summaryrefslogtreecommitdiff
path: root/drivers/e1000.c
diff options
context:
space:
mode:
authorwdenk <wdenk>2003-06-03 23:54:09 +0000
committerwdenk <wdenk>2003-06-03 23:54:09 +0000
commit682011ff6968198da14b89e40d9f55b00f6d91f7 (patch)
tree18793a72134a5262daf281ab0b904ab16f5337ac /drivers/e1000.c
parent7a8e9bed17d7924a9c5c4699b1f6a3a0359524ed (diff)
downloadu-boot-imx-682011ff6968198da14b89e40d9f55b00f6d91f7.zip
u-boot-imx-682011ff6968198da14b89e40d9f55b00f6d91f7.tar.gz
u-boot-imx-682011ff6968198da14b89e40d9f55b00f6d91f7.tar.bz2
* Patches by Udi Finkelstein, 2 June 2003:
- Added support for custom keyboards, initialized by defining a board-specific drv_keyboard_init as well as defining CONFIG_KEYBOARD . - Added support for the RBC823 board. - cpu/mpc8xx/lcd.c now automatically calculates the Horizontal Pixel Count field. * Fix alignment problem in BOOTP (dhcp_leasetime option) [pointed out by Nicolas Lacressonnière, 2 Jun 2003] * Patch by Mark Rakes, 14 May 2003: add support for Intel e1000 gig cards. * Patch by Nye Liu, 3 Jun 2003: fix critical typo in MAMR definition (include/mpc8xx.h) * Fix requirement to align U-Boot image on 16 kB boundaries on PPC. * Patch by Klaus Heydeck, 2 Jun 2003 Minor changes for KUP4K configuration
Diffstat (limited to 'drivers/e1000.c')
-rw-r--r--drivers/e1000.c2979
1 files changed, 2979 insertions, 0 deletions
diff --git a/drivers/e1000.c b/drivers/e1000.c
new file mode 100644
index 0000000..b4d50b8
--- /dev/null
+++ b/drivers/e1000.c
@@ -0,0 +1,2979 @@
+/**************************************************************************
+Inter Pro 1000 for ppcboot/das-u-boot
+Drivers are port from Intel's Linux driver e1000-4.3.15
+and from Etherboot pro 1000 driver by mrakes at vivato dot net
+tested on both gig copper and gig fiber boards
+***************************************************************************/
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+/*
+ * Copyright (C) Archway Digital Solutions.
+ *
+ * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
+ * 2/9/2002
+ *
+ * Copyright (C) Linux Networx.
+ * Massive upgrade to work with the new intel gigabit NICs.
+ * <ebiederman at lnxi dot com>
+ */
+
+#include "e1000.h"
+
+#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
+ defined(CONFIG_E1000)
+
+#define TOUT_LOOP 100000
+
+#undef virt_to_bus
+#define virt_to_bus(x) ((unsigned long)x)
+#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
+#define mdelay(n) udelay((n)*1000)
+
+#define E1000_DEFAULT_PBA 0x00000030
+
+/* NIC specific static variables go here */
+
+static char tx_pool[128 + 16];
+static char rx_pool[128 + 16];
+static char packet[2096];
+
+static struct e1000_tx_desc *tx_base;
+static struct e1000_rx_desc *rx_base;
+
+static int tx_tail;
+static int rx_tail, rx_last;
+
+static struct pci_device_id supported[] = {
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
+ {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
+};
+
+/* Function forward declarations */
+static int e1000_setup_link(struct eth_device *nic);
+static int e1000_setup_fiber_link(struct eth_device *nic);
+static int e1000_setup_copper_link(struct eth_device *nic);
+static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
+static void e1000_config_collision_dist(struct e1000_hw *hw);
+static int e1000_config_mac_to_phy(struct e1000_hw *hw);
+static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static int e1000_check_for_link(struct eth_device *nic);
+static int e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
+ uint16_t * duplex);
+static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t * phy_data);
+static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t phy_data);
+static void e1000_phy_hw_reset(struct e1000_hw *hw);
+static int e1000_phy_reset(struct e1000_hw *hw);
+static int e1000_detect_gig_phy(struct e1000_hw *hw);
+
+#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
+#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
+ writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
+#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
+ readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
+#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
+{
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
+{
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
+{
+ uint32_t eecd;
+ uint32_t mask;
+
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ do {
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+ * and then raising and then lowering the clock (the SK bit controls
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
+ * by setting "DI" to "0" and then raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(50);
+
+ e1000_raise_ee_clk(hw, &eecd);
+ e1000_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while (mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+e1000_shift_in_ee_bits(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+ uint32_t i;
+ uint16_t data;
+
+ /* In order to read a register from the EEPROM, we need to shift 16 bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the "DO"
+ * bit. During this "shifting in" process the "DI" bit should always be
+ * clear..
+ */
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < 16; i++) {
+ data = data << 1;
+ e1000_raise_ee_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DI);
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_ee_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static void
+e1000_setup_eeprom(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_standby_eeprom(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Deselct EEPROM */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ *****************************************************************************/
+static int
+e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
+{
+ uint32_t eecd;
+ uint32_t i = 0;
+ int large_eeprom = FALSE;
+
+ /* Request EEPROM Access */
+ if (hw->mac_type > e1000_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if (eecd & E1000_EECD_SIZE)
+ large_eeprom = TRUE;
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+ i++;
+ udelay(10);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if (!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Prepare the EEPROM for reading */
+ e1000_setup_eeprom(hw);
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
+ e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
+
+ /* Read the data */
+ *data = e1000_shift_in_ee_bits(hw);
+
+ /* End this read operation */
+ e1000_standby_eeprom(hw);
+
+ /* Stop requesting EEPROM access */
+ if (hw->mac_type > e1000_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+
+ return 0;
+}
+
+#if 0
+static void
+e1000_eeprom_cleanup(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ e1000_raise_ee_clk(hw, &eecd);
+ e1000_lower_ee_clk(hw, &eecd);
+}
+
+static uint16_t
+e1000_wait_eeprom_done(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+ uint32_t i;
+
+ e1000_standby_eeprom(hw);
+ for (i = 0; i < 200; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if (eecd & E1000_EECD_DO)
+ return (TRUE);
+ udelay(5);
+ }
+ return (FALSE);
+}
+
+static int
+e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
+{
+ uint32_t eecd;
+ int large_eeprom = FALSE;
+ int i = 0;
+
+ /* Request EEPROM Access */
+ if (hw->mac_type > e1000_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if (eecd & E1000_EECD_SIZE)
+ large_eeprom = TRUE;
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+ i++;
+ udelay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if (!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return FALSE;
+ }
+ }
+ e1000_setup_eeprom(hw);
+ e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
+ e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
+ e1000_standby_eeprom(hw);
+ e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
+ e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
+ e1000_shift_out_ee_bits(hw, Data, 16);
+ if (!e1000_wait_eeprom_done(hw)) {
+ return FALSE;
+ }
+ e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
+ e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
+ e1000_eeprom_cleanup(hw);
+
+ /* Stop requesting EEPROM access */
+ if (hw->mac_type > e1000_82544) {
+ eecd = E1000_READ_REG(hw, EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+ i = 0;
+ eecd = E1000_READ_REG(hw, EECD);
+ while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
+ i++;
+ udelay(10);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if ((eecd & E1000_EECD_GNT)) {
+ DEBUGOUT("Could not release EEPROM grant\n");
+ }
+ return TRUE;
+}
+#endif
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+static int
+e1000_validate_eeprom_checksum(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC();
+
+ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+
+ if (checksum == (uint16_t) EEPROM_SUM) {
+ return 0;
+ } else {
+ DEBUGOUT("EEPROM Checksum Invalid\n");
+ return -E1000_ERR_EEPROM;
+ }
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * nic - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int
+e1000_read_mac_addr(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint16_t offset;
+ uint16_t eeprom_data;
+ int i;
+
+ DEBUGFUNC();
+
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ offset = i >> 1;
+ if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ nic->enetaddr[i] = eeprom_data & 0xff;
+ nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
+ }
+ if ((hw->mac_type == e1000_82546) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+ /* Invert the last bit if this is the second device */
+ nic->enetaddr[5] += 1;
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+static void
+e1000_init_rx_addrs(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint32_t i;
+ uint32_t addr_low;
+ uint32_t addr_high;
+
+ DEBUGFUNC();
+
+ /* Setup the receive address. */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+ addr_low = (nic->enetaddr[0] |
+ (nic->enetaddr[1] << 8) |
+ (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
+
+ addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+ /* Zero out the other 15 receive addresses. */
+ DEBUGOUT("Clearing RAR[1-15]\n");
+ for (i = 1; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+ uint32_t offset;
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+ DEBUGFUNC();
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82542:
+ switch (hw->revision_id) {
+ case E1000_82542_2_0_REV_ID:
+ hw->mac_type = e1000_82542_rev2_0;
+ break;
+ case E1000_82542_2_1_REV_ID:
+ hw->mac_type = e1000_82542_rev2_1;
+ break;
+ default:
+ /* Invalid 82542 revision ID */
+ return -E1000_ERR_MAC_TYPE;
+ }
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ hw->mac_type = e1000_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ hw->mac_type = e1000_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ hw->mac_type = e1000_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ hw->mac_type = e1000_82545;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ hw->mac_type = e1000_82546;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ return -E1000_ERR_MAC_TYPE;
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_reset_hw(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+ uint32_t icr;
+ uint32_t manc;
+
+ DEBUGFUNC();
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ pci_write_config_word(hw->pdev, PCI_COMMAND,
+ hw->
+ pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC with
+ * the global reset.
+ */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+ hw->tbi_compatibility_on = FALSE;
+
+ /* Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ mdelay(10);
+
+ /* Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect
+ * the current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+#if 0
+ if (hw->mac_type > e1000_82543)
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ else
+#endif
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+ /* Force a reload from the EEPROM if necessary */
+ if (hw->mac_type < e1000_82540) {
+ /* Wait for reset to complete */
+ udelay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ /* Wait for EEPROM reload */
+ mdelay(2);
+ } else {
+ /* Wait for EEPROM reload (it happens automatically) */
+ mdelay(4);
+ /* Dissable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(hw, MANC, manc);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+ }
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+static int
+e1000_init_hw(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint32_t ctrl, status;
+ uint32_t i;
+ int32_t ret_val;
+ uint16_t pcix_cmd_word;
+ uint16_t pcix_stat_hi_word;
+ uint16_t cmd_mmrbc;
+ uint16_t stat_mmrbc;
+ e1000_bus_type bus_type = e1000_bus_type_unknown;
+
+ DEBUGFUNC();
+#if 0
+ /* Initialize Identification LED */
+ ret_val = e1000_id_led_init(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error Initializing Identification LED\n");
+ return ret_val;
+ }
+#endif
+ /* Set the Media Type and exit with error if it is not valid. */
+ if (hw->mac_type != e1000_82543) {
+ /* tbi_compatibility is only valid on 82543 */
+ hw->tbi_compatibility_en = FALSE;
+ }
+
+ if (hw->mac_type >= e1000_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_TBIMODE) {
+ hw->media_type = e1000_media_type_fiber;
+ /* tbi_compatibility not valid on fiber */
+ hw->tbi_compatibility_en = FALSE;
+ } else {
+ hw->media_type = e1000_media_type_copper;
+ }
+ } else {
+ /* This is an 82542 (fiber only) */
+ hw->media_type = e1000_media_type_fiber;
+ }
+
+ /* Disabling VLAN filtering. */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ E1000_WRITE_REG(hw, VET, 0);
+
+ e1000_clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ pci_write_config_word(hw->pdev, PCI_COMMAND,
+ hw->
+ pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+ E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(5);
+ }
+
+ /* Setup the receive address. This involves initializing all of the Receive
+ * Address Registers (RARs 0 - 15).
+ */
+ e1000_init_rx_addrs(nic);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(1);
+ pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < E1000_MC_TBL_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+#if 0
+ /* Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (hw->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+#endif
+ if (hw->mac_type >= e1000_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+ e1000_bus_type_pcix : e1000_bus_type_pci;
+ }
+ /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+ if (bus_type == e1000_bus_type_pcix) {
+ pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
+ &pcix_cmd_word);
+ pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
+ &pcix_stat_hi_word);
+ cmd_mmrbc =
+ (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc =
+ (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
+ pcix_cmd_word);
+ }
+ }
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = e1000_setup_link(nic);
+
+ /* Set the transmit descriptor write-back policy */
+ if (hw->mac_type > e1000_82544) {
+ ctrl = E1000_READ_REG(hw, TXDCTL);
+ ctrl =
+ (ctrl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, TXDCTL, ctrl);
+ }
+#if 0
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs(hw);
+#endif
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+static int
+e1000_setup_link(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint32_t ctrl_ext;
+ int32_t ret_val;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC();
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ if (hw->fc == e1000_fc_default) {
+ if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = e1000_fc_none;
+ else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+ EEPROM_WORD0F_ASM_DIR)
+ hw->fc = e1000_fc_tx_pause;
+ else
+ hw->fc = e1000_fc_full;
+ }
+
+ /* We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ hw->fc &= (~e1000_fc_tx_pause);
+
+ if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+ hw->fc &= (~e1000_fc_rx_pause);
+
+ hw->original_fc = hw->fc;
+
+ DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before e1000_setup_pcs_link()
+ * or e1000_phy_setup() is called.
+ */
+ if (hw->mac_type == e1000_82543) {
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = (hw->media_type == e1000_media_type_fiber) ?
+ e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
+ if (ret_val < 0) {
+ return ret_val;
+ }
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT
+ ("Initializing the Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames in not enabled, then these
+ * registers will be set to 0.
+ */
+ if (!(hw->fc & e1000_fc_tx_pause)) {
+ E1000_WRITE_REG(hw, FCRTL, 0);
+ E1000_WRITE_REG(hw, FCRTH, 0);
+ } else {
+ /* We need to set up the Receive Threshold high and low water marks
+ * as well as (optionally) enabling the transmission of XON frames.
+ */
+ if (hw->fc_send_xon) {
+ E1000_WRITE_REG(hw, FCRTL,
+ (hw->fc_low_water | E1000_FCRTL_XONE));
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ } else {
+ E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ }
+ }
+ return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int
+e1000_setup_fiber_link(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t txcw = 0;
+ uint32_t i;
+ uint32_t signal;
+ int32_t ret_val;
+
+ DEBUGFUNC();
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
+ signal = E1000_CTRL_SWDPIN1;
+ else
+ signal = 0;
+
+ printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
+ ctrl);
+ /* Take the link out of reset */
+ ctrl &= ~(E1000_CTRL_LRST);
+
+ e1000_config_collision_dist(hw);
+
+ /* Check for a software override of the flow control settings, and setup
+ * the device accordingly. If auto-negotiation is enabled, then software
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
+ * auto-negotiation is disabled, then software will have to manually
+ * configure the two flow control enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames, but
+ * not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we do
+ * not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ */
+ switch (hw->fc) {
+ case e1000_fc_none:
+ /* Flow control is completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /* RX Flow control is enabled and TX Flow control is disabled by a
+ * software over-ride. Since there really isn't a way to advertise
+ * that we are capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
+ * disable the adapter's ability to send PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
+ * software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
+ * will be in reset, because we previously reset the chip). This will
+ * restart auto-negotiation. If auto-neogtiation is successful then the
+ * link-up status bit will be set and the flow control enable bits (RFCE
+ * and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
+
+ E1000_WRITE_REG(hw, TXCW, txcw);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ hw->txcw = txcw;
+ mdelay(1);
+
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+ * indication in the Device Status Register. Time-out if a link isn't
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+ * less than 500 milliseconds even if the other end is doing it in SW).
+ */
+ if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ DEBUGOUT("Looking for Link\n");
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ mdelay(10);
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == (LINK_UP_TIMEOUT / 10)) {
+ /* AutoNeg failed to achieve a link, so we'll call
+ * e1000_check_for_link. This routine will force the link up if we
+ * detect a signal. This will allow us to communicate with
+ * non-autonegotiating link partners.
+ */
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ ret_val = e1000_check_for_link(nic);
+ if (ret_val < 0) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ hw->autoneg_failed = 0;
+ } else {
+ hw->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+ } else {
+ DEBUGOUT("No Signal Detected\n");
+ return -E1000_ERR_NOLINK;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Detects which PHY is present and the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_setup_copper_link(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
+ * the PHY speed and duplex configuration is. In addition, we need to
+ * perform a hardware reset on the PHY to take it out of reset.
+ */
+ if (hw->mac_type > e1000_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ ctrl |=
+ (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ e1000_phy_hw_reset(hw);
+ }
+
+ /* Make sure we have a valid PHY */
+ ret_val = e1000_detect_gig_phy(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error, did not detect valid phy.\n");
+ return ret_val;
+ }
+ DEBUGOUT("Phy ID = %x \n", hw->phy_id);
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+#if 0
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+#else
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+#endif
+
+#if 0
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+#else
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+#endif
+ if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Options:
+ * autoneg = 1 (default)
+ * PHY will advertise value(s) parsed from
+ * autoneg_advertised and fc
+ * autoneg = 0
+ * PHY will be set to 10H, 10F, 100H, or 100F
+ * depending on value parsed from forced_speed_duplex.
+ */
+
+ /* Is autoneg enabled? This is enabled by default or by software override.
+ * If so, call e1000_phy_setup_autoneg routine to parse the
+ * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
+ * user should have provided a speed/duplex override. If so, then call
+ * e1000_phy_force_speed_duplex to parse and set this up.
+ */
+ /* Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+#if 0
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (hw->wait_autoneg_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val < 0) {
+ DEBUGOUT
+ ("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+#else
+ /* If we do not wait for autonegtation to complete I
+ * do not see a valid link status.
+ */
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+#endif
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for (i = 0; i < 10; i++) {
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (phy_data & MII_SR_LINK_STATUS) {
+ /* We have link, so we need to finish the config process:
+ * 1) Set up the MAC to the current PHY speed/duplex
+ * if we are on 82543. If we
+ * are on newer silicon, we only need to configure
+ * collision distance in the Transmit Control Register.
+ * 2) Set up flow control on the MAC to that established with
+ * the link partner.
+ */
+ if (hw->mac_type >= e1000_82544) {
+ e1000_config_collision_dist(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if (ret_val < 0) {
+ DEBUGOUT
+ ("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
+ DEBUGOUT("Valid link established!!!\n");
+ return 0;
+ }
+ udelay(10);
+ }
+
+ DEBUGOUT("Unable to establish link!!!\n");
+ return -E1000_ERR_NOLINK;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ uint16_t mii_autoneg_adv_reg;
+ uint16_t mii_1000t_ctrl_reg;
+
+ DEBUGFUNC();
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+ DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT
+ ("Advertise 1000mb Half duplex requested, request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case e1000_fc_none: /* 0 */
+ /* Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause: /* 1 */
+ /* RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /* Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ *hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause: /* 2 */
+ /* TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full: /* 3 */
+ /* Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+static void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ uint32_t tctl;
+
+ tctl = E1000_READ_REG(hw, TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int
+e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ /* Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /* Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+ else
+ ctrl &= ~E1000_CTRL_FD;
+
+ e1000_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC();
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+
+ switch (hw->fc) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+static int
+e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t mii_nway_adv_reg;
+ uint16_t mii_nway_lp_ability_reg;
+ uint16_t speed;
+ uint16_t duplex;
+
+ DEBUGFUNC();
+
+ /* Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
+ ret_val = e1000_force_mac_fc(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if (hw->media_type == e1000_media_type_copper) {
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+ DEBUGOUT("PHY Read Error \n");
+ return -E1000_ERR_PHY;
+ }
+
+ if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement Register
+ * (Address 4) and the Auto_Negotiation Base Page Ability
+ * Register (Address 5) to determine how flow control was
+ * negotiated.
+ */
+ if (e1000_read_phy_reg
+ (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (e1000_read_phy_reg
+ (hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ */
+ /* Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | e1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected RX ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->original_fc == e1000_fc_full) {
+ hw->fc = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc = e1000_fc_rx_pause;
+ DEBUGOUT
+ ("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ *
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+ {
+ hw->fc = e1000_fc_tx_pause;
+ DEBUGOUT
+ ("Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+ {
+ hw->fc = e1000_fc_rx_pause;
+ DEBUGOUT
+ ("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ /* Per the IEEE spec, at this point flow control should be
+ * disabled. However, we want to consider that we could
+ * be connected to a legacy switch that doesn't advertise
+ * desired flow control, but can be forced on the link
+ * partner. So if we advertised no flow control, that is
+ * what we will resolve to. If we advertised some kind of
+ * receive capability (Rx Pause Only or Full Flow Control)
+ * and the link partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can do
+ * this safely for two reasons: If the link partner really
+ * didn't want flow control enabled, and we enable Rx, no
+ * harm done since we won't be receiving any PAUSE frames
+ * anyway. If the intent on the link partner was to have
+ * flow control enabled, then by us enabling RX only, we
+ * can at least receive pause frames and process them.
+ * This is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we will
+ * be asked to delay transmission of packets than asking
+ * our link partner to pause transmission of frames.
+ */
+ else if (hw->original_fc == e1000_fc_none ||
+ hw->original_fc == e1000_fc_tx_pause) {
+ hw->fc = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ } else {
+ hw->fc = e1000_fc_rx_pause;
+ DEBUGOUT
+ ("Flow Control = RX PAUSE frames only.\r\n");
+ }
+
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc = e1000_fc_none;
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc(hw);
+ if (ret_val < 0) {
+ DEBUGOUT
+ ("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ } else {
+ DEBUGOUT
+ ("Copper PHY and Auto Neg has not completed.\r\n");
+ }
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+static int
+e1000_check_for_link(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ uint32_t rxcw;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t rctl;
+ uint32_t signal;
+ int32_t ret_val;
+ uint16_t phy_data;
+ uint16_t lp_capability;
+
+ DEBUGFUNC();
+
+ /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
+ signal = E1000_CTRL_SWDPIN1;
+ else
+ signal = 0;
+
+ status = E1000_READ_REG(hw, STATUS);
+ rxcw = E1000_READ_REG(hw, RXCW);
+ DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
+
+ /* If we have a copper PHY then we only want to go out to the PHY
+ * registers to see if Auto-Neg has completed and/or if our link
+ * status has changed. The get_link_status flag will be set if we
+ * receive a Link Status Change interrupt or we have Rx Sequence
+ * Errors.
+ */
+ if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ * Read the register twice since the link bit is sticky.
+ */
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ hw->get_link_status = FALSE;
+ } else {
+ /* No link detected */
+ return -E1000_ERR_NOLINK;
+ }
+
+ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if (hw->mac_type >= e1000_82544)
+ e1000_config_collision_dist(hw);
+ else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if (ret_val < 0) {
+ DEBUGOUT
+ ("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Configure Flow Control now that Auto-Neg has completed. First, we
+ * need to restore the desired flow control settings because we may
+ * have had to re-autoneg with a different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+
+ /* At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * parter capability register. We use the link partner capability to
+ * determine if TBI Compatibility needs to be turned on or off. If
+ * the link partner advertises any speed in addition to Gigabit, then
+ * we assume that they are GMII-based, and TBI compatibility is not
+ * needed. If no other speeds are advertised, we assume the link
+ * partner is TBI-based, and we turn on TBI Compatibility.
+ */
+ if (hw->tbi_compatibility_en) {
+ if (e1000_read_phy_reg
+ (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
+ NWAY_LPAR_10T_FD_CAPS |
+ NWAY_LPAR_100TX_HD_CAPS |
+ NWAY_LPAR_100TX_FD_CAPS |
+ NWAY_LPAR_100T4_CAPS)) {
+ /* If our link partner advertises anything in addition to
+ * gigabit, we do not need to enable TBI compatibility.
+ */
+ if (hw->tbi_compatibility_on) {
+ /* If we previously were in the mode, turn it off. */
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ hw->tbi_compatibility_on = FALSE;
+ }
+ } else {
+ /* If TBI compatibility is was previously off, turn it on. For
+ * compatibility with a TBI link partner, we will store bad
+ * packets. Some frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if (!hw->tbi_compatibility_on) {
+ hw->tbi_compatibility_on = TRUE;
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ }
+ }
+ }
+ }
+ /* If we don't have link (auto-negotiation failed or link partner cannot
+ * auto-negotiate), the cable is plugged in (we have signal), and our
+ * link partner is not trying to auto-negotiate with us (we are receiving
+ * idles or data), we need to force link up. We also need to give
+ * auto-negotiation time to complete, in case the cable was just plugged
+ * in. The autoneg_failed flag does this.
+ */
+ else if ((hw->media_type == e1000_media_type_fiber) &&
+ (!(status & E1000_STATUS_LU)) &&
+ ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (hw->autoneg_failed == 0) {
+ hw->autoneg_failed = 1;
+ return 0;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val < 0) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ }
+ /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+ * auto-negotiation in the TXCW register and disable forced link in the
+ * Device Control register in an attempt to auto-negotiate with our link
+ * partner.
+ */
+ else if ((hw->media_type == e1000_media_type_fiber) &&
+ (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ DEBUGOUT
+ ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
+ E1000_WRITE_REG(hw, TXCW, hw->txcw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+ }
+ return 0;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+static void
+e1000_get_speed_and_duplex(struct e1000_hw *hw,
+ uint16_t * speed, uint16_t * duplex)
+{
+ uint32_t status;
+
+ DEBUGFUNC();
+
+ if (hw->mac_type >= e1000_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\r\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT(" Half Duplex\r\n");
+ }
+ } else {
+ DEBUGOUT("1000 Mbs, Full Duplex\r\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+ DEBUGOUT("Auto-Neg complete.\n");
+ return 0;
+ }
+ mdelay(100);
+ }
+ DEBUGOUT("Auto-Neg timedout.\n");
+ return -E1000_ERR_TIMEOUT;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ udelay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
+ * bit), and then delay 2 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ udelay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
+{
+ uint32_t ctrl;
+ uint32_t mask;
+
+ /* We need to shift "count" number of bits out to the PHY. So, the value
+ * in the "data" parameter will be shifted out to the PHY one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while (mask) {
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+ * then raising and lowering the Management Data Clock. A "0" is
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
+ * raising and lowering the clock.
+ */
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(2);
+
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ mask = mask >> 1;
+ }
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t
+e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t data = 0;
+ uint8_t i;
+
+ /* In order to read a register from the PHY, we need to shift in a total
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
+ * to avoid contention on the MDIO pin when a read operation is performed.
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
+ * by raising the input to the Management Data Clock (setting the MDC bit),
+ * and then reading the value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Raise and Lower the clock before reading in the data. This accounts for
+ * the turnaround bits. The first clock occurred when we clocked out the
+ * last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ e1000_raise_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ e1000_lower_mdi_clk(hw, &ctrl);
+ }
+
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ return data;
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+static int
+e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if (hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, and register address in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 64; i++) {
+ udelay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ *phy_data = (uint16_t) mdic;
+ } else {
+ /* We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format of
+ * a MII read instruction consists of a shift out of 14 bits and is
+ * defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = ((reg_addr) | (phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+ /* Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *phy_data = e1000_shift_in_mdi_bits(hw);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+static int
+e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if (hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, register address, and data intended
+ * for the PHY register in the MDI Control register. The MAC will take
+ * care of interfacing with the PHY to send the desired data.
+ */
+ mdic = (((uint32_t) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 64; i++) {
+ udelay(10);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /* We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (uint32_t) phy_data;
+
+ e1000_shift_out_mdi_bits(hw, mdic, 32);
+ }
+ return 0;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static void
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+
+ DEBUGFUNC();
+
+ DEBUGOUT("Resetting Phy...\n");
+
+ if (hw->mac_type > e1000_82543) {
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
+ * bit. Then, take it out of reset.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(10);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset. Then, take it out of reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ mdelay(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+ udelay(150);
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control regiser
+******************************************************************************/
+static int
+e1000_phy_reset(struct e1000_hw *hw)
+{
+ uint16_t phy_data;
+
+ DEBUGFUNC();
+
+ if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ phy_data |= MII_CR_RESET;
+ if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+ DEBUGOUT("PHY Write Error\n");
+ return -E1000_ERR_PHY;
+ }
+ udelay(1);
+ return 0;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int
+e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+ uint16_t phy_id_high, phy_id_low;
+ int match = FALSE;
+
+ DEBUGFUNC();
+
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ hw->phy_id = (uint32_t) (phy_id_high << 16);
+ udelay(2);
+ if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
+ DEBUGOUT("PHY Read Error\n");
+ return -E1000_ERR_PHY;
+ }
+ hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+
+ switch (hw->mac_type) {
+ case e1000_82543:
+ if (hw->phy_id == M88E1000_E_PHY_ID)
+ match = TRUE;
+ break;
+ case e1000_82544:
+ if (hw->phy_id == M88E1000_I_PHY_ID)
+ match = TRUE;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82546:
+ if (hw->phy_id == M88E1011_I_PHY_ID)
+ match = TRUE;
+ break;
+ default:
+ DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+ if (match) {
+ DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
+ return 0;
+ }
+ DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int
+e1000_sw_init(struct eth_device *nic, int cardnum)
+{
+ struct e1000_hw *hw = (typeof(hw)) nic->priv;
+ int result;
+
+ /* PCI config space info */
+ pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
+ pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
+ pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
+ &hw->subsystem_vendor_id);
+ pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
+
+ pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
+ pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+ /* identify the MAC */
+ result = e1000_set_mac_type(hw);
+ if (result) {
+ E1000_ERR("Unknown MAC Type\n");
+ return result;
+ }
+
+ /* lan a vs. lan b settings */
+ if (hw->mac_type == e1000_82546)
+ /*this also works w/ multiple 82546 cards */
+ /*but not if they're intermingled /w other e1000s */
+ hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
+ else
+ hw->lan_loc = e1000_lan_a;
+
+ /* flow control settings */
+ hw->fc_high_water = E1000_FC_HIGH_THRESH;
+ hw->fc_low_water = E1000_FC_LOW_THRESH;
+ hw->fc_pause_time = E1000_FC_PAUSE_TIME;
+ hw->fc_send_xon = 1;
+
+ /* Media type - copper or fiber */
+
+ if (hw->mac_type >= e1000_82543) {
+ uint32_t status = E1000_READ_REG(hw, STATUS);
+
+ if (status & E1000_STATUS_TBIMODE) {
+ DEBUGOUT("fiber interface\n");
+ hw->media_type = e1000_media_type_fiber;
+ } else {
+ DEBUGOUT("copper interface\n");
+ hw->media_type = e1000_media_type_copper;
+ }
+ } else {
+ hw->media_type = e1000_media_type_fiber;
+ }
+
+ if (hw->mac_type < e1000_82543)
+ hw->report_tx_early = 0;
+ else
+ hw->report_tx_early = 1;
+
+ hw->tbi_compatibility_en = TRUE;
+#if 0
+ hw->wait_autoneg_complete = FALSE;
+ hw->adaptive_ifs = TRUE;
+
+ /* Copper options */
+ if (hw->media_type == e1000_media_type_copper) {
+ hw->mdix = AUTO_ALL_MODES;
+ hw->disable_polarity_correction = FALSE;
+ }
+#endif
+ return E1000_SUCCESS;
+}
+
+void
+fill_rx(struct e1000_hw *hw)
+{
+ struct e1000_rx_desc *rd;
+
+ rx_last = rx_tail;
+ rd = rx_base + rx_tail;
+ rx_tail = (rx_tail + 1) % 8;
+ memset(rd, 0, 16);
+ rd->buffer_addr = cpu_to_le64((u32) & packet);
+ E1000_WRITE_REG(hw, RDT, rx_tail);
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void
+e1000_configure_tx(struct e1000_hw *hw)
+{
+ unsigned long ptr;
+ unsigned long tctl;
+ unsigned long tipg;
+
+ ptr = (u32) tx_pool;
+ if (ptr & 0xf)
+ ptr = (ptr + 0x10) & (~0xf);
+
+ tx_base = (typeof(tx_base)) ptr;
+
+ E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
+ E1000_WRITE_REG(hw, TDBAH, 0);
+
+ E1000_WRITE_REG(hw, TDLEN, 128);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+ E1000_WRITE_REG(hw, TDH, 0);
+ E1000_WRITE_REG(hw, TDT, 0);
+ tx_tail = 0;
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ tipg = DEFAULT_82542_TIPG_IPGT;
+ tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ default:
+ if (hw->media_type == e1000_media_type_fiber)
+ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+ tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ }
+ E1000_WRITE_REG(hw, TIPG, tipg);
+#if 0
+ /* Set the Tx Interrupt Delay register */
+ E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
+ if (hw->mac_type >= e1000_82540)
+ E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
+#endif
+ /* Program the Transmit Control Register */
+ tctl = E1000_READ_REG(hw, TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+ E1000_WRITE_REG(hw, TCTL, tctl);
+
+ e1000_config_collision_dist(hw);
+#if 0
+ /* Setup Transmit Descriptor Settings for this adapter */
+ adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
+
+ if (adapter->hw.report_tx_early == 1)
+ adapter->txd_cmd |= E1000_TXD_CMD_RS;
+ else
+ adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+#endif
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control register
+ * @adapter: Board private structure
+ **/
+static void
+e1000_setup_rctl(struct e1000_hw *hw)
+{
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(hw, RCTL);
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* |
+ (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
+
+ if (hw->tbi_compatibility_on == 1)
+ rctl |= E1000_RCTL_SBP;
+ else
+ rctl &= ~E1000_RCTL_SBP;
+
+ rctl &= ~(E1000_RCTL_SZ_4096);
+#if 0
+ switch (adapter->rx_buffer_len) {
+ case E1000_RXBUFFER_2048:
+ default:
+#endif
+ rctl |= E1000_RCTL_SZ_2048;
+ rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
+#if 0
+ break;
+ case E1000_RXBUFFER_4096:
+ rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ break;
+ case E1000_RXBUFFER_8192:
+ rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ break;
+ case E1000_RXBUFFER_16384:
+ rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ break;
+ }
+#endif
+ E1000_WRITE_REG(hw, RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+static void
+e1000_configure_rx(struct e1000_hw *hw)
+{
+ unsigned long ptr;
+ unsigned long rctl;
+#if 0
+ unsigned long rxcsum;
+#endif
+ rx_tail = 0;
+ /* make sure receives are disabled while setting up the descriptors */
+ rctl = E1000_READ_REG(hw, RCTL);
+ E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
+#if 0
+ /* set the Receive Delay Timer Register */
+
+ E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
+#endif
+ if (hw->mac_type >= e1000_82540) {
+#if 0
+ E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
+#endif
+ /* Set the interrupt throttling rate. Value is calculated
+ * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
+#define MAX_INTS_PER_SEC 8000
+#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
+ E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
+ }
+
+ /* Setup the Base and Length of the Rx Descriptor Ring */
+ ptr = (u32) rx_pool;
+ if (ptr & 0xf)
+ ptr = (ptr + 0x10) & (~0xf);
+ rx_base = (typeof(rx_base)) ptr;
+ E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
+ E1000_WRITE_REG(hw, RDBAH, 0);
+
+ E1000_WRITE_REG(hw, RDLEN, 128);
+
+ /* Setup the HW Rx Head and Tail Descriptor Pointers */
+ E1000_WRITE_REG(hw, RDH, 0);
+ E1000_WRITE_REG(hw, RDT, 0);
+#if 0
+ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
+ if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
+ rxcsum = E1000_READ_REG(hw, RXCSUM);
+ rxcsum |= E1000_RXCSUM_TUOFL;
+ E1000_WRITE_REG(hw, RXCSUM, rxcsum);
+ }
+#endif
+ /* Enable Receives */
+
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ fill_rx(hw);
+}
+
+/**************************************************************************
+POLL - Wait for a frame
+***************************************************************************/
+static int
+e1000_poll(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+ struct e1000_rx_desc *rd;
+ /* return true if there's an ethernet packet ready to read */
+ rd = rx_base + rx_last;
+ if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
+ return 0;
+ /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
+ NetReceive(packet, le32_to_cpu(rd->length));
+ fill_rx(hw);
+ return 1;
+}
+
+/**************************************************************************
+TRANSMIT - Transmit a frame
+***************************************************************************/
+static int
+e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
+{
+ struct e1000_hw *hw = nic->priv;
+ struct e1000_tx_desc *txp;
+ int i = 0;
+
+ txp = tx_base + tx_tail;
+ tx_tail = (tx_tail + 1) % 8;
+
+ txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
+ txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
+ E1000_TXD_CMD_IFCS | length);
+ txp->upper.data = 0;
+ E1000_WRITE_REG(hw, TDT, tx_tail);
+
+ while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
+ if (i++ > TOUT_LOOP) {
+ DEBUGOUT("e1000: tx timeout\n");
+ return 0;
+ }
+ udelay(10); /* give the nic a chance to write to the register */
+ }
+ return 1;
+}
+
+/*reset function*/
+static inline int
+e1000_reset(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+
+ e1000_reset_hw(hw);
+ if (hw->mac_type >= e1000_82544) {
+ E1000_WRITE_REG(hw, WUC, 0);
+ }
+ return e1000_init_hw(nic);
+}
+
+/**************************************************************************
+DISABLE - Turn off ethernet interface
+***************************************************************************/
+static void
+e1000_disable(struct eth_device *nic)
+{
+ struct e1000_hw *hw = nic->priv;
+
+ /* Turn off the ethernet interface */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, 0);
+
+ /* Clear the transmit ring */
+ E1000_WRITE_REG(hw, TDH, 0);
+ E1000_WRITE_REG(hw, TDT, 0);
+
+ /* Clear the receive ring */
+ E1000_WRITE_REG(hw, RDH, 0);
+ E1000_WRITE_REG(hw, RDT, 0);
+
+ /* put the card in its initial state */
+#if 0
+ E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
+#endif
+ mdelay(10);
+
+}
+
+/**************************************************************************
+INIT - set up ethernet interface(s)
+***************************************************************************/
+static int
+e1000_init(struct eth_device *nic, bd_t * bis)
+{
+ struct e1000_hw *hw = nic->priv;
+ int ret_val = 0;
+
+ ret_val = e1000_reset(nic);
+ if (ret_val < 0) {
+ if ((ret_val == -E1000_ERR_NOLINK) ||
+ (ret_val == -E1000_ERR_TIMEOUT)) {
+ E1000_ERR("Valid Link not detected\n");
+ } else {
+ E1000_ERR("Hardware Initialization Failed\n");
+ }
+ return 0;
+ }
+ e1000_configure_tx(hw);
+ e1000_setup_rctl(hw);
+ e1000_configure_rx(hw);
+ return 1;
+}
+
+/**************************************************************************
+PROBE - Look for an adapter, this routine's visible to the outside
+You should omit the last argument struct pci_device * for a non-PCI NIC
+***************************************************************************/
+int
+e1000_initialize(bd_t * bis)
+{
+ pci_dev_t devno;
+ int card_number = 0;
+ struct eth_device *nic = NULL;
+ struct e1000_hw *hw = NULL;
+ u32 iobase;
+ int idx = 0;
+ u32 PciCommandWord;
+
+ while (1) { /* Find PCI device(s) */
+ if ((devno = pci_find_devices(supported, idx++)) < 0) {
+ break;
+ }
+
+ pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
+ iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
+ DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
+
+ pci_write_config_dword(devno, PCI_COMMAND,
+ PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
+ /* Check if I/O accesses and Bus Mastering are enabled. */
+ pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
+ if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
+ printf("Error: Can not enable MEM access.\n");
+ continue;
+ } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
+ printf("Error: Can not enable Bus Mastering.\n");
+ continue;
+ }
+
+ nic = (struct eth_device *) malloc(sizeof (*nic));
+ hw = (struct e1000_hw *) malloc(sizeof (*hw));
+ hw->pdev = devno;
+ nic->priv = hw;
+ nic->iobase = bus_to_phys(devno, iobase);
+
+ sprintf(nic->name, "e1000#%d", card_number);
+
+ /* Are these variables needed? */
+#if 0
+ hw->fc = e1000_fc_none;
+ hw->original_fc = e1000_fc_none;
+#else
+ hw->fc = e1000_fc_default;
+ hw->original_fc = e1000_fc_default;
+#endif
+ hw->autoneg_failed = 0;
+ hw->get_link_status = TRUE;
+ hw->hw_addr = (typeof(hw->hw_addr)) iobase;
+ hw->mac_type = e1000_undefined;
+
+ /* MAC and Phy settings */
+ if (e1000_sw_init(nic, card_number) < 0) {
+ free(hw);
+ free(nic);
+ return 0;
+ }
+ if (e1000_validate_eeprom_checksum(nic) < 0) {
+ printf("The EEPROM Checksum Is Not Valid\n");
+ free(hw);
+ free(nic);
+ return 0;
+ }
+ e1000_read_mac_addr(nic);
+
+ E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
+
+ printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
+ nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
+ nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
+
+ nic->init = e1000_init;
+ nic->recv = e1000_poll;
+ nic->send = e1000_transmit;
+ nic->halt = e1000_disable;
+
+ eth_register(nic);
+
+ card_number++;
+ }
+ return 1;
+}
+
+#endif