;
+ int readlen;
+ int oobinfochanged = 0;
+ int percent_complete = -1;
+ struct nand_oobinfo old_oobinfo;
+ ulong mtdoffset = opts->offset;
+ ulong erasesize_blockalign;
+ u_char *buffer = opts->buffer;
+ size_t written;
+ int result;
+
+ if (opts->pad && opts->writeoob) {
+ printf("Can't pad when oob data is present.\n");
+ return -1;
+ }
+
+ /* set erasesize to specified number of blocks - to match
+ * jffs2 (virtual) block size */
+ if (opts->blockalign == 0) {
+ erasesize_blockalign = meminfo->erasesize;
+ } else {
+ erasesize_blockalign = meminfo->erasesize * opts->blockalign;
+ }
+
+ /* make sure device page sizes are valid */
+ if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
+ && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
+ && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
+ printf("Unknown flash (not normal NAND)\n");
+ return -1;
+ }
+
+ /* read the current oob info */
+ memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo));
+
+ /* write without ecc? */
+ if (opts->noecc) {
+ memcpy(&meminfo->oobinfo, &none_oobinfo,
+ sizeof(meminfo->oobinfo));
+ oobinfochanged = 1;
+ }
+
+ /* autoplace ECC? */
+ if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) {
+
+ memcpy(&meminfo->oobinfo, &autoplace_oobinfo,
+ sizeof(meminfo->oobinfo));
+ oobinfochanged = 1;
+ }
+
+ /* force OOB layout for jffs2 or yaffs? */
+ if (opts->forcejffs2 || opts->forceyaffs) {
+ struct nand_oobinfo *oobsel =
+ opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo;
+
+ if (meminfo->oobsize == 8) {
+ if (opts->forceyaffs) {
+ printf("YAFSS cannot operate on "
+ "256 Byte page size\n");
+ goto restoreoob;
+ }
+ /* Adjust number of ecc bytes */
+ jffs2_oobinfo.eccbytes = 3;
+ }
+
+ memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo));
+ }
+
+ /* get image length */
+ imglen = opts->length;
+ pagelen = meminfo->oobblock
+ + ((opts->writeoob != 0) ? meminfo->oobsize : 0);
+
+ /* check, if file is pagealigned */
+ if ((!opts->pad) && ((imglen % pagelen) != 0)) {
+ printf("Input block length is not page aligned\n");
+ goto restoreoob;
+ }
+
+ /* check, if length fits into device */
+ if (((imglen / pagelen) * meminfo->oobblock)
+ > (meminfo->size - opts->offset)) {
+ printf("Image %d bytes, NAND page %d bytes, "
+ "OOB area %u bytes, device size %u bytes\n",
+ imglen, pagelen, meminfo->oobblock, meminfo->size);
+ printf("Input block does not fit into device\n");
+ goto restoreoob;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+ /* get data from input and write to the device */
+ while (imglen && (mtdoffset < meminfo->size)) {
+
+ WATCHDOG_RESET ();
+
+ /*
+ * new eraseblock, check for bad block(s). Stay in the
+ * loop to be sure if the offset changes because of
+ * a bad block, that the next block that will be
+ * written to is also checked. Thus avoiding errors if
+ * the block(s) after the skipped block(s) is also bad
+ * (number of blocks depending on the blockalign
+ */
+ while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) {
+ blockstart = mtdoffset & (~erasesize_blockalign+1);
+ offs = blockstart;
+ baderaseblock = 0;
+
+ /* check all the blocks in an erase block for
+ * bad blocks */
+ do {
+ int ret = meminfo->block_isbad(meminfo, offs);
+
+ if (ret < 0) {
+ printf("Bad block check failed\n");
+ goto restoreoob;
+ }
+ if (ret == 1) {
+ baderaseblock = 1;
+ if (!opts->quiet)
+ printf("\rBad block at 0x%lx "
+ "in erase block from "
+ "0x%x will be skipped\n",
+ (long) offs,
+ blockstart);
+ }
+
+ if (baderaseblock) {
+ mtdoffset = blockstart
+ + erasesize_blockalign;
+ }
+ offs += erasesize_blockalign
+ / opts->blockalign;
+ } while (offs < blockstart + erasesize_blockalign);
+ }
+
+ readlen = meminfo->oobblock;
+ if (opts->pad && (imglen < readlen)) {
+ readlen = imglen;
+ memset(data_buf + readlen, 0xff,
+ meminfo->oobblock - readlen);
+ }
+
+ /* read page data from input memory buffer */
+ memcpy(data_buf, buffer, readlen);
+ buffer += readlen;
+
+ if (opts->writeoob) {
+ /* read OOB data from input memory block, exit
+ * on failure */
+ memcpy(oob_buf, buffer, meminfo->oobsize);
+ buffer += meminfo->oobsize;
+
+ /* write OOB data first, as ecc will be placed
+ * in there*/
+ result = meminfo->write_oob(meminfo,
+ mtdoffset,
+ meminfo->oobsize,
+ &written,
+ (unsigned char *)
+ &oob_buf);
+
+ if (result != 0) {
+ printf("\nMTD writeoob failure: %d\n",
+ result);
+ goto restoreoob;
+ }
+ imglen -= meminfo->oobsize;
+ }
+
+ /* write out the page data */
+ result = meminfo->write(meminfo,
+ mtdoffset,
+ meminfo->oobblock,
+ &written,
+ (unsigned char *) &data_buf);
+
+ if (result != 0) {
+ printf("writing NAND page at offset 0x%lx failed\n",
+ mtdoffset);
+ goto restoreoob;
+ }
+ imglen -= readlen;
+
+ if (!opts->quiet) {
+ unsigned long long n = (unsigned long long)
+ (opts->length-imglen) * 100;
+ int percent;
+
+ do_div(n, opts->length);
+ percent = (int)n;
+
+ /* output progress message only at whole percent
+ * steps to reduce the number of messages printed
+ * on (slow) serial consoles
+ */
+ if (percent != percent_complete) {
+ printf("\rWriting data at 0x%x "
+ "-- %3d%% complete.",
+ mtdoffset, percent);
+ percent_complete = percent;
+ }
+ }
+
+ mtdoffset += meminfo->oobblock;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+restoreoob:
+ if (oobinfochanged) {
+ memcpy(&meminfo->oobinfo, &old_oobinfo,
+ sizeof(meminfo->oobinfo));
+ }
+
+ if (imglen > 0) {
+ printf("Data did not fit into device, due to bad blocks\n");
+ return -1;
+ }
+
+ /* return happy */
+ return 0;
+}
+
+/**
+ * nand_read_opts: - read image from NAND flash with support for various options
+ *
+ * @param meminfo NAND device to erase
+ * @param opts read options (@see struct nand_read_options)
+ * @return 0 in case of success
+ *
+ */
+int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
+{
+ int imglen = opts->length;
+ int pagelen;
+ int baderaseblock;
+ int blockstart = -1;
+ int percent_complete = -1;
+ loff_t offs;
+ size_t readlen;
+ ulong mtdoffset = opts->offset;
+ u_char *buffer = opts->buffer;
+ int result;
+
+ /* make sure device page sizes are valid */
+ if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
+ && !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
+ && !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
+ printf("Unknown flash (not normal NAND)\n");
+ return -1;
+ }
+
+ pagelen = meminfo->oobblock
+ + ((opts->readoob != 0) ? meminfo->oobsize : 0);
+
+ /* check, if length is not larger than device */
+ if (((imglen / pagelen) * meminfo->oobblock)
+ > (meminfo->size - opts->offset)) {
+ printf("Image %d bytes, NAND page %d bytes, "
+ "OOB area %u bytes, device size %u bytes\n",
+ imglen, pagelen, meminfo->oobblock, meminfo->size);
+ printf("Input block is larger than device\n");
+ return -1;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+ /* get data from input and write to the device */
+ while (imglen && (mtdoffset < meminfo->size)) {
+
+ WATCHDOG_RESET ();
+
+ /*
+ * new eraseblock, check for bad block(s). Stay in the
+ * loop to be sure if the offset changes because of
+ * a bad block, that the next block that will be
+ * written to is also checked. Thus avoiding errors if
+ * the block(s) after the skipped block(s) is also bad
+ * (number of blocks depending on the blockalign
+ */
+ while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
+ blockstart = mtdoffset & (~meminfo->erasesize+1);
+ offs = blockstart;
+ baderaseblock = 0;
+
+ /* check all the blocks in an erase block for
+ * bad blocks */
+ do {
+ int ret = meminfo->block_isbad(meminfo, offs);
+
+ if (ret < 0) {
+ printf("Bad block check failed\n");
+ return -1;
+ }
+ if (ret == 1) {
+ baderaseblock = 1;
+ if (!opts->quiet)
+ printf("\rBad block at 0x%lx "
+ "in erase block from "
+ "0x%x will be skipped\n",
+ (long) offs,
+ blockstart);
+ }
+
+ if (baderaseblock) {
+ mtdoffset = blockstart
+ + meminfo->erasesize;
+ }
+ offs += meminfo->erasesize;
+
+ } while (offs < blockstart + meminfo->erasesize);
+ }
+
+
+ /* read page data to memory buffer */
+ result = meminfo->read(meminfo,
+ mtdoffset,
+ meminfo->oobblock,
+ &readlen,
+ (unsigned char *) &data_buf);
+
+ if (result != 0) {
+ printf("reading NAND page at offset 0x%lx failed\n",
+ mtdoffset);
+ return -1;
+ }
+
+ if (imglen < readlen) {
+ readlen = imglen;
+ }
+
+ memcpy(buffer, data_buf, readlen);
+ buffer += readlen;
+ imglen -= readlen;
+
+ if (opts->readoob) {
+ result = meminfo->read_oob(meminfo,
+ mtdoffset,
+ meminfo->oobsize,
+ &readlen,
+ (unsigned char *)
+ &oob_buf);
+
+ if (result != 0) {
+ printf("\nMTD readoob failure: %d\n",
+ result);
+ return -1;
+ }
+
+
+ if (imglen < readlen) {
+ readlen = imglen;
+ }
+
+ memcpy(buffer, oob_buf, readlen);
+
+ buffer += readlen;
+ imglen -= readlen;
+ }
+
+ if (!opts->quiet) {
+ unsigned long long n = (unsigned long long)
+ (opts->length-imglen) * 100;
+ int percent;
+
+ do_div(n, opts->length);
+ percent = (int)n;
+
+ /* output progress message only at whole percent
+ * steps to reduce the number of messages printed
+ * on (slow) serial consoles
+ */
+ if (percent != percent_complete) {
+ if (!opts->quiet)
+ printf("\rReading data from 0x%x "
+ "-- %3d%% complete.",
+ mtdoffset, percent);
+ percent_complete = percent;
+ }
+ }
+
+ mtdoffset += meminfo->oobblock;
+ }
+
+ if (!opts->quiet)
+ printf("\n");
+
+ if (imglen > 0) {
+ printf("Could not read entire image due to bad blocks\n");
+ return -1;
+ }
+
+ /* return happy */
+ return 0;
+}
+
+/******************************************************************************
+ * Support for locking / unlocking operations of some NAND devices
+ *****************************************************************************/
+
+#define NAND_CMD_LOCK 0x2a
+#define NAND_CMD_LOCK_TIGHT 0x2c
+#define NAND_CMD_UNLOCK1 0x23
+#define NAND_CMD_UNLOCK2 0x24
+#define NAND_CMD_LOCK_STATUS 0x7a
+
+/**
+ * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
+ * state
+ *
+ * @param meminfo nand mtd instance
+ * @param tight bring device in lock tight mode
+ *
+ * @return 0 on success, -1 in case of error
+ *
+ * The lock / lock-tight command only applies to the whole chip. To get some
+ * parts of the chip lock and others unlocked use the following sequence:
+ *
+ * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
+ * - Call nand_unlock() once for each consecutive area to be unlocked
+ * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
+ *
+ * If the device is in lock-tight state software can't change the
+ * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
+ * calls will fail. It is only posible to leave lock-tight state by
+ * an hardware signal (low pulse on _WP pin) or by power down.
+ */
+int nand_lock(nand_info_t *meminfo, int tight)
+{
+ int ret = 0;
+ int status;
+ struct nand_chip *this = meminfo->priv;
+
+ /* select the NAND device */
+ this->select_chip(meminfo, 0);
+
+ this->cmdfunc(meminfo,
+ (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
+ -1, -1);
+
+ /* call wait ready function */
+ status = this->waitfunc(meminfo, this, FL_WRITING);
+
+ /* see if device thinks it succeeded */
+ if (status & 0x01) {
+ ret = -1;
+ }
+
+ /* de-select the NAND device */
+ this->select_chip(meminfo, -1);
+ return ret;
+}
+
+/**
+ * nand_get_lock_status: - query current lock state from one page of NAND
+ * flash
+ *
+ * @param meminfo nand mtd instance
+ * @param offset page address to query (muss be page aligned!)
+ *
+ * @return -1 in case of error
+ * >0 lock status:
+ * bitfield with the following combinations:
+ * NAND_LOCK_STATUS_TIGHT: page in tight state
+ * NAND_LOCK_STATUS_LOCK: page locked
+ * NAND_LOCK_STATUS_UNLOCK: page unlocked
+ *
+ */
+int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
+{
+ int ret = 0;
+ int chipnr;
+ int page;
+ struct nand_chip *this = meminfo->priv;
+
+ /* select the NAND device */
+ chipnr = (int)(offset >> this->chip_shift);
+ this->select_chip(meminfo, chipnr);
+
+
+ if ((offset & (meminfo->oobblock - 1)) != 0) {
+ printf ("nand_get_lock_status: "
+ "Start address must be beginning of "
+ "nand page!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* check the Lock Status */
+ page = (int)(offset >> this->page_shift);
+ this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
+
+ ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
+ | NAND_LOCK_STATUS_LOCK
+ | NAND_LOCK_STATUS_UNLOCK);
+
+ out:
+ /* de-select the NAND device */
+ this->select_chip(meminfo, -1);
+ return ret;
+}
+
+/**
+ * nand_unlock: - Unlock area of NAND pages
+ * only one consecutive area can be unlocked at one time!
+ *
+ * @param meminfo nand mtd instance
+ * @param start start byte address
+ * @param length number of bytes to unlock (must be a multiple of
+ * page size nand->oobblock)
+ *
+ * @return 0 on success, -1 in case of error
+ */
+int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
+{
+ int ret = 0;
+ int chipnr;
+ int status;
+ int page;
+ struct nand_chip *this = meminfo->priv;
+ printf ("nand_unlock: start: %08x, length: %d!\n",
+ (int)start, (int)length);
+
+ /* select the NAND device */
+ chipnr = (int)(start >> this->chip_shift);
+ this->select_chip(meminfo, chipnr);
+
+ /* check the WP bit */
+ this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
+ if ((this->read_byte(meminfo) & 0x80) == 0) {
+ printf ("nand_unlock: Device is write protected!\n");
+ ret = -1;
+ goto out;
+ }
+
+ if ((start & (meminfo->oobblock - 1)) != 0) {
+ printf ("nand_unlock: Start address must be beginning of "
+ "nand page!\n");
+ ret = -1;
+ goto out;
+ }
+
+ if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) {
+ printf ("nand_unlock: Length must be a multiple of nand page "
+ "size!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* submit address of first page to unlock */
+ page = (int)(start >> this->page_shift);
+ this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
+
+ /* submit ADDRESS of LAST page to unlock */
+ page += (int)(length >> this->page_shift) - 1;
+ this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
+
+ /* call wait ready function */
+ status = this->waitfunc(meminfo, this, FL_WRITING);
+ /* see if device thinks it succeeded */
+ if (status & 0x01) {
+ /* there was an error */
+ ret = -1;
+ goto out;
+ }
+
+ out:
+ /* de-select the NAND device */
+ this->select_chip(meminfo, -1);
+ return ret;
+}
+
+#endif
diff --git a/drivers/mtd/nand_legacy/Makefile b/drivers/mtd/nand_legacy/Makefile
new file mode 100644
index 0000000..95314d8
--- /dev/null
+++ b/drivers/mtd/nand_legacy/Makefile
@@ -0,0 +1,45 @@
+#
+# (C) Copyright 2006
+# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+#
+# See file CREDITS for list of people who contributed to this
+# project.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License as
+# published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+# MA 02111-1307 USA
+#
+
+include $(TOPDIR)/config.mk
+
+LIB := $(obj)libnand_legacy.a
+
+COBJS := nand_legacy.o
+
+SRCS := $(COBJS:.o=.c)
+OBJS := $(addprefix $(obj),$(COBJS))
+
+all: $(LIB)
+
+$(LIB): $(obj).depend $(OBJS)
+ $(AR) $(ARFLAGS) $@ $(OBJS)
+
+#########################################################################
+
+# defines $(obj).depend target
+include $(SRCTREE)/rules.mk
+
+sinclude $(obj).depend
+
+#########################################################################
diff --git a/drivers/mtd/nand_legacy/nand_legacy.c b/drivers/mtd/nand_legacy/nand_legacy.c
new file mode 100644
index 0000000..49d2ebb
--- /dev/null
+++ b/drivers/mtd/nand_legacy/nand_legacy.c
@@ -0,0 +1,1612 @@
+/*
+ * (C) 2006 Denx
+ * Driver for NAND support, Rick Bronson
+ * borrowed heavily from:
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * Added 16-bit nand support
+ * (C) 2004 Texas Instruments
+ */
+
+#include <common.h>
+#include <command.h>
+#include <malloc.h>
+#include <asm/io.h>
+#include <watchdog.h>
+
+#if defined(CONFIG_CMD_NAND) && defined(CFG_NAND_LEGACY)
+
+#include <linux/mtd/nand_legacy.h>
+#include <linux/mtd/nand_ids.h>
+#include <jffs2/jffs2.h>
+
+#ifdef CONFIG_OMAP1510
+void archflashwp(void *archdata, int wp);
+#endif
+
+#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
+
+#undef PSYCHO_DEBUG
+#undef NAND_DEBUG
+
+/* ****************** WARNING *********************
+ * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
+ * erase (or at least attempt to erase) blocks that are marked
+ * bad. This can be very handy if you are _sure_ that the block
+ * is OK, say because you marked a good block bad to test bad
+ * block handling and you are done testing, or if you have
+ * accidentally marked blocks bad.
+ *
+ * Erasing factory marked bad blocks is a _bad_ idea. If the
+ * erase succeeds there is no reliable way to find them again,
+ * and attempting to program or erase bad blocks can affect
+ * the data in _other_ (good) blocks.
+ */
+#define ALLOW_ERASE_BAD_DEBUG 0
+
+#define CONFIG_MTD_NAND_ECC /* enable ECC */
+#define CONFIG_MTD_NAND_ECC_JFFS2
+
+/* bits for nand_legacy_rw() `cmd'; or together as needed */
+#define NANDRW_READ 0x01
+#define NANDRW_WRITE 0x00
+#define NANDRW_JFFS2 0x02
+#define NANDRW_JFFS2_SKIP 0x04
+
+
+/*
+ * Exported variables etc.
+ */
+
+/* Definition of the out of band configuration structure */
+struct nand_oob_config {
+ /* position of ECC bytes inside oob */
+ int ecc_pos[6];
+ /* position of bad blk flag inside oob -1 = inactive */
+ int badblock_pos;
+ /* position of ECC valid flag inside oob -1 = inactive */
+ int eccvalid_pos;
+} oob_config = { {0}, 0, 0};
+
+struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+
+int curr_device = -1; /* Current NAND Device */
+
+
+/*
+ * Exported functionss
+ */
+int nand_legacy_erase(struct nand_chip* nand, size_t ofs,
+ size_t len, int clean);
+int nand_legacy_rw(struct nand_chip* nand, int cmd,
+ size_t start, size_t len,
+ size_t * retlen, u_char * buf);
+void nand_print(struct nand_chip *nand);
+void nand_print_bad(struct nand_chip *nand);
+int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, u_char * buf);
+int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, const u_char * buf);
+
+/*
+ * Internals
+ */
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+ size_t * retlen, u_char *buf, u_char *ecc_code);
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+ size_t * retlen, const u_char * buf,
+ u_char * ecc_code);
+#ifdef CONFIG_MTD_NAND_ECC
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+#endif
+
+
+/*
+ *
+ * Function definitions
+ *
+ */
+
+/* returns 0 if block containing pos is OK:
+ * valid erase block and
+ * not marked bad, or no bad mark position is specified
+ * returns 1 if marked bad or otherwise invalid
+ */
+static int check_block (struct nand_chip *nand, unsigned long pos)
+{
+ size_t retlen;
+ uint8_t oob_data;
+ uint16_t oob_data16[6];
+ int page0 = pos & (-nand->erasesize);
+ int page1 = page0 + nand->oobblock;
+ int badpos = oob_config.badblock_pos;
+
+ if (pos >= nand->totlen)
+ return 1;
+
+ if (badpos < 0)
+ return 0; /* no way to check, assume OK */
+
+ if (nand->bus16) {
+ if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
+ || (oob_data16[2] & 0xff00) != 0xff00)
+ return 1;
+ if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
+ || (oob_data16[2] & 0xff00) != 0xff00)
+ return 1;
+ } else {
+ /* Note - bad block marker can be on first or second page */
+ if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
+ || oob_data != 0xff
+ || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
+ || oob_data != 0xff)
+ return 1;
+ }
+
+ return 0;
+}
+
+/* print bad blocks in NAND flash */
+void nand_print_bad(struct nand_chip* nand)
+{
+ unsigned long pos;
+
+ for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
+ if (check_block(nand, pos))
+ printf(" 0x%8.8lx\n", pos);
+ }
+ puts("\n");
+}
+
+/* cmd: 0: NANDRW_WRITE write, fail on bad block
+ * 1: NANDRW_READ read, fail on bad block
+ * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
+ * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
+ * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
+ */
+int nand_legacy_rw (struct nand_chip* nand, int cmd,
+ size_t start, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ int ret = 0, n, total = 0;
+ char eccbuf[6];
+ /* eblk (once set) is the start of the erase block containing the
+ * data being processed.
+ */
+ unsigned long eblk = ~0; /* force mismatch on first pass */
+ unsigned long erasesize = nand->erasesize;
+
+ while (len) {
+ if ((start & (-erasesize)) != eblk) {
+ /* have crossed into new erase block, deal with
+ * it if it is sure marked bad.
+ */
+ eblk = start & (-erasesize); /* start of block */
+ if (check_block(nand, eblk)) {
+ if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
+ while (len > 0 &&
+ start - eblk < erasesize) {
+ *(buf++) = 0xff;
+ ++start;
+ ++total;
+ --len;
+ }
+ continue;
+ } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
+ start += erasesize;
+ continue;
+ } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
+ /* skip bad block */
+ start += erasesize;
+ continue;
+ } else {
+ ret = 1;
+ break;
+ }
+ }
+ }
+ /* The ECC will not be calculated correctly if
+ less than 512 is written or read */
+ /* Is request at least 512 bytes AND it starts on a proper boundry */
+ if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
+ printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
+
+ if (cmd & NANDRW_READ) {
+ ret = nand_read_ecc(nand, start,
+ min(len, eblk + erasesize - start),
+ (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
+ } else {
+ ret = nand_write_ecc(nand, start,
+ min(len, eblk + erasesize - start),
+ (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
+ }
+
+ if (ret)
+ break;
+
+ start += n;
+ buf += n;
+ total += n;
+ len -= n;
+ }
+ if (retlen)
+ *retlen = total;
+
+ return ret;
+}
+
+void nand_print(struct nand_chip *nand)
+{
+ if (nand->numchips > 1) {
+ printf("%s at 0x%lx,\n"
+ "\t %d chips %s, size %d MB, \n"
+ "\t total size %ld MB, sector size %ld kB\n",
+ nand->name, nand->IO_ADDR, nand->numchips,
+ nand->chips_name, 1 << (nand->chipshift - 20),
+ nand->totlen >> 20, nand->erasesize >> 10);
+ }
+ else {
+ printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
+ print_size(nand->totlen, ", ");
+ print_size(nand->erasesize, " sector)\n");
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
+{
+ /* This is inline, to optimise the common case, where it's ready instantly */
+ int ret = 0;
+
+#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
+ if(ale_wait)
+ NAND_WAIT_READY(nand); /* do the worst case 25us wait */
+ else
+ udelay(10);
+#else /* has functional r/b signal */
+ NAND_WAIT_READY(nand);
+#endif
+ return ret;
+}
+
+/* NanD_Command: Send a flash command to the flash chip */
+
+static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
+{
+ unsigned long nandptr = nand->IO_ADDR;
+
+ /* Assert the CLE (Command Latch Enable) line to the flash chip */
+ NAND_CTL_SETCLE(nandptr);
+
+ /* Send the command */
+ WRITE_NAND_COMMAND(command, nandptr);
+
+ /* Lower the CLE line */
+ NAND_CTL_CLRCLE(nandptr);
+
+#ifdef NAND_NO_RB
+ if(command == NAND_CMD_RESET){
+ u_char ret_val;
+ NanD_Command(nand, NAND_CMD_STATUS);
+ do {
+ ret_val = READ_NAND(nandptr);/* wait till ready */
+ } while((ret_val & 0x40) != 0x40);
+ }
+#endif
+ return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_Address: Set the current address for the flash chip */
+
+static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
+{
+ unsigned long nandptr;
+ int i;
+
+ nandptr = nand->IO_ADDR;
+
+ /* Assert the ALE (Address Latch Enable) line to the flash chip */
+ NAND_CTL_SETALE(nandptr);
+
+ /* Send the address */
+ /* Devices with 256-byte page are addressed as:
+ * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
+ * there is no device on the market with page256
+ * and more than 24 bits.
+ * Devices with 512-byte page are addressed as:
+ * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
+ * 25-31 is sent only if the chip support it.
+ * bit 8 changes the read command to be sent
+ * (NAND_CMD_READ0 or NAND_CMD_READ1).
+ */
+
+ if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
+ WRITE_NAND_ADDRESS(ofs, nandptr);
+
+ ofs = ofs >> nand->page_shift;
+
+ if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
+ for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
+ WRITE_NAND_ADDRESS(ofs, nandptr);
+ }
+ }
+
+ /* Lower the ALE line */
+ NAND_CTL_CLRALE(nandptr);
+
+ /* Wait for the chip to respond */
+ return NanD_WaitReady(nand, 1);
+}
+
+/* NanD_SelectChip: Select a given flash chip within the current floor */
+
+static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
+{
+ /* Wait for it to be ready */
+ return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
+
+static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
+{
+ int mfr, id, i;
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+ /* Reset the chip */
+ if (NanD_Command(nand, NAND_CMD_RESET)) {
+#ifdef NAND_DEBUG
+ printf("NanD_Command (reset) for %d,%d returned true\n",
+ floor, chip);
+#endif
+ NAND_DISABLE_CE(nand); /* set pin high */
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 1. Send ReadID command */
+ if (NanD_Command(nand, NAND_CMD_READID)) {
+#ifdef NAND_DEBUG
+ printf("NanD_Command (ReadID) for %d,%d returned true\n",
+ floor, chip);
+#endif
+ NAND_DISABLE_CE(nand); /* set pin high */
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 2. Send address byte zero */
+ NanD_Address(nand, ADDR_COLUMN, 0);
+
+ /* Read the manufacturer and device id codes from the device */
+
+ mfr = READ_NAND(nand->IO_ADDR);
+
+ id = READ_NAND(nand->IO_ADDR);
+
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+#ifdef NAND_DEBUG
+ printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
+#endif
+ if (mfr == 0xff || mfr == 0) {
+ /* No response - return failure */
+ return 0;
+ }
+
+ /* Check it's the same as the first chip we identified.
+ * M-Systems say that any given nand_chip device should only
+ * contain _one_ type of flash part, although that's not a
+ * hardware restriction. */
+ if (nand->mfr) {
+ if (nand->mfr == mfr && nand->id == id) {
+ return 1; /* This is another the same the first */
+ } else {
+ printf("Flash chip at floor %d, chip %d is different:\n",
+ floor, chip);
+ }
+ }
+
+ /* Print and store the manufacturer and ID codes. */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (mfr == nand_flash_ids[i].manufacture_id &&
+ id == nand_flash_ids[i].model_id) {
+#ifdef NAND_DEBUG
+ printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
+ "Chip ID: 0x%2.2X (%s)\n", mfr, id,
+ nand_flash_ids[i].name);
+#endif
+ if (!nand->mfr) {
+ nand->mfr = mfr;
+ nand->id = id;
+ nand->chipshift =
+ nand_flash_ids[i].chipshift;
+ nand->page256 = nand_flash_ids[i].page256;
+ nand->eccsize = 256;
+ if (nand->page256) {
+ nand->oobblock = 256;
+ nand->oobsize = 8;
+ nand->page_shift = 8;
+ } else {
+ nand->oobblock = 512;
+ nand->oobsize = 16;
+ nand->page_shift = 9;
+ }
+ nand->pageadrlen = nand_flash_ids[i].pageadrlen;
+ nand->erasesize = nand_flash_ids[i].erasesize;
+ nand->chips_name = nand_flash_ids[i].name;
+ nand->bus16 = nand_flash_ids[i].bus16;
+ return 1;
+ }
+ return 0;
+ }
+ }
+
+
+#ifdef NAND_DEBUG
+ /* We haven't fully identified the chip. Print as much as we know. */
+ printf("Unknown flash chip found: %2.2X %2.2X\n",
+ id, mfr);
+#endif
+
+ return 0;
+}
+
+/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
+
+static void NanD_ScanChips(struct nand_chip *nand)
+{
+ int floor, chip;
+ int numchips[NAND_MAX_FLOORS];
+ int maxchips = NAND_MAX_CHIPS;
+ int ret = 1;
+
+ nand->numchips = 0;
+ nand->mfr = 0;
+ nand->id = 0;
+
+
+ /* For each floor, find the number of valid chips it contains */
+ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+ ret = 1;
+ numchips[floor] = 0;
+ for (chip = 0; chip < maxchips && ret != 0; chip++) {
+
+ ret = NanD_IdentChip(nand, floor, chip);
+ if (ret) {
+ numchips[floor]++;
+ nand->numchips++;
+ }
+ }
+ }
+
+ /* If there are none at all that we recognise, bail */
+ if (!nand->numchips) {
+#ifdef NAND_DEBUG
+ puts ("No NAND flash chips recognised.\n");
+#endif
+ return;
+ }
+
+ /* Allocate an array to hold the information for each chip */
+ nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
+ if (!nand->chips) {
+ puts ("No memory for allocating chip info structures\n");
+ return;
+ }
+
+ ret = 0;
+
+ /* Fill out the chip array with {floor, chipno} for each
+ * detected chip in the device. */
+ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+ for (chip = 0; chip < numchips[floor]; chip++) {
+ nand->chips[ret].floor = floor;
+ nand->chips[ret].chip = chip;
+ nand->chips[ret].curadr = 0;
+ nand->chips[ret].curmode = 0x50;
+ ret++;
+ }
+ }
+
+ /* Calculate and print the total size of the device */
+ nand->totlen = nand->numchips * (1 << nand->chipshift);
+
+#ifdef NAND_DEBUG
+ printf("%d flash chips found. Total nand_chip size: %ld MB\n",
+ nand->numchips, nand->totlen >> 20);
+#endif
+}
+
+/* we need to be fast here, 1 us per read translates to 1 second per meg */
+static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
+{
+ unsigned long nandptr = nand->IO_ADDR;
+
+ NanD_Command (nand, NAND_CMD_READ0);
+
+ if (nand->bus16) {
+ u16 val;
+
+ while (cntr >= 16) {
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ cntr -= 16;
+ }
+
+ while (cntr > 0) {
+ val = READ_NAND (nandptr);
+ *data_buf++ = val & 0xff;
+ *data_buf++ = val >> 8;
+ cntr -= 2;
+ }
+ } else {
+ while (cntr >= 16) {
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ *data_buf++ = READ_NAND (nandptr);
+ cntr -= 16;
+ }
+
+ while (cntr > 0) {
+ *data_buf++ = READ_NAND (nandptr);
+ cntr--;
+ }
+ }
+}
+
+/*
+ * NAND read with ECC
+ */
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+ size_t * retlen, u_char *buf, u_char *ecc_code)
+{
+ int col, page;
+ int ecc_status = 0;
+#ifdef CONFIG_MTD_NAND_ECC
+ int j;
+ int ecc_failed = 0;
+ u_char *data_poi;
+ u_char ecc_calc[6];
+#endif
+
+ /* Do not allow reads past end of device */
+ if ((start + len) > nand->totlen) {
+ printf ("%s: Attempt read beyond end of device %x %x %x\n",
+ __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
+ *retlen = 0;
+ return -1;
+ }
+
+ /* First we calculate the starting page */
+ /*page = shr(start, nand->page_shift);*/
+ page = start >> nand->page_shift;
+
+ /* Get raw starting column */
+ col = start & (nand->oobblock - 1);
+
+ /* Initialize return value */
+ *retlen = 0;
+
+ /* Select the NAND device */
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Loop until all data read */
+ while (*retlen < len) {
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /* Do we have this page in cache ? */
+ if (nand->cache_page == page)
+ goto readdata;
+ /* Send the read command */
+ NanD_Command(nand, NAND_CMD_READ0);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Read in a page + oob data */
+ NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
+
+ /* copy data into cache, for read out of cache and if ecc fails */
+ if (nand->data_cache) {
+ memcpy (nand->data_cache, nand->data_buf,
+ nand->oobblock + nand->oobsize);
+ }
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < 6; j++) {
+ ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
+ }
+
+ /* Calculate the ECC and verify it */
+ /* If block was not written with ECC, skip ECC */
+ if (oob_config.eccvalid_pos != -1 &&
+ (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
+
+ nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
+ switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
+ case -1:
+ printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+ ecc_failed++;
+ break;
+ case 1:
+ case 2: /* transfer ECC corrected data to cache */
+ if (nand->data_cache)
+ memcpy (nand->data_cache, nand->data_buf, 256);
+ break;
+ }
+ }
+
+ if (oob_config.eccvalid_pos != -1 &&
+ nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
+
+ nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
+ switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
+ case -1:
+ printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+ ecc_failed++;
+ break;
+ case 1:
+ case 2: /* transfer ECC corrected data to cache */
+ if (nand->data_cache)
+ memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
+ break;
+ }
+ }
+readdata:
+ /* Read the data from ECC data buffer into return buffer */
+ data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
+ data_poi += col;
+ if ((*retlen + (nand->oobblock - col)) >= len) {
+ memcpy (buf + *retlen, data_poi, len - *retlen);
+ *retlen = len;
+ } else {
+ memcpy (buf + *retlen, data_poi, nand->oobblock - col);
+ *retlen += nand->oobblock - col;
+ }
+ /* Set cache page address, invalidate, if ecc_failed */
+ nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
+
+ ecc_status += ecc_failed;
+ ecc_failed = 0;
+
+#else
+ /* Send the read command */
+ NanD_Command(nand, NAND_CMD_READ0);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Read the data directly into the return buffer */
+ if ((*retlen + (nand->oobblock - col)) >= len) {
+ NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
+ *retlen = len;
+ /* We're done */
+ continue;
+ } else {
+ NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
+ *retlen += nand->oobblock - col;
+ }
+#endif
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ page++;
+ }
+
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+ /*
+ * Return success, if no ECC failures, else -EIO
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EIO
+ */
+ return ecc_status ? -1 : 0;
+}
+
+/*
+ * Nand_page_program function is used for write and writev !
+ */
+static int nand_write_page (struct nand_chip *nand,
+ int page, int col, int last, u_char * ecc_code)
+{
+
+ int i;
+ unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef CONFIG_MTD_NAND_ECC
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
+#endif
+#endif
+ /* pad oob area */
+ for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
+ nand->data_buf[i] = 0xff;
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /* Zero out the ECC array */
+ for (i = 0; i < 6; i++)
+ ecc_code[i] = 0x00;
+
+ /* Read back previous written data, if col > 0 */
+ if (col) {
+ NanD_Command (nand, NAND_CMD_READ0);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ if (nand->bus16) {
+ u16 val;
+
+ for (i = 0; i < col; i += 2) {
+ val = READ_NAND (nandptr);
+ nand->data_buf[i] = val & 0xff;
+ nand->data_buf[i + 1] = val >> 8;
+ }
+ } else {
+ for (i = 0; i < col; i++)
+ nand->data_buf[i] = READ_NAND (nandptr);
+ }
+ }
+
+ /* Calculate and write the ECC if we have enough data */
+ if ((col < nand->eccsize) && (last >= nand->eccsize)) {
+ nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
+ for (i = 0; i < 3; i++) {
+ nand->data_buf[(nand->oobblock +
+ oob_config.ecc_pos[i])] = ecc_code[i];
+ }
+ if (oob_config.eccvalid_pos != -1) {
+ nand->data_buf[nand->oobblock +
+ oob_config.eccvalid_pos] = 0xf0;
+ }
+ }
+
+ /* Calculate and write the second ECC if we have enough data */
+ if ((nand->oobblock == 512) && (last == nand->oobblock)) {
+ nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
+ for (i = 3; i < 6; i++) {
+ nand->data_buf[(nand->oobblock +
+ oob_config.ecc_pos[i])] = ecc_code[i];
+ }
+ if (oob_config.eccvalid_pos != -1) {
+ nand->data_buf[nand->oobblock +
+ oob_config.eccvalid_pos] &= 0x0f;
+ }
+ }
+#endif
+ /* Prepad for partial page programming !!! */
+ for (i = 0; i < col; i++)
+ nand->data_buf[i] = 0xff;
+
+ /* Postpad for partial page programming !!! oob is already padded */
+ for (i = last; i < nand->oobblock; i++)
+ nand->data_buf[i] = 0xff;
+
+ /* Send command to begin auto page programming */
+ NanD_Command (nand, NAND_CMD_READ0);
+ NanD_Command (nand, NAND_CMD_SEQIN);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Write out complete page of data */
+ if (nand->bus16) {
+ for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
+ WRITE_NAND (nand->data_buf[i] +
+ (nand->data_buf[i + 1] << 8),
+ nand->IO_ADDR);
+ }
+ } else {
+ for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
+ WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
+ }
+
+ /* Send command to actually program the data */
+ NanD_Command (nand, NAND_CMD_PAGEPROG);
+ NanD_Command (nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+ {
+ u_char ret_val;
+
+ do {
+ ret_val = READ_NAND (nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ /* See if device thinks it succeeded */
+ if (READ_NAND (nand->IO_ADDR) & 0x01) {
+ printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
+ page);
+ return -1;
+ }
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /*
+ * The NAND device assumes that it is always writing to
+ * a cleanly erased page. Hence, it performs its internal
+ * write verification only on bits that transitioned from
+ * 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was
+ * not completely erased or the page is becoming unusable
+ * due to wear. The read with ECC would catch the error
+ * later when the ECC page check fails, but we would rather
+ * catch it early in the page write stage. Better to write
+ * no data than invalid data.
+ */
+
+ /* Send command to read back the page */
+ if (col < nand->eccsize)
+ NanD_Command (nand, NAND_CMD_READ0);
+ else
+ NanD_Command (nand, NAND_CMD_READ1);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+
+ /* Loop through and verify the data */
+ if (nand->bus16) {
+ for (i = col; i < last; i = +2) {
+ if ((nand->data_buf[i] +
+ (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
+ printf ("%s: Failed write verify, page 0x%08x ",
+ __FUNCTION__, page);
+ return -1;
+ }
+ }
+ } else {
+ for (i = col; i < last; i++) {
+ if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
+ printf ("%s: Failed write verify, page 0x%08x ",
+ __FUNCTION__, page);
+ return -1;
+ }
+ }
+ }
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /*
+ * We also want to check that the ECC bytes wrote
+ * correctly for the same reasons stated above.
+ */
+ NanD_Command (nand, NAND_CMD_READOOB);
+ if (nand->bus16) {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + (col >> 1));
+ } else {
+ NanD_Address (nand, ADDR_COLUMN_PAGE,
+ (page << nand->page_shift) + col);
+ }
+ if (nand->bus16) {
+ for (i = 0; i < nand->oobsize; i += 2) {
+ u16 val;
+
+ val = READ_NAND (nand->IO_ADDR);
+ nand->data_buf[i] = val & 0xff;
+ nand->data_buf[i + 1] = val >> 8;
+ }
+ } else {
+ for (i = 0; i < nand->oobsize; i++) {
+ nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
+ }
+ }
+ for (i = 0; i < ecc_bytes; i++) {
+ if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
+ printf ("%s: Failed ECC write "
+ "verify, page 0x%08x, "
+ "%6i bytes were succesful\n",
+ __FUNCTION__, page, i);
+ return -1;
+ }
+ }
+#endif /* CONFIG_MTD_NAND_ECC */
+#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
+ return 0;
+}
+
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * ecc_code)
+{
+ int i, page, col, cnt, ret = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > nand->totlen) {
+ printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
+ return -1;
+ }
+
+ /* Shift to get page */
+ page = ((int) to) >> nand->page_shift;
+
+ /* Get the starting column */
+ col = to & (nand->oobblock - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_OFF();
+#endif
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+ ret = -1;
+ goto out;
+ }
+
+ /* Loop until all data is written */
+ while (*retlen < len) {
+ /* Invalidate cache, if we write to this page */
+ if (nand->cache_page == page)
+ nand->cache_page = -1;
+
+ /* Write data into buffer */
+ if ((col + len) >= nand->oobblock) {
+ for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
+ nand->data_buf[i] = buf[(*retlen + cnt)];
+ }
+ } else {
+ for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
+ nand->data_buf[i] = buf[(*retlen + cnt)];
+ }
+ }
+ /* We use the same function for write and writev !) */
+ ret = nand_write_page (nand, page, col, i, ecc_code);
+ if (ret)
+ goto out;
+
+ /* Next data start at page boundary */
+ col = 0;
+
+ /* Update written bytes count */
+ *retlen += cnt;
+
+ /* Increment page address */
+ page++;
+ }
+
+ /* Return happy */
+ *retlen = len;
+
+out:
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_ON();
+#endif
+
+ return ret;
+}
+
+/* read from the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ int len256 = 0;
+ struct Nand *mychip;
+ int ret = 0;
+
+ mychip = &nand->chips[ofs >> nand->chipshift];
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with nand_read_ecc. */
+ if (nand->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+ NanD_Command(nand, NAND_CMD_READOOB);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ ((ofs >> nand->page_shift) << nand->page_shift) +
+ ((ofs & (nand->oobblock - 1)) >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+ }
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ NanD_ReadBuf(nand, buf, len256);
+
+ NanD_Command(nand, NAND_CMD_READOOB);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+ }
+
+ NanD_ReadBuf(nand, &buf[len256], len - len256);
+
+ *retlen = len;
+ /* Reading the full OOB data drops us off of the end of the page,
+ * causing the flash device to go into busy mode, so we need
+ * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
+
+ ret = NanD_WaitReady(nand, 1);
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+ return ret;
+
+}
+
+/* write to the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ int len256 = 0;
+ int i;
+ unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef PSYCHO_DEBUG
+ printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
+ (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
+ buf[8], buf[9], buf[14],buf[15]);
+#endif
+
+ NAND_ENABLE_CE(nand); /* set pin low to enable chip */
+
+ /* Reset the chip */
+ NanD_Command(nand, NAND_CMD_RESET);
+
+ /* issue the Read2 command to set the pointer to the Spare Data Area. */
+ NanD_Command(nand, NAND_CMD_READOOB);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ ((ofs >> nand->page_shift) << nand->page_shift) +
+ ((ofs & (nand->oobblock - 1)) >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+ }
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with nand_read_ecc. */
+ if (nand->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ if (nand->bus16) {
+ NanD_Address(nand, ADDR_COLUMN_PAGE,
+ ((ofs >> nand->page_shift) << nand->page_shift) +
+ ((ofs & (nand->oobblock - 1)) >> 1));
+ } else {
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+ }
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ for (i = 0; i < len256; i++)
+ WRITE_NAND(buf[i], nandptr);
+
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+ { u_char ret_val;
+ do {
+ ret_val = READ_NAND(nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ if (READ_NAND(nandptr) & 1) {
+ puts ("Error programming oob data\n");
+ /* There was an error */
+ NAND_DISABLE_CE(nand); /* set pin high */
+ *retlen = 0;
+ return -1;
+ }
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+ }
+
+ if (nand->bus16) {
+ for (i = len256; i < len; i += 2) {
+ WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
+ }
+ } else {
+ for (i = len256; i < len; i++)
+ WRITE_NAND(buf[i], nandptr);
+ }
+
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+ { u_char ret_val;
+ do {
+ ret_val = READ_NAND(nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ if (READ_NAND(nandptr) & 1) {
+ puts ("Error programming oob data\n");
+ /* There was an error */
+ NAND_DISABLE_CE(nand); /* set pin high */
+ *retlen = 0;
+ return -1;
+ }
+
+ NAND_DISABLE_CE(nand); /* set pin high */
+ *retlen = len;
+ return 0;
+
+}
+
+int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
+{
+ /* This is defined as a structure so it will work on any system
+ * using native endian jffs2 (the default).
+ */
+ static struct jffs2_unknown_node clean_marker = {
+ JFFS2_MAGIC_BITMASK,
+ JFFS2_NODETYPE_CLEANMARKER,
+ 8 /* 8 bytes in this node */
+ };
+ unsigned long nandptr;
+ struct Nand *mychip;
+ int ret = 0;
+
+ if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
+ printf ("Offset and size must be sector aligned, erasesize = %d\n",
+ (int) nand->erasesize);
+ return -1;
+ }
+
+ nandptr = nand->IO_ADDR;
+
+ /* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_OFF();
+#endif
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("nand_write_ecc: Device is write protected!!!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+ ret = -1;
+ goto out;
+ }
+
+ /* FIXME: Do nand in the background. Use timers or schedule_task() */
+ while(len) {
+ /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
+ mychip = &nand->chips[ofs >> nand->chipshift];
+
+ /* always check for bad block first, genuine bad blocks
+ * should _never_ be erased.
+ */
+ if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
+ /* Select the NAND device */
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ NanD_Command(nand, NAND_CMD_ERASE1);
+ NanD_Address(nand, ADDR_PAGE, ofs);
+ NanD_Command(nand, NAND_CMD_ERASE2);
+
+ NanD_Command(nand, NAND_CMD_STATUS);
+
+#ifdef NAND_NO_RB
+ { u_char ret_val;
+ do {
+ ret_val = READ_NAND(nandptr); /* wait till ready */
+ } while ((ret_val & 0x40) != 0x40);
+ }
+#endif
+ if (READ_NAND(nandptr) & 1) {
+ printf ("%s: Error erasing at 0x%lx\n",
+ __FUNCTION__, (long)ofs);
+ /* There was an error */
+ ret = -1;
+ goto out;
+ }
+ if (clean) {
+ int n; /* return value not used */
+ int p, l;
+
+ /* clean marker position and size depend
+ * on the page size, since 256 byte pages
+ * only have 8 bytes of oob data
+ */
+ if (nand->page256) {
+ p = NAND_JFFS2_OOB8_FSDAPOS;
+ l = NAND_JFFS2_OOB8_FSDALEN;
+ } else {
+ p = NAND_JFFS2_OOB16_FSDAPOS;
+ l = NAND_JFFS2_OOB16_FSDALEN;
+ }
+
+ ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
+ (u_char *)&clean_marker);
+ /* quit here if write failed */
+ if (ret)
+ goto out;
+ }
+ }
+ ofs += nand->erasesize;
+ len -= nand->erasesize;
+ }
+
+out:
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+#ifdef CONFIG_OMAP1510
+ archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+ NAND_WP_ON();
+#endif
+
+ return ret;
+}
+
+
+static inline int nandcheck(unsigned long potential, unsigned long physadr)
+{
+ return 0;
+}
+
+unsigned long nand_probe(unsigned long physadr)
+{
+ struct nand_chip *nand = NULL;
+ int i = 0, ChipID = 1;
+
+#ifdef CONFIG_MTD_NAND_ECC_JFFS2
+ oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
+ oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
+ oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
+ oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
+ oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
+ oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
+ oob_config.eccvalid_pos = 4;
+#else
+ oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
+ oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
+ oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
+ oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
+ oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
+ oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
+ oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
+#endif
+ oob_config.badblock_pos = 5;
+
+ for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
+ if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
+ nand = &nand_dev_desc[i];
+ break;
+ }
+ }
+ if (!nand)
+ return (0);
+
+ memset((char *)nand, 0, sizeof(struct nand_chip));
+
+ nand->IO_ADDR = physadr;
+ nand->cache_page = -1; /* init the cache page */
+ NanD_ScanChips(nand);
+
+ if (nand->totlen == 0) {
+ /* no chips found, clean up and quit */
+ memset((char *)nand, 0, sizeof(struct nand_chip));
+ nand->ChipID = NAND_ChipID_UNKNOWN;
+ return (0);
+ }
+
+ nand->ChipID = ChipID;
+ if (curr_device == -1)
+ curr_device = i;
+
+ nand->data_buf = malloc (nand->oobblock + nand->oobsize);
+ if (!nand->data_buf) {
+ puts ("Cannot allocate memory for data structures.\n");
+ return (0);
+ }
+
+ return (nand->totlen);
+}
+
+#ifdef CONFIG_MTD_NAND_ECC
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+ 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+ 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+ 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+ 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+ 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+ 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+ 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+ 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+ 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+ 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+ 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+ 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+ 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+ 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+ 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+ 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/*
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+ u_char *ecc_code)
+{
+ u_char a, b, i, tmp1, tmp2;
+
+ /* Initialize variables */
+ a = b = 0x80;
+ tmp1 = tmp2 = 0;
+
+ /* Calculate first ECC byte */
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Calculate second ECC byte */
+ b = 0x80;
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Store two of the ECC bytes */
+ ecc_code[0] = tmp1;
+ ecc_code[1] = tmp2;
+}
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
+{
+ u_char idx, reg1, reg3;
+ int j;
+
+ /* Initialize variables */
+ reg1 = reg3 = 0;
+ ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+ /* Build up column parity */
+ for(j = 0; j < 256; j++) {
+
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[dat[j]];
+ reg1 ^= idx;
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (u_char) j;
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
+
+ /* Calculate final ECC code */
+ ecc_code[0] = ~ecc_code[0];
+ ecc_code[1] = ~ecc_code[1];
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+}
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ u_char a, b, c, d1, d2, d3, add, bit, i;
+
+ /* Do error detection */
+ d1 = calc_ecc[0] ^ read_ecc[0];
+ d2 = calc_ecc[1] ^ read_ecc[1];
+ d3 = calc_ecc[2] ^ read_ecc[2];
+
+ if ((d1 | d2 | d3) == 0) {
+ /* No errors */
+ return 0;
+ } else {
+ a = (d1 ^ (d1 >> 1)) & 0x55;
+ b = (d2 ^ (d2 >> 1)) & 0x55;
+ c = (d3 ^ (d3 >> 1)) & 0x54;
+
+ /* Found and will correct single bit error in the data */
+ if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+ c = 0x80;
+ add = 0;
+ a = 0x80;
+ for (i=0; i<4; i++) {
+ if (d1 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ c = 0x80;
+ for (i=0; i<4; i++) {
+ if (d2 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ bit = 0;
+ b = 0x04;
+ c = 0x80;
+ for (i=0; i<3; i++) {
+ if (d3 & c)
+ bit |= b;
+ c >>= 2;
+ b >>= 1;
+ }
+ b = 0x01;
+ a = dat[add];
+ a ^= (b << bit);
+ dat[add] = a;
+ return 1;
+ }
+ else {
+ i = 0;
+ while (d1) {
+ if (d1 & 0x01)
+ ++i;
+ d1 >>= 1;
+ }
+ while (d2) {
+ if (d2 & 0x01)
+ ++i;
+ d2 >>= 1;
+ }
+ while (d3) {
+ if (d3 & 0x01)
+ ++i;
+ d3 >>= 1;
+ }
+ if (i == 1) {
+ /* ECC Code Error Correction */
+ read_ecc[0] = calc_ecc[0];
+ read_ecc[1] = calc_ecc[1];
+ read_ecc[2] = calc_ecc[2];
+ return 2;
+ }
+ else {
+ /* Uncorrectable Error */
+ return -1;
+ }
+ }
+ }
+
+ /* Should never happen */
+ return -1;
+}
+
+#endif
+
+#ifdef CONFIG_JFFS2_NAND
+int read_jffs2_nand(size_t start, size_t len,
+ size_t * retlen, u_char * buf, int nanddev)
+{
+ return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
+ start, len, retlen, buf);
+}
+#endif /* CONFIG_JFFS2_NAND */
+
+#endif
diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile
new file mode 100644
index 0000000..2049413
--- /dev/null
+++ b/drivers/mtd/onenand/Makefile
@@ -0,0 +1,44 @@
+#
+# Copyright (C) 2005-2007 Samsung Electronics.
+# Kyungmin Park <kyungmin.park@samsung.com>
+#
+# See file CREDITS for list of people who contributed to this
+# project.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License as
+# published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+# MA 02111-1307 USA
+#
+
+include $(TOPDIR)/config.mk
+
+LIB := $(obj)libonenand.a
+
+COBJS := onenand_base.o onenand_bbt.o
+
+SRCS := $(COBJS:.o=.c)
+OBJS := $(addprefix $(obj),$(COBJS))
+
+all: $(LIB)
+
+$(LIB): $(obj).depend $(OBJS)
+ $(AR) $(ARFLAGS) $@ $(OBJS)
+
+#########################################################################
+
+include $(SRCTREE)/rules.mk
+
+sinclude $(obj).depend
+
+#########################################################################
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c
new file mode 100644
index 0000000..7983a4a
--- /dev/null
+++ b/drivers/mtd/onenand/onenand_base.c
@@ -0,0 +1,1294 @@
+/*
+ * linux/drivers/mtd/onenand/onenand_base.c
+ *
+ * Copyright (C) 2005-2007 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <common.h>
+
+#ifdef CONFIG_CMD_ONENAND
+
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+
+static const unsigned char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
+};
+
+/**
+ * onenand_readw - [OneNAND Interface] Read OneNAND register
+ * @param addr address to read
+ *
+ * Read OneNAND register
+ */
+static unsigned short onenand_readw(void __iomem * addr)
+{
+ return readw(addr);
+}
+
+/**
+ * onenand_writew - [OneNAND Interface] Write OneNAND register with value
+ * @param value value to write
+ * @param addr address to write
+ *
+ * Write OneNAND register with value
+ */
+static void onenand_writew(unsigned short value, void __iomem * addr)
+{
+ writew(value, addr);
+}
+
+/**
+ * onenand_block_address - [DEFAULT] Get block address
+ * @param device the device id
+ * @param block the block
+ * @return translated block address if DDP, otherwise same
+ *
+ * Setup Start Address 1 Register (F100h)
+ */
+static int onenand_block_address(int device, int block)
+{
+ if (device & ONENAND_DEVICE_IS_DDP) {
+ /* Device Flash Core select, NAND Flash Block Address */
+ int dfs = 0, density, mask;
+
+ density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
+ mask = (1 << (density + 6));
+
+ if (block & mask)
+ dfs = 1;
+
+ return (dfs << ONENAND_DDP_SHIFT) | (block & (mask - 1));
+ }
+
+ return block;
+}
+
+/**
+ * onenand_bufferram_address - [DEFAULT] Get bufferram address
+ * @param device the device id
+ * @param block the block
+ * @return set DBS value if DDP, otherwise 0
+ *
+ * Setup Start Address 2 Register (F101h) for DDP
+ */
+static int onenand_bufferram_address(int device, int block)
+{
+ if (device & ONENAND_DEVICE_IS_DDP) {
+ /* Device BufferRAM Select */
+ int dbs = 0, density, mask;
+
+ density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
+ mask = (1 << (density + 6));
+
+ if (block & mask)
+ dbs = 1;
+
+ return (dbs << ONENAND_DDP_SHIFT);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_page_address - [DEFAULT] Get page address
+ * @param page the page address
+ * @param sector the sector address
+ * @return combined page and sector address
+ *
+ * Setup Start Address 8 Register (F107h)
+ */
+static int onenand_page_address(int page, int sector)
+{
+ /* Flash Page Address, Flash Sector Address */
+ int fpa, fsa;
+
+ fpa = page & ONENAND_FPA_MASK;
+ fsa = sector & ONENAND_FSA_MASK;
+
+ return ((fpa << ONENAND_FPA_SHIFT) | fsa);
+}
+
+/**
+ * onenand_buffer_address - [DEFAULT] Get buffer address
+ * @param dataram1 DataRAM index
+ * @param sectors the sector address
+ * @param count the number of sectors
+ * @return the start buffer value
+ *
+ * Setup Start Buffer Register (F200h)
+ */
+static int onenand_buffer_address(int dataram1, int sectors, int count)
+{
+ int bsa, bsc;
+
+ /* BufferRAM Sector Address */
+ bsa = sectors & ONENAND_BSA_MASK;
+
+ if (dataram1)
+ bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
+ else
+ bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
+
+ /* BufferRAM Sector Count */
+ bsc = count & ONENAND_BSC_MASK;
+
+ return ((bsa << ONENAND_BSA_SHIFT) | bsc);
+}
+
+/**
+ * onenand_command - [DEFAULT] Send command to OneNAND device
+ * @param mtd MTD device structure
+ * @param cmd the command to be sent
+ * @param addr offset to read from or write to
+ * @param len number of bytes to read or write
+ *
+ * Send command to OneNAND device. This function is used for middle/large page
+ * devices (1KB/2KB Bytes per page)
+ */
+static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int value, readcmd = 0;
+ int block, page;
+ /* Now we use page size operation */
+ int sectors = 4, count = 4;
+
+ /* Address translation */
+ switch (cmd) {
+ case ONENAND_CMD_UNLOCK:
+ case ONENAND_CMD_LOCK:
+ case ONENAND_CMD_LOCK_TIGHT:
+ block = -1;
+ page = -1;
+ break;
+
+ case ONENAND_CMD_ERASE:
+ case ONENAND_CMD_BUFFERRAM:
+ block = (int)(addr >> this->erase_shift);
+ page = -1;
+ break;
+
+ default:
+ block = (int)(addr >> this->erase_shift);
+ page = (int)(addr >> this->page_shift);
+ page &= this->page_mask;
+ break;
+ }
+
+ /* NOTE: The setting order of the registers is very important! */
+ if (cmd == ONENAND_CMD_BUFFERRAM) {
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this->device_id, block);
+ this->write_word(value,
+ this->base + ONENAND_REG_START_ADDRESS2);
+
+ /* Switch to the next data buffer */
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ return 0;
+ }
+
+ if (block != -1) {
+ /* Write 'DFS, FBA' of Flash */
+ value = onenand_block_address(this->device_id, block);
+ this->write_word(value,
+ this->base + ONENAND_REG_START_ADDRESS1);
+ }
+
+ if (page != -1) {
+ int dataram;
+
+ switch (cmd) {
+ case ONENAND_CMD_READ:
+ case ONENAND_CMD_READOOB:
+ dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
+ readcmd = 1;
+ break;
+
+ default:
+ dataram = ONENAND_CURRENT_BUFFERRAM(this);
+ break;
+ }
+
+ /* Write 'FPA, FSA' of Flash */
+ value = onenand_page_address(page, sectors);
+ this->write_word(value,
+ this->base + ONENAND_REG_START_ADDRESS8);
+
+ /* Write 'BSA, BSC' of DataRAM */
+ value = onenand_buffer_address(dataram, sectors, count);
+ this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+
+ if (readcmd) {
+ /* Select DataRAM for DDP */
+ value =
+ onenand_bufferram_address(this->device_id, block);
+ this->write_word(value,
+ this->base +
+ ONENAND_REG_START_ADDRESS2);
+ }
+ }
+
+ /* Interrupt clear */
+ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+ /* Write command */
+ this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+ return 0;
+}
+
+/**
+ * onenand_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done. This applies to all OneNAND command
+ * Read can take up to 30us, erase up to 2ms and program up to 350us
+ * according to general OneNAND specs
+ */
+static int onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int flags = ONENAND_INT_MASTER;
+ unsigned int interrupt = 0;
+ unsigned int ctrl, ecc;
+
+ while (1) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ if (interrupt & flags)
+ break;
+ }
+
+ ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_wait: controller error = 0x%04x\n", ctrl);
+ return -EAGAIN;
+ }
+
+ if (ctrl & ONENAND_CTRL_LOCK) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_wait: it's locked error = 0x%04x\n", ctrl);
+ return -EIO;
+ }
+
+ if (interrupt & ONENAND_INT_READ) {
+ ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_wait: ECC error = 0x%04x\n", ecc);
+ return -EBADMSG;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @return offset given area
+ *
+ * Return BufferRAM offset given area
+ */
+static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ if (area == ONENAND_DATARAM)
+ return mtd->oobblock;
+ if (area == ONENAND_SPARERAM)
+ return mtd->oobsize;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Read the BufferRAM area
+ */
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ memcpy(buffer, bufferram + offset, count);
+
+ return 0;
+}
+
+/**
+ * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Read the BufferRAM area with Sync. Burst Mode
+ */
+static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
+
+ memcpy(buffer, bufferram + offset, count);
+
+ this->mmcontrol(mtd, 0);
+
+ return 0;
+}
+
+/**
+ * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Write the BufferRAM area
+ */
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ memcpy(bufferram + offset, buffer, count);
+
+ return 0;
+}
+
+/**
+ * onenand_check_bufferram - [GENERIC] Check BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr address to check
+ * @return 1 if there are valid data, otherwise 0
+ *
+ * Check bufferram if there is data we required
+ */
+static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
+{
+ struct onenand_chip *this = mtd->priv;
+ int block, page;
+ int i;
+
+ block = (int)(addr >> this->erase_shift);
+ page = (int)(addr >> this->page_shift);
+ page &= this->page_mask;
+
+ i = ONENAND_CURRENT_BUFFERRAM(this);
+
+ /* Is there valid data? */
+ if (this->bufferram[i].block == block &&
+ this->bufferram[i].page == page && this->bufferram[i].valid)
+ return 1;
+
+ return 0;
+}
+
+/**
+ * onenand_update_bufferram - [GENERIC] Update BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr address to update
+ * @param valid valid flag
+ *
+ * Update BufferRAM information
+ */
+static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
+ int valid)
+{
+ struct onenand_chip *this = mtd->priv;
+ int block, page;
+ int i;
+
+ block = (int)(addr >> this->erase_shift);
+ page = (int)(addr >> this->page_shift);
+ page &= this->page_mask;
+
+ /* Invalidate BufferRAM */
+ for (i = 0; i < MAX_BUFFERRAM; i++) {
+ if (this->bufferram[i].block == block &&
+ this->bufferram[i].page == page)
+ this->bufferram[i].valid = 0;
+ }
+
+ /* Update BufferRAM */
+ i = ONENAND_CURRENT_BUFFERRAM(this);
+ this->bufferram[i].block = block;
+ this->bufferram[i].page = page;
+ this->bufferram[i].valid = valid;
+
+ return 0;
+}
+
+/**
+ * onenand_get_device - [GENERIC] Get chip for selected access
+ * @param mtd MTD device structure
+ * @param new_state the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static void onenand_get_device(struct mtd_info *mtd, int new_state)
+{
+ /* Do nothing */
+}
+
+/**
+ * onenand_release_device - [GENERIC] release chip
+ * @param mtd MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void onenand_release_device(struct mtd_info *mtd)
+{
+ /* Do nothing */
+}
+
+/**
+ * onenand_read_ecc - [MTD Interface] Read data with ECC
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put data
+ * @param oob_buf filesystem supplied oob data buffer
+ * @param oobsel oob selection structure
+ *
+ * OneNAND read with ECC
+ */
+static int onenand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf,
+ u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+ struct onenand_chip *this = mtd->priv;
+ int read = 0, column;
+ int thislen;
+ int ret = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ecc: from = 0x%08x, len = %i\n",
+ (unsigned int)from, (int)len);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_read_ecc: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_READING);
+
+ while (read < len) {
+ thislen = min_t(int, mtd->oobblock, len - read);
+
+ column = from & (mtd->oobblock - 1);
+ if (column + thislen > mtd->oobblock)
+ thislen = mtd->oobblock - column;
+
+ if (!onenand_check_bufferram(mtd, from)) {
+ this->command(mtd, ONENAND_CMD_READ, from,
+ mtd->oobblock);
+ ret = this->wait(mtd, FL_READING);
+ /* First copy data and check return value for ECC handling */
+ onenand_update_bufferram(mtd, from, 1);
+ }
+
+ this->read_bufferram(mtd, ONENAND_DATARAM, buf, column,
+ thislen);
+
+ read += thislen;
+ if (read == len)
+ break;
+
+ if (ret) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_read_ecc: read failed = %d\n", ret);
+ break;
+ }
+
+ from += thislen;
+ buf += thislen;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ *retlen = read;
+ return ret;
+}
+
+/**
+ * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put data
+ *
+ * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
+*/
+int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ return onenand_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+/**
+ * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put data
+ *
+ * OneNAND read out-of-band data from the spare area
+ */
+int onenand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ int read = 0, thislen, column;
+ int ret = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n",
+ (unsigned int)from, (int)len);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if (unlikely((from + len) > mtd->size)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_read_oob: Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_READING);
+
+ column = from & (mtd->oobsize - 1);
+
+ while (read < len) {
+ thislen = mtd->oobsize - column;
+ thislen = min_t(int, thislen, len);
+
+ this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, from, 0);
+
+ ret = this->wait(mtd, FL_READING);
+ /* First copy data and check return value for ECC handling */
+
+ this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column,
+ thislen);
+
+ read += thislen;
+ if (read == len)
+ break;
+
+ if (ret) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_read_oob: read failed = %d\n", ret);
+ break;
+ }
+
+ buf += thislen;
+ /* Read more? */
+ if (read < len) {
+ /* Page size */
+ from += mtd->oobblock;
+ column = 0;
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ *retlen = read;
+ return ret;
+}
+
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+/**
+ * onenand_verify_page - [GENERIC] verify the chip contents after a write
+ * @param mtd MTD device structure
+ * @param buf the databuffer to verify
+ * @param block block address
+ * @param page page address
+ *
+ * Check DataRAM area directly
+ */
+static int onenand_verify_page(struct mtd_info *mtd, u_char * buf,
+ loff_t addr, int block, int page)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *dataram0, *dataram1;
+ int ret = 0;
+
+ this->command(mtd, ONENAND_CMD_READ, addr, mtd->oobblock);
+
+ ret = this->wait(mtd, FL_READING);
+ if (ret)
+ return ret;
+
+ onenand_update_bufferram(mtd, addr, 1);
+
+ /* Check, if the two dataram areas are same */
+ dataram0 = this->base + ONENAND_DATARAM;
+ dataram1 = dataram0 + mtd->oobblock;
+
+ if (memcmp(dataram0, dataram1, mtd->oobblock))
+ return -EBADMSG;
+
+ return 0;
+}
+#else
+#define onenand_verify_page(...) (0)
+#endif
+
+#define NOTALIGNED(x) ((x & (mtd->oobblock - 1)) != 0)
+
+/**
+ * onenand_write_ecc - [MTD Interface] OneNAND write with ECC
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ * @param eccbuf filesystem supplied oob data buffer
+ * @param oobsel oob selection structure
+ *
+ * OneNAND write with ECC
+ */
+static int onenand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf,
+ u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ struct onenand_chip *this = mtd->priv;
+ int written = 0;
+ int ret = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ecc: to = 0x%08x, len = %i\n",
+ (unsigned int)to, (int)len);
+
+ /* Initialize retlen, in case of early exit */
+ *retlen = 0;
+
+ /* Do not allow writes past end of device */
+ if (unlikely((to + len) > mtd->size)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_write_ecc: Attempt write to past end of device\n");
+ return -EINVAL;
+ }
+
+ /* Reject writes, which are not page aligned */
+ if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_WRITING);
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, mtd->oobblock, len - written);
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
+
+ this->write_bufferram(mtd, ONENAND_DATARAM, buf, 0, thislen);
+ this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0,
+ mtd->oobsize);
+
+ this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
+
+ onenand_update_bufferram(mtd, to, 1);
+
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_write_ecc: write filaed %d\n", ret);
+ break;
+ }
+
+ written += thislen;
+
+ /* Only check verify write turn on */
+ ret = onenand_verify_page(mtd, (u_char *) buf, to, block, page);
+ if (ret) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_write_ecc: verify failed %d\n", ret);
+ break;
+ }
+
+ if (written == len)
+ break;
+
+ to += thislen;
+ buf += thislen;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ *retlen = written;
+
+ return ret;
+}
+
+/**
+ * onenand_write - [MTD Interface] compability function for onenand_write_ecc
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * This function simply calls onenand_write_ecc
+ * with oob buffer and oobsel = NULL
+ */
+int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ return onenand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL);
+}
+
+/**
+ * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * OneNAND write out-of-band
+ */
+int onenand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, status;
+ int written = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n",
+ (unsigned int)to, (int)len);
+
+ /* Initialize retlen, in case of early exit */
+ *retlen = 0;
+
+ /* Do not allow writes past end of device */
+ if (unlikely((to + len) > mtd->size)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_write_oob: Attempt write to past end of device\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_WRITING);
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, mtd->oobsize, len - written);
+
+ column = to & (mtd->oobsize - 1);
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
+
+ this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0,
+ mtd->oobsize);
+ this->write_bufferram(mtd, ONENAND_SPARERAM, buf, column,
+ thislen);
+
+ this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, to, 0);
+
+ status = this->wait(mtd, FL_WRITING);
+ if (status)
+ break;
+
+ written += thislen;
+ if (written == len)
+ break;
+
+ to += thislen;
+ buf += thislen;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ *retlen = written;
+
+ return 0;
+}
+
+/**
+ * onenand_erase - [MTD Interface] erase block(s)
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ *
+ * Erase one ore more blocks
+ */
+int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int block_size;
+ loff_t addr;
+ int len;
+ int ret = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
+ (unsigned int)instr->addr, (unsigned int)instr->len);
+
+ block_size = (1 << this->erase_shift);
+
+ /* Start address must align on block boundary */
+ if (unlikely(instr->addr & (block_size - 1))) {
+ DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (unlikely(instr->len & (block_size - 1))) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_erase: Length not block aligned\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow erase past end of device */
+ if (unlikely((instr->len + instr->addr) > mtd->size)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_erase: Erase past end of device\n");
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_ERASING);
+
+ /* Loop throught the pages */
+ len = instr->len;
+ addr = instr->addr;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+
+ /* TODO Check badblock */
+
+ this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+
+ ret = this->wait(mtd, FL_ERASING);
+ /* Check, if it is write protected */
+ if (ret) {
+ if (ret == -EPERM)
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_erase: Device is write protected!!!\n");
+ else
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "onenand_erase: Failed erase, block %d\n",
+ (unsigned)(addr >> this->erase_shift));
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = addr;
+ goto erase_exit;
+ }
+
+ len -= block_size;
+ addr += block_size;
+ }
+
+ instr->state = MTD_ERASE_DONE;
+
+ erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_sync - [MTD Interface] sync
+ * @param mtd MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+void onenand_sync(struct mtd_info *mtd)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_SYNCING);
+
+ /* Release it and go back */
+ onenand_release_device(mtd);
+}
+
+/**
+ * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ */
+int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+ /*
+ * TODO
+ * 1. Bad block table (BBT)
+ * -> using NAND BBT to support JFFS2
+ * 2. Bad block management (BBM)
+ * -> bad block replace scheme
+ *
+ * Currently we do nothing
+ */
+ return 0;
+}
+
+/**
+ * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ */
+int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ /* see above */
+ return 0;
+}
+
+/**
+ * onenand_unlock - [MTD Interface] Unlock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to unlock
+ *
+ * Unlock one or more blocks
+ */
+int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int start, end, block, value, status;
+
+ start = ofs >> this->erase_shift;
+ end = len >> this->erase_shift;
+
+ /* Continuous lock scheme */
+ if (this->options & ONENAND_CONT_LOCK) {
+ /* Set start block address */
+ this->write_word(start,
+ this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Set end block address */
+ this->write_word(end - 1,
+ this->base + ONENAND_REG_END_BLOCK_ADDRESS);
+ /* Write unlock command */
+ this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_UNLOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & ONENAND_WP_US))
+ printk(KERN_ERR "wp status = 0x%x\n", status);
+
+ return 0;
+ }
+
+ /* Block lock scheme */
+ for (block = start; block < end; block++) {
+ /* Set start block address */
+ this->write_word(block,
+ this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Write unlock command */
+ this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_UNLOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Set block address for read block status */
+ value = onenand_block_address(this->device_id, block);
+ this->write_word(value,
+ this->base + ONENAND_REG_START_ADDRESS1);
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & ONENAND_WP_US))
+ printk(KERN_ERR "block = %d, wp status = 0x%x\n",
+ block, status);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_print_device_info - Print device ID
+ * @param device device ID
+ *
+ * Print device ID
+ */
+void onenand_print_device_info(int device, int verbose)
+{
+ int vcc, demuxed, ddp, density;
+
+ if (!verbose)
+ return;
+
+ vcc = device & ONENAND_DEVICE_VCC_MASK;
+ demuxed = device & ONENAND_DEVICE_IS_DEMUX;
+ ddp = device & ONENAND_DEVICE_IS_DDP;
+ density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
+ printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
+ demuxed ? "" : "Muxed ",
+ ddp ? "(DDP)" : "",
+ (16 << density), vcc ? "2.65/3.3" : "1.8", device);
+}
+
+static const struct onenand_manufacturers onenand_manuf_ids[] = {
+ {ONENAND_MFR_SAMSUNG, "Samsung"},
+ {ONENAND_MFR_UNKNOWN, "Unknown"}
+};
+
+/**
+ * onenand_check_maf - Check manufacturer ID
+ * @param manuf manufacturer ID
+ *
+ * Check manufacturer ID
+ */
+static int onenand_check_maf(int manuf)
+{
+ int i;
+
+ for (i = 0; onenand_manuf_ids[i].id; i++) {
+ if (manuf == onenand_manuf_ids[i].id)
+ break;
+ }
+
+#ifdef ONENAND_DEBUG
+ printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n",
+ onenand_manuf_ids[i].name, manuf);
+#endif
+
+ return (i != ONENAND_MFR_UNKNOWN);
+}
+
+/**
+ * onenand_probe - [OneNAND Interface] Probe the OneNAND device
+ * @param mtd MTD device structure
+ *
+ * OneNAND detection method:
+ * Compare the the values from command with ones from register
+ */
+static int onenand_probe(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int bram_maf_id, bram_dev_id, maf_id, dev_id;
+ int version_id;
+ int density;
+
+ /* Send the command for reading device ID from BootRAM */
+ this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
+
+ /* Read manufacturer and device IDs from BootRAM */
+ bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
+ bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
+
+ /* Check manufacturer ID */
+ if (onenand_check_maf(bram_maf_id))
+ return -ENXIO;
+
+ /* Reset OneNAND to read default register values */
+ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
+
+ {
+ int i;
+ for (i = 0; i < 10000; i++) ;
+ }
+
+ /* Read manufacturer and device IDs from Register */
+ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
+ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+
+ /* Check OneNAND device */
+ if (maf_id != bram_maf_id || dev_id != bram_dev_id)
+ return -ENXIO;
+
+ /* Flash device information */
+ onenand_print_device_info(dev_id, 0);
+ this->device_id = dev_id;
+
+ density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
+ this->chipsize = (16 << density) << 20;
+
+ /* OneNAND page size & block size */
+ /* The data buffer size is equal to page size */
+ mtd->oobblock =
+ this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
+ mtd->oobsize = mtd->oobblock >> 5;
+ /* Pagers per block is always 64 in OneNAND */
+ mtd->erasesize = mtd->oobblock << 6;
+
+ this->erase_shift = ffs(mtd->erasesize) - 1;
+ this->page_shift = ffs(mtd->oobblock) - 1;
+ this->ppb_shift = (this->erase_shift - this->page_shift);
+ this->page_mask = (mtd->erasesize / mtd->oobblock) - 1;
+
+ /* REVIST: Multichip handling */
+
+ mtd->size = this->chipsize;
+
+ /* Version ID */
+ version_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
+#ifdef ONENAND_DEBUG
+ printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version_id);
+#endif
+
+ /* Lock scheme */
+ if (density <= ONENAND_DEVICE_DENSITY_512Mb &&
+ !(version_id >> ONENAND_VERSION_PROCESS_SHIFT)) {
+ printk(KERN_INFO "Lock scheme is Continues Lock\n");
+ this->options |= ONENAND_CONT_LOCK;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
+ * @param mtd MTD device structure
+ * @param maxchips Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values.
+ */
+int onenand_scan(struct mtd_info *mtd, int maxchips)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (!this->read_word)
+ this->read_word = onenand_readw;
+ if (!this->write_word)
+ this->write_word = onenand_writew;
+
+ if (!this->command)
+ this->command = onenand_command;
+ if (!this->wait)
+ this->wait = onenand_wait;
+
+ if (!this->read_bufferram)
+ this->read_bufferram = onenand_read_bufferram;
+ if (!this->write_bufferram)
+ this->write_bufferram = onenand_write_bufferram;
+
+ if (onenand_probe(mtd))
+ return -ENXIO;
+
+ /* Set Sync. Burst Read after probing */
+ if (this->mmcontrol) {
+ printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
+ this->read_bufferram = onenand_sync_read_bufferram;
+ }
+
+ onenand_unlock(mtd, 0, mtd->size);
+
+ return onenand_default_bbt(mtd);
+}
+
+/**
+ * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
+ * @param mtd MTD device structure
+ */
+void onenand_release(struct mtd_info *mtd)
+{
+}
+
+/*
+ * OneNAND initialization at U-Boot
+ */
+struct mtd_info onenand_mtd;
+struct onenand_chip onenand_chip;
+
+void onenand_init(void)
+{
+ memset(&onenand_mtd, 0, sizeof(struct mtd_info));
+ memset(&onenand_chip, 0, sizeof(struct onenand_chip));
+
+ onenand_chip.base = (void *)CFG_ONENAND_BASE;
+ onenand_mtd.priv = &onenand_chip;
+
+ onenand_scan(&onenand_mtd, 1);
+
+ puts("OneNAND: ");
+ print_size(onenand_mtd.size, "\n");
+}
+
+#endif /* CONFIG_CMD_ONENAND */
diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c
new file mode 100644
index 0000000..5a610ee
--- /dev/null
+++ b/drivers/mtd/onenand/onenand_bbt.c
@@ -0,0 +1,265 @@
+/*
+ * linux/drivers/mtd/onenand/onenand_bbt.c
+ *
+ * Bad Block Table support for the OneNAND driver
+ *
+ * Copyright(c) 2005-2007 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * TODO:
+ * Split BBT core and chip specific BBT.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <common.h>
+
+#ifdef CONFIG_CMD_ONENAND
+
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <malloc.h>
+
+#include <asm/errno.h>
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @param buf the buffer to search
+ * @param len the length of buffer to search
+ * @param paglen the pagelength
+ * @param td search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers. Same as check_pattern, but
+ * no optional empty check and the pattern is expected to start
+ * at offset 0.
+ */
+static int check_short_pattern(uint8_t * buf, int len, int paglen,
+ struct nand_bbt_descr *td)
+{
+ int i;
+ uint8_t *p = buf;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @param mtd MTD device structure
+ * @param buf temporary buffer
+ * @param bd descriptor for the good/bad block search pattern
+ * @param chip create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t * buf,
+ struct nand_bbt_descr *bd, int chip)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int i, j, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen, ooblen;
+
+ printk(KERN_INFO "Scanning device for bad blocks\n");
+
+ len = 1;
+
+ /* We need only read few bytes from the OOB area */
+ scanlen = ooblen = 0;
+ readlen = bd->len;
+
+ /* chip == -1 case only */
+ /* Note that numblocks is 2 * (real numblocks) here;
+ * see i += 2 below as it makses shifting and masking less painful
+ */
+ numblocks = mtd->size >> (bbm->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+
+ for (i = startblock; i < numblocks;) {
+ int ret;
+
+ for (j = 0; j < len; j++) {
+ size_t retlen;
+
+ /* No need to read pages fully,
+ * just read required OOB bytes */
+ ret = onenand_read_oob(mtd,
+ from + j * mtd->oobblock +
+ bd->offs, readlen, &retlen,
+ &buf[0]);
+
+ if (ret && ret != -EAGAIN) {
+ printk("ret = %d\n", ret);
+ return ret;
+ }
+
+ if (check_short_pattern
+ (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+ bbm->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ printk(KERN_WARNING
+ "Bad eraseblock %d at 0x%08x\n", i >> 1,
+ (unsigned int)from);
+ break;
+ }
+ }
+ i += 2;
+ from += (1 << bbm->bbt_erase_shift);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @param mtd MTD device structure
+ * @param bd descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+ */
+static inline int onenand_memory_bbt(struct mtd_info *mtd,
+ struct nand_bbt_descr *bd)
+{
+ unsigned char data_buf[MAX_ONENAND_PAGESIZE];
+
+ bd->options &= ~NAND_BBT_SCANEMPTY;
+ return create_bbt(mtd, data_buf, bd, -1);
+}
+
+/**
+ * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad
+ * @param mtd MTD device structure
+ * @param offs offset in the device
+ * @param allowbbt allow access to bad block table region
+ */
+static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int)(offs >> (bbm->bbt_erase_shift - 1));
+ res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ DEBUG(MTD_DEBUG_LEVEL2,
+ "onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int)offs, block >> 1, res);
+
+ switch ((int)res) {
+ case 0x00:
+ return 0;
+ case 0x01:
+ return 1;
+ case 0x02:
+ return allowbbt ? 0 : 1;
+ }
+
+ return 1;
+}
+
+/**
+ * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s)
+ * @param mtd MTD device structure
+ * @param bd descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the onenand_free_bbt function.
+ *
+ */
+int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int len, ret = 0;
+
+ len = mtd->size >> (this->erase_shift + 2);
+ /* Allocate memory (2bit per block) */
+ bbm->bbt = malloc(len);
+ if (!bbm->bbt) {
+ printk(KERN_ERR "onenand_scan_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+ /* Clear the memory bad block table */
+ memset(bbm->bbt, 0x00, len);
+
+ /* Set the bad block position */
+ bbm->badblockpos = ONENAND_BADBLOCK_POS;
+
+ /* Set erase shift */
+ bbm->bbt_erase_shift = this->erase_shift;
+
+ if (!bbm->isbad_bbt)
+ bbm->isbad_bbt = onenand_isbad_bbt;
+
+ /* Scan the device to build a memory based bad block table */
+ if ((ret = onenand_memory_bbt(mtd, bd))) {
+ printk(KERN_ERR
+ "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n");
+ free(bbm->bbt);
+ bbm->bbt = NULL;
+ }
+
+ return ret;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern,
+};
+
+/**
+ * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device
+ * @param mtd MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the onenand_scan_bbt function
+ */
+int onenand_default_bbt(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm;
+
+ this->bbm = malloc(sizeof(struct bbm_info));
+ if (!this->bbm)
+ return -ENOMEM;
+
+ bbm = this->bbm;
+
+ memset(bbm, 0, sizeof(struct bbm_info));
+
+ /* 1KB page has same configuration as 2KB page */
+ if (!bbm->badblock_pattern)
+ bbm->badblock_pattern = &largepage_memorybased;
+
+ return onenand_scan_bbt(mtd, bbm->badblock_pattern);
+}
+
+#endif /* CFG_CMD_ONENAND */