summaryrefslogtreecommitdiff
path: root/drivers/ddr
diff options
context:
space:
mode:
authorTom Rini <trini@ti.com>2013-12-02 08:38:28 -0500
committerTom Rini <trini@ti.com>2013-12-02 08:38:28 -0500
commit77fdd6d1eb69c1194148a9f4b4428d903af3619f (patch)
tree1ab1b0a75a4b77cf5be89e457eea772d2b5e6b30 /drivers/ddr
parentd19ad726bcd5d9106f7ba9c750462fcc369f1020 (diff)
parentf7f155e1e180e2e7743a036016ed917bba581d98 (diff)
downloadu-boot-imx-77fdd6d1eb69c1194148a9f4b4428d903af3619f.zip
u-boot-imx-77fdd6d1eb69c1194148a9f4b4428d903af3619f.tar.gz
u-boot-imx-77fdd6d1eb69c1194148a9f4b4428d903af3619f.tar.bz2
Merge branch 'master' of git://git.denx.de/u-boot-mpc85xx
Diffstat (limited to 'drivers/ddr')
-rw-r--r--drivers/ddr/fsl/Makefile34
-rw-r--r--drivers/ddr/fsl/arm_ddr_gen3.c213
-rw-r--r--drivers/ddr/fsl/ctrl_regs.c1662
-rw-r--r--drivers/ddr/fsl/ddr1_dimm_params.c343
-rw-r--r--drivers/ddr/fsl/ddr2_dimm_params.c342
-rw-r--r--drivers/ddr/fsl/ddr3_dimm_params.c341
-rw-r--r--drivers/ddr/fsl/interactive.c1871
-rw-r--r--drivers/ddr/fsl/lc_common_dimm_params.c526
-rw-r--r--drivers/ddr/fsl/main.c724
-rw-r--r--drivers/ddr/fsl/mpc85xx_ddr_gen1.c91
-rw-r--r--drivers/ddr/fsl/mpc85xx_ddr_gen2.c96
-rw-r--r--drivers/ddr/fsl/mpc85xx_ddr_gen3.c464
-rw-r--r--drivers/ddr/fsl/mpc86xx_ddr.c85
-rw-r--r--drivers/ddr/fsl/options.c1147
-rw-r--r--drivers/ddr/fsl/util.c271
15 files changed, 8210 insertions, 0 deletions
diff --git a/drivers/ddr/fsl/Makefile b/drivers/ddr/fsl/Makefile
new file mode 100644
index 0000000..265204f
--- /dev/null
+++ b/drivers/ddr/fsl/Makefile
@@ -0,0 +1,34 @@
+#
+# Copyright 2008-2011 Freescale Semiconductor, Inc.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# Version 2 as published by the Free Software Foundation.
+#
+
+obj-$(CONFIG_SYS_FSL_DDR1) += main.o util.o ctrl_regs.o options.o \
+ lc_common_dimm_params.o
+
+obj-$(CONFIG_SYS_FSL_DDR2) += main.o util.o ctrl_regs.o options.o \
+ lc_common_dimm_params.o
+
+obj-$(CONFIG_SYS_FSL_DDR3) += main.o util.o ctrl_regs.o options.o \
+ lc_common_dimm_params.o
+ifdef CONFIG_DDR_SPD
+SPD := y
+endif
+ifdef CONFIG_SPD_EEPROM
+SPD := y
+endif
+ifdef SPD
+obj-$(CONFIG_SYS_FSL_DDR1) += ddr1_dimm_params.o
+obj-$(CONFIG_SYS_FSL_DDR2) += ddr2_dimm_params.o
+obj-$(CONFIG_SYS_FSL_DDR3) += ddr3_dimm_params.o
+endif
+
+obj-$(CONFIG_FSL_DDR_INTERACTIVE) += interactive.o
+obj-$(CONFIG_SYS_FSL_DDRC_GEN1) += mpc85xx_ddr_gen1.o
+obj-$(CONFIG_SYS_FSL_DDRC_GEN2) += mpc85xx_ddr_gen2.o
+obj-$(CONFIG_SYS_FSL_DDRC_GEN3) += mpc85xx_ddr_gen3.o
+obj-$(CONFIG_SYS_FSL_DDR_86XX) += mpc86xx_ddr.o
+obj-$(CONFIG_SYS_FSL_DDRC_ARM_GEN3) += arm_ddr_gen3.o
diff --git a/drivers/ddr/fsl/arm_ddr_gen3.c b/drivers/ddr/fsl/arm_ddr_gen3.c
new file mode 100644
index 0000000..bf11390
--- /dev/null
+++ b/drivers/ddr/fsl/arm_ddr_gen3.c
@@ -0,0 +1,213 @@
+/*
+ * Copyright 2013 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ *
+ * Derived from mpc85xx_ddr_gen3.c, removed all workarounds
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+#include <asm/processor.h>
+#include <fsl_immap.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+
+/*
+ * regs has the to-be-set values for DDR controller registers
+ * ctrl_num is the DDR controller number
+ * step: 0 goes through the initialization in one pass
+ * 1 sets registers and returns before enabling controller
+ * 2 resumes from step 1 and continues to initialize
+ * Dividing the initialization to two steps to deassert DDR reset signal
+ * to comply with JEDEC specs for RDIMMs.
+ */
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+ unsigned int ctrl_num, int step)
+{
+ unsigned int i, bus_width;
+ struct ccsr_ddr __iomem *ddr;
+ u32 temp_sdram_cfg;
+ u32 total_gb_size_per_controller;
+ int timeout;
+
+ switch (ctrl_num) {
+ case 0:
+ ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+ break;
+#if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 1)
+ case 1:
+ ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
+ break;
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 2)
+ case 2:
+ ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR;
+ break;
+#endif
+#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 3)
+ case 3:
+ ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
+ break;
+#endif
+ default:
+ printf("%s unexpected ctrl_num = %u\n", __func__, ctrl_num);
+ return;
+ }
+
+ if (step == 2)
+ goto step2;
+
+ if (regs->ddr_eor)
+ out_be32(&ddr->eor, regs->ddr_eor);
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (i == 0) {
+ out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs0_config, regs->cs[i].config);
+ out_be32(&ddr->cs0_config_2, regs->cs[i].config_2);
+
+ } else if (i == 1) {
+ out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs1_config, regs->cs[i].config);
+ out_be32(&ddr->cs1_config_2, regs->cs[i].config_2);
+
+ } else if (i == 2) {
+ out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs2_config, regs->cs[i].config);
+ out_be32(&ddr->cs2_config_2, regs->cs[i].config_2);
+
+ } else if (i == 3) {
+ out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs3_config, regs->cs[i].config);
+ out_be32(&ddr->cs3_config_2, regs->cs[i].config_2);
+ }
+ }
+
+ out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+ out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+ out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+ out_be32(&ddr->sdram_mode_3, regs->ddr_sdram_mode_3);
+ out_be32(&ddr->sdram_mode_4, regs->ddr_sdram_mode_4);
+ out_be32(&ddr->sdram_mode_5, regs->ddr_sdram_mode_5);
+ out_be32(&ddr->sdram_mode_6, regs->ddr_sdram_mode_6);
+ out_be32(&ddr->sdram_mode_7, regs->ddr_sdram_mode_7);
+ out_be32(&ddr->sdram_mode_8, regs->ddr_sdram_mode_8);
+ out_be32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+ out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+ out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+ out_be32(&ddr->init_addr, regs->ddr_init_addr);
+ out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+ out_be32(&ddr->timing_cfg_4, regs->timing_cfg_4);
+ out_be32(&ddr->timing_cfg_5, regs->timing_cfg_5);
+ out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+ out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+#ifndef CONFIG_SYS_FSL_DDR_EMU
+ /*
+ * Skip these two registers if running on emulator
+ * because emulator doesn't have skew between bytes.
+ */
+
+ if (regs->ddr_wrlvl_cntl_2)
+ out_be32(&ddr->ddr_wrlvl_cntl_2, regs->ddr_wrlvl_cntl_2);
+ if (regs->ddr_wrlvl_cntl_3)
+ out_be32(&ddr->ddr_wrlvl_cntl_3, regs->ddr_wrlvl_cntl_3);
+#endif
+
+ out_be32(&ddr->ddr_sr_cntr, regs->ddr_sr_cntr);
+ out_be32(&ddr->ddr_sdram_rcw_1, regs->ddr_sdram_rcw_1);
+ out_be32(&ddr->ddr_sdram_rcw_2, regs->ddr_sdram_rcw_2);
+ out_be32(&ddr->ddr_cdr1, regs->ddr_cdr1);
+ out_be32(&ddr->ddr_cdr2, regs->ddr_cdr2);
+ out_be32(&ddr->err_disable, regs->err_disable);
+ out_be32(&ddr->err_int_en, regs->err_int_en);
+ for (i = 0; i < 32; i++) {
+ if (regs->debug[i]) {
+ debug("Write to debug_%d as %08x\n", i + 1,
+ regs->debug[i]);
+ out_be32(&ddr->debug[i], regs->debug[i]);
+ }
+ }
+
+ /*
+ * For RDIMMs, JEDEC spec requires clocks to be stable before reset is
+ * deasserted. Clocks start when any chip select is enabled and clock
+ * control register is set. Because all DDR components are connected to
+ * one reset signal, this needs to be done in two steps. Step 1 is to
+ * get the clocks started. Step 2 resumes after reset signal is
+ * deasserted.
+ */
+ if (step == 1) {
+ udelay(200);
+ return;
+ }
+
+step2:
+ /* Set, but do not enable the memory */
+ temp_sdram_cfg = regs->ddr_sdram_cfg;
+ temp_sdram_cfg &= ~(SDRAM_CFG_MEM_EN);
+ out_be32(&ddr->sdram_cfg, temp_sdram_cfg);
+
+ /*
+ * 500 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ * DDR2 need 200 us, and DDR3 need 500 us from spec,
+ * we choose the max, that is 500 us for all of case.
+ */
+ udelay(500);
+ asm volatile("dsb sy;isb");
+
+ /* Let the controller go */
+ temp_sdram_cfg = in_be32(&ddr->sdram_cfg) & ~SDRAM_CFG_BI;
+ out_be32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_MEM_EN);
+ asm volatile("dsb sy;isb");
+
+ total_gb_size_per_controller = 0;
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (!(regs->cs[i].config & 0x80000000))
+ continue;
+ total_gb_size_per_controller += 1 << (
+ ((regs->cs[i].config >> 14) & 0x3) + 2 +
+ ((regs->cs[i].config >> 8) & 0x7) + 12 +
+ ((regs->cs[i].config >> 0) & 0x7) + 8 +
+ 3 - ((regs->ddr_sdram_cfg >> 19) & 0x3) -
+ 26); /* minus 26 (count of 64M) */
+ }
+ if (regs->cs[0].config & 0x20000000) {
+ /* 2-way interleaving */
+ total_gb_size_per_controller <<= 1;
+ }
+ /*
+ * total memory / bus width = transactions needed
+ * transactions needed / data rate = seconds
+ * to add plenty of buffer, double the time
+ * For example, 2GB on 666MT/s 64-bit bus takes about 402ms
+ * Let's wait for 800ms
+ */
+ bus_width = 3 - ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK)
+ >> SDRAM_CFG_DBW_SHIFT);
+ timeout = ((total_gb_size_per_controller << (6 - bus_width)) * 100 /
+ (get_ddr_freq(0) >> 20)) << 1;
+ total_gb_size_per_controller >>= 4; /* shift down to gb size */
+ debug("total %d GB\n", total_gb_size_per_controller);
+ debug("Need to wait up to %d * 10ms\n", timeout);
+
+ /* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done. */
+ while ((in_be32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+ (timeout >= 0)) {
+ udelay(10000); /* throttle polling rate */
+ timeout--;
+ }
+
+ if (timeout <= 0)
+ printf("Waiting for D_INIT timeout. Memory may not work.\n");
+}
diff --git a/drivers/ddr/fsl/ctrl_regs.c b/drivers/ddr/fsl/ctrl_regs.c
new file mode 100644
index 0000000..6bf22cf
--- /dev/null
+++ b/drivers/ddr/fsl/ctrl_regs.c
@@ -0,0 +1,1662 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+#include <fsl_immap.h>
+#include <asm/io.h>
+
+#define _DDR_ADDR CONFIG_SYS_FSL_DDR_ADDR
+
+static u32 fsl_ddr_get_version(void)
+{
+ struct ccsr_ddr __iomem *ddr;
+ u32 ver_major_minor_errata;
+
+ ddr = (void *)_DDR_ADDR;
+ ver_major_minor_errata = (in_be32(&ddr->ip_rev1) & 0xFFFF) << 8;
+ ver_major_minor_errata |= (in_be32(&ddr->ip_rev2) & 0xFF00) >> 8;
+
+ return ver_major_minor_errata;
+}
+
+unsigned int picos_to_mclk(unsigned int picos);
+
+/*
+ * Determine Rtt value.
+ *
+ * This should likely be either board or controller specific.
+ *
+ * Rtt(nominal) - DDR2:
+ * 0 = Rtt disabled
+ * 1 = 75 ohm
+ * 2 = 150 ohm
+ * 3 = 50 ohm
+ * Rtt(nominal) - DDR3:
+ * 0 = Rtt disabled
+ * 1 = 60 ohm
+ * 2 = 120 ohm
+ * 3 = 40 ohm
+ * 4 = 20 ohm
+ * 5 = 30 ohm
+ *
+ * FIXME: Apparently 8641 needs a value of 2
+ * FIXME: Old code seys if 667 MHz or higher, use 3 on 8572
+ *
+ * FIXME: There was some effort down this line earlier:
+ *
+ * unsigned int i;
+ * for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL/2; i++) {
+ * if (popts->dimmslot[i].num_valid_cs
+ * && (popts->cs_local_opts[2*i].odt_rd_cfg
+ * || popts->cs_local_opts[2*i].odt_wr_cfg)) {
+ * rtt = 2;
+ * break;
+ * }
+ * }
+ */
+static inline int fsl_ddr_get_rtt(void)
+{
+ int rtt;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+ rtt = 0;
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ rtt = 3;
+#else
+ rtt = 0;
+#endif
+
+ return rtt;
+}
+
+/*
+ * compute the CAS write latency according to DDR3 spec
+ * CWL = 5 if tCK >= 2.5ns
+ * 6 if 2.5ns > tCK >= 1.875ns
+ * 7 if 1.875ns > tCK >= 1.5ns
+ * 8 if 1.5ns > tCK >= 1.25ns
+ * 9 if 1.25ns > tCK >= 1.07ns
+ * 10 if 1.07ns > tCK >= 0.935ns
+ * 11 if 0.935ns > tCK >= 0.833ns
+ * 12 if 0.833ns > tCK >= 0.75ns
+ */
+static inline unsigned int compute_cas_write_latency(void)
+{
+ unsigned int cwl;
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+
+ if (mclk_ps >= 2500)
+ cwl = 5;
+ else if (mclk_ps >= 1875)
+ cwl = 6;
+ else if (mclk_ps >= 1500)
+ cwl = 7;
+ else if (mclk_ps >= 1250)
+ cwl = 8;
+ else if (mclk_ps >= 1070)
+ cwl = 9;
+ else if (mclk_ps >= 935)
+ cwl = 10;
+ else if (mclk_ps >= 833)
+ cwl = 11;
+ else if (mclk_ps >= 750)
+ cwl = 12;
+ else {
+ cwl = 12;
+ printf("Warning: CWL is out of range\n");
+ }
+ return cwl;
+}
+
+/* Chip Select Configuration (CSn_CONFIG) */
+static void set_csn_config(int dimm_number, int i, fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const dimm_params_t *dimm_params)
+{
+ unsigned int cs_n_en = 0; /* Chip Select enable */
+ unsigned int intlv_en = 0; /* Memory controller interleave enable */
+ unsigned int intlv_ctl = 0; /* Interleaving control */
+ unsigned int ap_n_en = 0; /* Chip select n auto-precharge enable */
+ unsigned int odt_rd_cfg = 0; /* ODT for reads configuration */
+ unsigned int odt_wr_cfg = 0; /* ODT for writes configuration */
+ unsigned int ba_bits_cs_n = 0; /* Num of bank bits for SDRAM on CSn */
+ unsigned int row_bits_cs_n = 0; /* Num of row bits for SDRAM on CSn */
+ unsigned int col_bits_cs_n = 0; /* Num of ocl bits for SDRAM on CSn */
+ int go_config = 0;
+
+ /* Compute CS_CONFIG only for existing ranks of each DIMM. */
+ switch (i) {
+ case 0:
+ if (dimm_params[dimm_number].n_ranks > 0) {
+ go_config = 1;
+ /* These fields only available in CS0_CONFIG */
+ if (!popts->memctl_interleaving)
+ break;
+ switch (popts->memctl_interleaving_mode) {
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ intlv_en = popts->memctl_interleaving;
+ intlv_ctl = popts->memctl_interleaving_mode;
+ break;
+ default:
+ break;
+ }
+ }
+ break;
+ case 1:
+ if ((dimm_number == 0 && dimm_params[0].n_ranks > 1) || \
+ (dimm_number == 1 && dimm_params[1].n_ranks > 0))
+ go_config = 1;
+ break;
+ case 2:
+ if ((dimm_number == 0 && dimm_params[0].n_ranks > 2) || \
+ (dimm_number >= 1 && dimm_params[dimm_number].n_ranks > 0))
+ go_config = 1;
+ break;
+ case 3:
+ if ((dimm_number == 0 && dimm_params[0].n_ranks > 3) || \
+ (dimm_number == 1 && dimm_params[1].n_ranks > 1) || \
+ (dimm_number == 3 && dimm_params[3].n_ranks > 0))
+ go_config = 1;
+ break;
+ default:
+ break;
+ }
+ if (go_config) {
+ unsigned int n_banks_per_sdram_device;
+ cs_n_en = 1;
+ ap_n_en = popts->cs_local_opts[i].auto_precharge;
+ odt_rd_cfg = popts->cs_local_opts[i].odt_rd_cfg;
+ odt_wr_cfg = popts->cs_local_opts[i].odt_wr_cfg;
+ n_banks_per_sdram_device
+ = dimm_params[dimm_number].n_banks_per_sdram_device;
+ ba_bits_cs_n = __ilog2(n_banks_per_sdram_device) - 2;
+ row_bits_cs_n = dimm_params[dimm_number].n_row_addr - 12;
+ col_bits_cs_n = dimm_params[dimm_number].n_col_addr - 8;
+ }
+ ddr->cs[i].config = (0
+ | ((cs_n_en & 0x1) << 31)
+ | ((intlv_en & 0x3) << 29)
+ | ((intlv_ctl & 0xf) << 24)
+ | ((ap_n_en & 0x1) << 23)
+
+ /* XXX: some implementation only have 1 bit starting at left */
+ | ((odt_rd_cfg & 0x7) << 20)
+
+ /* XXX: Some implementation only have 1 bit starting at left */
+ | ((odt_wr_cfg & 0x7) << 16)
+
+ | ((ba_bits_cs_n & 0x3) << 14)
+ | ((row_bits_cs_n & 0x7) << 8)
+ | ((col_bits_cs_n & 0x7) << 0)
+ );
+ debug("FSLDDR: cs[%d]_config = 0x%08x\n", i,ddr->cs[i].config);
+}
+
+/* Chip Select Configuration 2 (CSn_CONFIG_2) */
+/* FIXME: 8572 */
+static void set_csn_config_2(int i, fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int pasr_cfg = 0; /* Partial array self refresh config */
+
+ ddr->cs[i].config_2 = ((pasr_cfg & 7) << 24);
+ debug("FSLDDR: cs[%d]_config_2 = 0x%08x\n", i, ddr->cs[i].config_2);
+}
+
+/* -3E = 667 CL5, -25 = CL6 800, -25E = CL5 800 */
+
+#if !defined(CONFIG_SYS_FSL_DDR1)
+static inline int avoid_odt_overlap(const dimm_params_t *dimm_params)
+{
+#if CONFIG_DIMM_SLOTS_PER_CTLR == 1
+ if (dimm_params[0].n_ranks == 4)
+ return 1;
+#endif
+
+#if CONFIG_DIMM_SLOTS_PER_CTLR == 2
+ if ((dimm_params[0].n_ranks == 2) &&
+ (dimm_params[1].n_ranks == 2))
+ return 1;
+
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+ if (dimm_params[0].n_ranks == 4)
+ return 1;
+#endif
+#endif
+ return 0;
+}
+
+/*
+ * DDR SDRAM Timing Configuration 0 (TIMING_CFG_0)
+ *
+ * Avoid writing for DDR I. The new PQ38 DDR controller
+ * dreams up non-zero default values to be backwards compatible.
+ */
+static void set_timing_cfg_0(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const dimm_params_t *dimm_params)
+{
+ unsigned char trwt_mclk = 0; /* Read-to-write turnaround */
+ unsigned char twrt_mclk = 0; /* Write-to-read turnaround */
+ /* 7.5 ns on -3E; 0 means WL - CL + BL/2 + 1 */
+ unsigned char trrt_mclk = 0; /* Read-to-read turnaround */
+ unsigned char twwt_mclk = 0; /* Write-to-write turnaround */
+
+ /* Active powerdown exit timing (tXARD and tXARDS). */
+ unsigned char act_pd_exit_mclk;
+ /* Precharge powerdown exit timing (tXP). */
+ unsigned char pre_pd_exit_mclk;
+ /* ODT powerdown exit timing (tAXPD). */
+ unsigned char taxpd_mclk;
+ /* Mode register set cycle time (tMRD). */
+ unsigned char tmrd_mclk;
+
+#ifdef CONFIG_SYS_FSL_DDR3
+ /*
+ * (tXARD and tXARDS). Empirical?
+ * The DDR3 spec has not tXARD,
+ * we use the tXP instead of it.
+ * tXP=max(3nCK, 7.5ns) for DDR3.
+ * spec has not the tAXPD, we use
+ * tAXPD=1, need design to confirm.
+ */
+ int tXP = max((get_memory_clk_period_ps() * 3), 7500); /* unit=ps */
+ unsigned int data_rate = get_ddr_freq(0);
+ tmrd_mclk = 4;
+ /* set the turnaround time */
+
+ /*
+ * for single quad-rank DIMM and two dual-rank DIMMs
+ * to avoid ODT overlap
+ */
+ if (avoid_odt_overlap(dimm_params)) {
+ twwt_mclk = 2;
+ trrt_mclk = 1;
+ }
+ /* for faster clock, need more time for data setup */
+ trwt_mclk = (data_rate/1000000 > 1800) ? 2 : 1;
+
+ if ((data_rate/1000000 > 1150) || (popts->memctl_interleaving))
+ twrt_mclk = 1;
+
+ if (popts->dynamic_power == 0) { /* powerdown is not used */
+ act_pd_exit_mclk = 1;
+ pre_pd_exit_mclk = 1;
+ taxpd_mclk = 1;
+ } else {
+ /* act_pd_exit_mclk = tXARD, see above */
+ act_pd_exit_mclk = picos_to_mclk(tXP);
+ /* Mode register MR0[A12] is '1' - fast exit */
+ pre_pd_exit_mclk = act_pd_exit_mclk;
+ taxpd_mclk = 1;
+ }
+#else /* CONFIG_SYS_FSL_DDR2 */
+ /*
+ * (tXARD and tXARDS). Empirical?
+ * tXARD = 2 for DDR2
+ * tXP=2
+ * tAXPD=8
+ */
+ act_pd_exit_mclk = 2;
+ pre_pd_exit_mclk = 2;
+ taxpd_mclk = 8;
+ tmrd_mclk = 2;
+#endif
+
+ if (popts->trwt_override)
+ trwt_mclk = popts->trwt;
+
+ ddr->timing_cfg_0 = (0
+ | ((trwt_mclk & 0x3) << 30) /* RWT */
+ | ((twrt_mclk & 0x3) << 28) /* WRT */
+ | ((trrt_mclk & 0x3) << 26) /* RRT */
+ | ((twwt_mclk & 0x3) << 24) /* WWT */
+ | ((act_pd_exit_mclk & 0xf) << 20) /* ACT_PD_EXIT */
+ | ((pre_pd_exit_mclk & 0xF) << 16) /* PRE_PD_EXIT */
+ | ((taxpd_mclk & 0xf) << 8) /* ODT_PD_EXIT */
+ | ((tmrd_mclk & 0x1f) << 0) /* MRS_CYC */
+ );
+ debug("FSLDDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
+}
+#endif /* defined(CONFIG_SYS_FSL_DDR2) */
+
+/* DDR SDRAM Timing Configuration 3 (TIMING_CFG_3) */
+static void set_timing_cfg_3(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm,
+ unsigned int cas_latency,
+ unsigned int additive_latency)
+{
+ /* Extended precharge to activate interval (tRP) */
+ unsigned int ext_pretoact = 0;
+ /* Extended Activate to precharge interval (tRAS) */
+ unsigned int ext_acttopre = 0;
+ /* Extended activate to read/write interval (tRCD) */
+ unsigned int ext_acttorw = 0;
+ /* Extended refresh recovery time (tRFC) */
+ unsigned int ext_refrec;
+ /* Extended MCAS latency from READ cmd */
+ unsigned int ext_caslat = 0;
+ /* Extended additive latency */
+ unsigned int ext_add_lat = 0;
+ /* Extended last data to precharge interval (tWR) */
+ unsigned int ext_wrrec = 0;
+ /* Control Adjust */
+ unsigned int cntl_adj = 0;
+
+ ext_pretoact = picos_to_mclk(common_dimm->trp_ps) >> 4;
+ ext_acttopre = picos_to_mclk(common_dimm->tras_ps) >> 4;
+ ext_acttorw = picos_to_mclk(common_dimm->trcd_ps) >> 4;
+ ext_caslat = (2 * cas_latency - 1) >> 4;
+ ext_add_lat = additive_latency >> 4;
+ ext_refrec = (picos_to_mclk(common_dimm->trfc_ps) - 8) >> 4;
+ /* ext_wrrec only deals with 16 clock and above, or 14 with OTF */
+ ext_wrrec = (picos_to_mclk(common_dimm->twr_ps) +
+ (popts->otf_burst_chop_en ? 2 : 0)) >> 4;
+
+ ddr->timing_cfg_3 = (0
+ | ((ext_pretoact & 0x1) << 28)
+ | ((ext_acttopre & 0x3) << 24)
+ | ((ext_acttorw & 0x1) << 22)
+ | ((ext_refrec & 0x1F) << 16)
+ | ((ext_caslat & 0x3) << 12)
+ | ((ext_add_lat & 0x1) << 10)
+ | ((ext_wrrec & 0x1) << 8)
+ | ((cntl_adj & 0x7) << 0)
+ );
+ debug("FSLDDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
+}
+
+/* DDR SDRAM Timing Configuration 1 (TIMING_CFG_1) */
+static void set_timing_cfg_1(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm,
+ unsigned int cas_latency)
+{
+ /* Precharge-to-activate interval (tRP) */
+ unsigned char pretoact_mclk;
+ /* Activate to precharge interval (tRAS) */
+ unsigned char acttopre_mclk;
+ /* Activate to read/write interval (tRCD) */
+ unsigned char acttorw_mclk;
+ /* CASLAT */
+ unsigned char caslat_ctrl;
+ /* Refresh recovery time (tRFC) ; trfc_low */
+ unsigned char refrec_ctrl;
+ /* Last data to precharge minimum interval (tWR) */
+ unsigned char wrrec_mclk;
+ /* Activate-to-activate interval (tRRD) */
+ unsigned char acttoact_mclk;
+ /* Last write data pair to read command issue interval (tWTR) */
+ unsigned char wrtord_mclk;
+ /* DDR_SDRAM_MODE doesn't support 9,11,13,15 */
+ static const u8 wrrec_table[] = {
+ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 12, 12, 14, 14, 0, 0};
+
+ pretoact_mclk = picos_to_mclk(common_dimm->trp_ps);
+ acttopre_mclk = picos_to_mclk(common_dimm->tras_ps);
+ acttorw_mclk = picos_to_mclk(common_dimm->trcd_ps);
+
+ /*
+ * Translate CAS Latency to a DDR controller field value:
+ *
+ * CAS Lat DDR I DDR II Ctrl
+ * Clocks SPD Bit SPD Bit Value
+ * ------- ------- ------- -----
+ * 1.0 0 0001
+ * 1.5 1 0010
+ * 2.0 2 2 0011
+ * 2.5 3 0100
+ * 3.0 4 3 0101
+ * 3.5 5 0110
+ * 4.0 4 0111
+ * 4.5 1000
+ * 5.0 5 1001
+ */
+#if defined(CONFIG_SYS_FSL_DDR1)
+ caslat_ctrl = (cas_latency + 1) & 0x07;
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ caslat_ctrl = 2 * cas_latency - 1;
+#else
+ /*
+ * if the CAS latency more than 8 cycle,
+ * we need set extend bit for it at
+ * TIMING_CFG_3[EXT_CASLAT]
+ */
+ caslat_ctrl = 2 * cas_latency - 1;
+#endif
+
+ refrec_ctrl = picos_to_mclk(common_dimm->trfc_ps) - 8;
+ wrrec_mclk = picos_to_mclk(common_dimm->twr_ps);
+
+ if (wrrec_mclk > 16)
+ printf("Error: WRREC doesn't support more than 16 clocks\n");
+ else
+ wrrec_mclk = wrrec_table[wrrec_mclk - 1];
+ if (popts->otf_burst_chop_en)
+ wrrec_mclk += 2;
+
+ acttoact_mclk = picos_to_mclk(common_dimm->trrd_ps);
+ /*
+ * JEDEC has min requirement for tRRD
+ */
+#if defined(CONFIG_SYS_FSL_DDR3)
+ if (acttoact_mclk < 4)
+ acttoact_mclk = 4;
+#endif
+ wrtord_mclk = picos_to_mclk(common_dimm->twtr_ps);
+ /*
+ * JEDEC has some min requirements for tWTR
+ */
+#if defined(CONFIG_SYS_FSL_DDR2)
+ if (wrtord_mclk < 2)
+ wrtord_mclk = 2;
+#elif defined(CONFIG_SYS_FSL_DDR3)
+ if (wrtord_mclk < 4)
+ wrtord_mclk = 4;
+#endif
+ if (popts->otf_burst_chop_en)
+ wrtord_mclk += 2;
+
+ ddr->timing_cfg_1 = (0
+ | ((pretoact_mclk & 0x0F) << 28)
+ | ((acttopre_mclk & 0x0F) << 24)
+ | ((acttorw_mclk & 0xF) << 20)
+ | ((caslat_ctrl & 0xF) << 16)
+ | ((refrec_ctrl & 0xF) << 12)
+ | ((wrrec_mclk & 0x0F) << 8)
+ | ((acttoact_mclk & 0x0F) << 4)
+ | ((wrtord_mclk & 0x0F) << 0)
+ );
+ debug("FSLDDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
+}
+
+/* DDR SDRAM Timing Configuration 2 (TIMING_CFG_2) */
+static void set_timing_cfg_2(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm,
+ unsigned int cas_latency,
+ unsigned int additive_latency)
+{
+ /* Additive latency */
+ unsigned char add_lat_mclk;
+ /* CAS-to-preamble override */
+ unsigned short cpo;
+ /* Write latency */
+ unsigned char wr_lat;
+ /* Read to precharge (tRTP) */
+ unsigned char rd_to_pre;
+ /* Write command to write data strobe timing adjustment */
+ unsigned char wr_data_delay;
+ /* Minimum CKE pulse width (tCKE) */
+ unsigned char cke_pls;
+ /* Window for four activates (tFAW) */
+ unsigned short four_act;
+
+ /* FIXME add check that this must be less than acttorw_mclk */
+ add_lat_mclk = additive_latency;
+ cpo = popts->cpo_override;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+ /*
+ * This is a lie. It should really be 1, but if it is
+ * set to 1, bits overlap into the old controller's
+ * otherwise unused ACSM field. If we leave it 0, then
+ * the HW will magically treat it as 1 for DDR 1. Oh Yea.
+ */
+ wr_lat = 0;
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ wr_lat = cas_latency - 1;
+#else
+ wr_lat = compute_cas_write_latency();
+#endif
+
+ rd_to_pre = picos_to_mclk(common_dimm->trtp_ps);
+ /*
+ * JEDEC has some min requirements for tRTP
+ */
+#if defined(CONFIG_SYS_FSL_DDR2)
+ if (rd_to_pre < 2)
+ rd_to_pre = 2;
+#elif defined(CONFIG_SYS_FSL_DDR3)
+ if (rd_to_pre < 4)
+ rd_to_pre = 4;
+#endif
+ if (popts->otf_burst_chop_en)
+ rd_to_pre += 2; /* according to UM */
+
+ wr_data_delay = popts->write_data_delay;
+ cke_pls = picos_to_mclk(popts->tcke_clock_pulse_width_ps);
+ four_act = picos_to_mclk(popts->tfaw_window_four_activates_ps);
+
+ ddr->timing_cfg_2 = (0
+ | ((add_lat_mclk & 0xf) << 28)
+ | ((cpo & 0x1f) << 23)
+ | ((wr_lat & 0xf) << 19)
+ | ((rd_to_pre & RD_TO_PRE_MASK) << RD_TO_PRE_SHIFT)
+ | ((wr_data_delay & WR_DATA_DELAY_MASK) << WR_DATA_DELAY_SHIFT)
+ | ((cke_pls & 0x7) << 6)
+ | ((four_act & 0x3f) << 0)
+ );
+ debug("FSLDDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
+}
+
+/* DDR SDRAM Register Control Word */
+static void set_ddr_sdram_rcw(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm)
+{
+ if (common_dimm->all_dimms_registered &&
+ !common_dimm->all_dimms_unbuffered) {
+ if (popts->rcw_override) {
+ ddr->ddr_sdram_rcw_1 = popts->rcw_1;
+ ddr->ddr_sdram_rcw_2 = popts->rcw_2;
+ } else {
+ ddr->ddr_sdram_rcw_1 =
+ common_dimm->rcw[0] << 28 | \
+ common_dimm->rcw[1] << 24 | \
+ common_dimm->rcw[2] << 20 | \
+ common_dimm->rcw[3] << 16 | \
+ common_dimm->rcw[4] << 12 | \
+ common_dimm->rcw[5] << 8 | \
+ common_dimm->rcw[6] << 4 | \
+ common_dimm->rcw[7];
+ ddr->ddr_sdram_rcw_2 =
+ common_dimm->rcw[8] << 28 | \
+ common_dimm->rcw[9] << 24 | \
+ common_dimm->rcw[10] << 20 | \
+ common_dimm->rcw[11] << 16 | \
+ common_dimm->rcw[12] << 12 | \
+ common_dimm->rcw[13] << 8 | \
+ common_dimm->rcw[14] << 4 | \
+ common_dimm->rcw[15];
+ }
+ debug("FSLDDR: ddr_sdram_rcw_1 = 0x%08x\n", ddr->ddr_sdram_rcw_1);
+ debug("FSLDDR: ddr_sdram_rcw_2 = 0x%08x\n", ddr->ddr_sdram_rcw_2);
+ }
+}
+
+/* DDR SDRAM control configuration (DDR_SDRAM_CFG) */
+static void set_ddr_sdram_cfg(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm)
+{
+ unsigned int mem_en; /* DDR SDRAM interface logic enable */
+ unsigned int sren; /* Self refresh enable (during sleep) */
+ unsigned int ecc_en; /* ECC enable. */
+ unsigned int rd_en; /* Registered DIMM enable */
+ unsigned int sdram_type; /* Type of SDRAM */
+ unsigned int dyn_pwr; /* Dynamic power management mode */
+ unsigned int dbw; /* DRAM dta bus width */
+ unsigned int eight_be = 0; /* 8-beat burst enable, DDR2 is zero */
+ unsigned int ncap = 0; /* Non-concurrent auto-precharge */
+ unsigned int threet_en; /* Enable 3T timing */
+ unsigned int twot_en; /* Enable 2T timing */
+ unsigned int ba_intlv_ctl; /* Bank (CS) interleaving control */
+ unsigned int x32_en = 0; /* x32 enable */
+ unsigned int pchb8 = 0; /* precharge bit 8 enable */
+ unsigned int hse; /* Global half strength override */
+ unsigned int mem_halt = 0; /* memory controller halt */
+ unsigned int bi = 0; /* Bypass initialization */
+
+ mem_en = 1;
+ sren = popts->self_refresh_in_sleep;
+ if (common_dimm->all_dimms_ecc_capable) {
+ /* Allow setting of ECC only if all DIMMs are ECC. */
+ ecc_en = popts->ecc_mode;
+ } else {
+ ecc_en = 0;
+ }
+
+ if (common_dimm->all_dimms_registered &&
+ !common_dimm->all_dimms_unbuffered) {
+ rd_en = 1;
+ twot_en = 0;
+ } else {
+ rd_en = 0;
+ twot_en = popts->twot_en;
+ }
+
+ sdram_type = CONFIG_FSL_SDRAM_TYPE;
+
+ dyn_pwr = popts->dynamic_power;
+ dbw = popts->data_bus_width;
+ /* 8-beat burst enable DDR-III case
+ * we must clear it when use the on-the-fly mode,
+ * must set it when use the 32-bits bus mode.
+ */
+ if (sdram_type == SDRAM_TYPE_DDR3) {
+ if (popts->burst_length == DDR_BL8)
+ eight_be = 1;
+ if (popts->burst_length == DDR_OTF)
+ eight_be = 0;
+ if (dbw == 0x1)
+ eight_be = 1;
+ }
+
+ threet_en = popts->threet_en;
+ ba_intlv_ctl = popts->ba_intlv_ctl;
+ hse = popts->half_strength_driver_enable;
+
+ ddr->ddr_sdram_cfg = (0
+ | ((mem_en & 0x1) << 31)
+ | ((sren & 0x1) << 30)
+ | ((ecc_en & 0x1) << 29)
+ | ((rd_en & 0x1) << 28)
+ | ((sdram_type & 0x7) << 24)
+ | ((dyn_pwr & 0x1) << 21)
+ | ((dbw & 0x3) << 19)
+ | ((eight_be & 0x1) << 18)
+ | ((ncap & 0x1) << 17)
+ | ((threet_en & 0x1) << 16)
+ | ((twot_en & 0x1) << 15)
+ | ((ba_intlv_ctl & 0x7F) << 8)
+ | ((x32_en & 0x1) << 5)
+ | ((pchb8 & 0x1) << 4)
+ | ((hse & 0x1) << 3)
+ | ((mem_halt & 0x1) << 1)
+ | ((bi & 0x1) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_cfg = 0x%08x\n", ddr->ddr_sdram_cfg);
+}
+
+/* DDR SDRAM control configuration 2 (DDR_SDRAM_CFG_2) */
+static void set_ddr_sdram_cfg_2(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const unsigned int unq_mrs_en)
+{
+ unsigned int frc_sr = 0; /* Force self refresh */
+ unsigned int sr_ie = 0; /* Self-refresh interrupt enable */
+ unsigned int dll_rst_dis; /* DLL reset disable */
+ unsigned int dqs_cfg; /* DQS configuration */
+ unsigned int odt_cfg = 0; /* ODT configuration */
+ unsigned int num_pr; /* Number of posted refreshes */
+ unsigned int slow = 0; /* DDR will be run less than 1250 */
+ unsigned int x4_en = 0; /* x4 DRAM enable */
+ unsigned int obc_cfg; /* On-The-Fly Burst Chop Cfg */
+ unsigned int ap_en; /* Address Parity Enable */
+ unsigned int d_init; /* DRAM data initialization */
+ unsigned int rcw_en = 0; /* Register Control Word Enable */
+ unsigned int md_en = 0; /* Mirrored DIMM Enable */
+ unsigned int qd_en = 0; /* quad-rank DIMM Enable */
+ int i;
+
+ dll_rst_dis = 1; /* Make this configurable */
+ dqs_cfg = popts->dqs_config;
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (popts->cs_local_opts[i].odt_rd_cfg
+ || popts->cs_local_opts[i].odt_wr_cfg) {
+ odt_cfg = SDRAM_CFG2_ODT_ONLY_READ;
+ break;
+ }
+ }
+
+ num_pr = 1; /* Make this configurable */
+
+ /*
+ * 8572 manual says
+ * {TIMING_CFG_1[PRETOACT]
+ * + [DDR_SDRAM_CFG_2[NUM_PR]
+ * * ({EXT_REFREC || REFREC} + 8 + 2)]}
+ * << DDR_SDRAM_INTERVAL[REFINT]
+ */
+#if defined(CONFIG_SYS_FSL_DDR3)
+ obc_cfg = popts->otf_burst_chop_en;
+#else
+ obc_cfg = 0;
+#endif
+
+#if (CONFIG_SYS_FSL_DDR_VER >= FSL_DDR_VER_4_7)
+ slow = get_ddr_freq(0) < 1249000000;
+#endif
+
+ if (popts->registered_dimm_en) {
+ rcw_en = 1;
+ ap_en = popts->ap_en;
+ } else {
+ ap_en = 0;
+ }
+
+ x4_en = popts->x4_en ? 1 : 0;
+
+#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+ /* Use the DDR controller to auto initialize memory. */
+ d_init = popts->ecc_init_using_memctl;
+ ddr->ddr_data_init = CONFIG_MEM_INIT_VALUE;
+ debug("DDR: ddr_data_init = 0x%08x\n", ddr->ddr_data_init);
+#else
+ /* Memory will be initialized via DMA, or not at all. */
+ d_init = 0;
+#endif
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+ md_en = popts->mirrored_dimm;
+#endif
+ qd_en = popts->quad_rank_present ? 1 : 0;
+ ddr->ddr_sdram_cfg_2 = (0
+ | ((frc_sr & 0x1) << 31)
+ | ((sr_ie & 0x1) << 30)
+ | ((dll_rst_dis & 0x1) << 29)
+ | ((dqs_cfg & 0x3) << 26)
+ | ((odt_cfg & 0x3) << 21)
+ | ((num_pr & 0xf) << 12)
+ | ((slow & 1) << 11)
+ | (x4_en << 10)
+ | (qd_en << 9)
+ | (unq_mrs_en << 8)
+ | ((obc_cfg & 0x1) << 6)
+ | ((ap_en & 0x1) << 5)
+ | ((d_init & 0x1) << 4)
+ | ((rcw_en & 0x1) << 2)
+ | ((md_en & 0x1) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_cfg_2 = 0x%08x\n", ddr->ddr_sdram_cfg_2);
+}
+
+/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
+static void set_ddr_sdram_mode_2(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm,
+ const unsigned int unq_mrs_en)
+{
+ unsigned short esdmode2 = 0; /* Extended SDRAM mode 2 */
+ unsigned short esdmode3 = 0; /* Extended SDRAM mode 3 */
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+ int i;
+ unsigned int rtt_wr = 0; /* Rtt_WR - dynamic ODT off */
+ unsigned int srt = 0; /* self-refresh temerature, normal range */
+ unsigned int asr = 0; /* auto self-refresh disable */
+ unsigned int cwl = compute_cas_write_latency() - 5;
+ unsigned int pasr = 0; /* partial array self refresh disable */
+
+ if (popts->rtt_override)
+ rtt_wr = popts->rtt_wr_override_value;
+ else
+ rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;
+
+ if (common_dimm->extended_op_srt)
+ srt = common_dimm->extended_op_srt;
+
+ esdmode2 = (0
+ | ((rtt_wr & 0x3) << 9)
+ | ((srt & 0x1) << 7)
+ | ((asr & 0x1) << 6)
+ | ((cwl & 0x7) << 3)
+ | ((pasr & 0x7) << 0));
+#endif
+ ddr->ddr_sdram_mode_2 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
+
+#ifdef CONFIG_SYS_FSL_DDR3
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (popts->rtt_override)
+ rtt_wr = popts->rtt_wr_override_value;
+ else
+ rtt_wr = popts->cs_local_opts[i].odt_rtt_wr;
+
+ esdmode2 &= 0xF9FF; /* clear bit 10, 9 */
+ esdmode2 |= (rtt_wr & 0x3) << 9;
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_4 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_6 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_8 = (0
+ | ((esdmode2 & 0xFFFF) << 16)
+ | ((esdmode3 & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_4 = 0x%08x\n",
+ ddr->ddr_sdram_mode_4);
+ debug("FSLDDR: ddr_sdram_mode_6 = 0x%08x\n",
+ ddr->ddr_sdram_mode_6);
+ debug("FSLDDR: ddr_sdram_mode_8 = 0x%08x\n",
+ ddr->ddr_sdram_mode_8);
+ }
+#endif
+}
+
+/* DDR SDRAM Interval Configuration (DDR_SDRAM_INTERVAL) */
+static void set_ddr_sdram_interval(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm)
+{
+ unsigned int refint; /* Refresh interval */
+ unsigned int bstopre; /* Precharge interval */
+
+ refint = picos_to_mclk(common_dimm->refresh_rate_ps);
+
+ bstopre = popts->bstopre;
+
+ /* refint field used 0x3FFF in earlier controllers */
+ ddr->ddr_sdram_interval = (0
+ | ((refint & 0xFFFF) << 16)
+ | ((bstopre & 0x3FFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_interval = 0x%08x\n", ddr->ddr_sdram_interval);
+}
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
+static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm,
+ unsigned int cas_latency,
+ unsigned int additive_latency,
+ const unsigned int unq_mrs_en)
+{
+ unsigned short esdmode; /* Extended SDRAM mode */
+ unsigned short sdmode; /* SDRAM mode */
+
+ /* Mode Register - MR1 */
+ unsigned int qoff = 0; /* Output buffer enable 0=yes, 1=no */
+ unsigned int tdqs_en = 0; /* TDQS Enable: 0=no, 1=yes */
+ unsigned int rtt;
+ unsigned int wrlvl_en = 0; /* Write level enable: 0=no, 1=yes */
+ unsigned int al = 0; /* Posted CAS# additive latency (AL) */
+ unsigned int dic = 0; /* Output driver impedance, 40ohm */
+ unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
+ 1=Disable (Test/Debug) */
+
+ /* Mode Register - MR0 */
+ unsigned int dll_on; /* DLL control for precharge PD, 0=off, 1=on */
+ unsigned int wr = 0; /* Write Recovery */
+ unsigned int dll_rst; /* DLL Reset */
+ unsigned int mode; /* Normal=0 or Test=1 */
+ unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
+ /* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
+ unsigned int bt;
+ unsigned int bl; /* BL: Burst Length */
+
+ unsigned int wr_mclk;
+ /*
+ * DDR_SDRAM_MODE doesn't support 9,11,13,15
+ * Please refer JEDEC Standard No. 79-3E for Mode Register MR0
+ * for this table
+ */
+ static const u8 wr_table[] = {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
+
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+ int i;
+
+ if (popts->rtt_override)
+ rtt = popts->rtt_override_value;
+ else
+ rtt = popts->cs_local_opts[0].odt_rtt_norm;
+
+ if (additive_latency == (cas_latency - 1))
+ al = 1;
+ if (additive_latency == (cas_latency - 2))
+ al = 2;
+
+ if (popts->quad_rank_present)
+ dic = 1; /* output driver impedance 240/7 ohm */
+
+ /*
+ * The esdmode value will also be used for writing
+ * MR1 during write leveling for DDR3, although the
+ * bits specifically related to the write leveling
+ * scheme will be handled automatically by the DDR
+ * controller. so we set the wrlvl_en = 0 here.
+ */
+ esdmode = (0
+ | ((qoff & 0x1) << 12)
+ | ((tdqs_en & 0x1) << 11)
+ | ((rtt & 0x4) << 7) /* rtt field is split */
+ | ((wrlvl_en & 0x1) << 7)
+ | ((rtt & 0x2) << 5) /* rtt field is split */
+ | ((dic & 0x2) << 4) /* DIC field is split */
+ | ((al & 0x3) << 3)
+ | ((rtt & 0x1) << 2) /* rtt field is split */
+ | ((dic & 0x1) << 1) /* DIC field is split */
+ | ((dll_en & 0x1) << 0)
+ );
+
+ /*
+ * DLL control for precharge PD
+ * 0=slow exit DLL off (tXPDLL)
+ * 1=fast exit DLL on (tXP)
+ */
+ dll_on = 1;
+
+ wr_mclk = (common_dimm->twr_ps + mclk_ps - 1) / mclk_ps;
+ if (wr_mclk <= 16) {
+ wr = wr_table[wr_mclk - 5];
+ } else {
+ printf("Error: unsupported write recovery for mode register "
+ "wr_mclk = %d\n", wr_mclk);
+ }
+
+ dll_rst = 0; /* dll no reset */
+ mode = 0; /* normal mode */
+
+ /* look up table to get the cas latency bits */
+ if (cas_latency >= 5 && cas_latency <= 16) {
+ unsigned char cas_latency_table[] = {
+ 0x2, /* 5 clocks */
+ 0x4, /* 6 clocks */
+ 0x6, /* 7 clocks */
+ 0x8, /* 8 clocks */
+ 0xa, /* 9 clocks */
+ 0xc, /* 10 clocks */
+ 0xe, /* 11 clocks */
+ 0x1, /* 12 clocks */
+ 0x3, /* 13 clocks */
+ 0x5, /* 14 clocks */
+ 0x7, /* 15 clocks */
+ 0x9, /* 16 clocks */
+ };
+ caslat = cas_latency_table[cas_latency - 5];
+ } else {
+ printf("Error: unsupported cas latency for mode register\n");
+ }
+
+ bt = 0; /* Nibble sequential */
+
+ switch (popts->burst_length) {
+ case DDR_BL8:
+ bl = 0;
+ break;
+ case DDR_OTF:
+ bl = 1;
+ break;
+ case DDR_BC4:
+ bl = 2;
+ break;
+ default:
+ printf("Error: invalid burst length of %u specified. "
+ " Defaulting to on-the-fly BC4 or BL8 beats.\n",
+ popts->burst_length);
+ bl = 1;
+ break;
+ }
+
+ sdmode = (0
+ | ((dll_on & 0x1) << 12)
+ | ((wr & 0x7) << 9)
+ | ((dll_rst & 0x1) << 8)
+ | ((mode & 0x1) << 7)
+ | (((caslat >> 1) & 0x7) << 4)
+ | ((bt & 0x1) << 3)
+ | ((caslat & 1) << 2)
+ | ((bl & 0x3) << 0)
+ );
+
+ ddr->ddr_sdram_mode = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+
+ debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+
+ if (unq_mrs_en) { /* unique mode registers are supported */
+ for (i = 1; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (popts->rtt_override)
+ rtt = popts->rtt_override_value;
+ else
+ rtt = popts->cs_local_opts[i].odt_rtt_norm;
+
+ esdmode &= 0xFDBB; /* clear bit 9,6,2 */
+ esdmode |= (0
+ | ((rtt & 0x4) << 7) /* rtt field is split */
+ | ((rtt & 0x2) << 5) /* rtt field is split */
+ | ((rtt & 0x1) << 2) /* rtt field is split */
+ );
+ switch (i) {
+ case 1:
+ ddr->ddr_sdram_mode_3 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ case 2:
+ ddr->ddr_sdram_mode_5 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ case 3:
+ ddr->ddr_sdram_mode_7 = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ break;
+ }
+ }
+ debug("FSLDDR: ddr_sdram_mode_3 = 0x%08x\n",
+ ddr->ddr_sdram_mode_3);
+ debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+ ddr->ddr_sdram_mode_5);
+ debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+ ddr->ddr_sdram_mode_5);
+ }
+}
+
+#else /* !CONFIG_SYS_FSL_DDR3 */
+
+/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
+static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts,
+ const common_timing_params_t *common_dimm,
+ unsigned int cas_latency,
+ unsigned int additive_latency,
+ const unsigned int unq_mrs_en)
+{
+ unsigned short esdmode; /* Extended SDRAM mode */
+ unsigned short sdmode; /* SDRAM mode */
+
+ /*
+ * FIXME: This ought to be pre-calculated in a
+ * technology-specific routine,
+ * e.g. compute_DDR2_mode_register(), and then the
+ * sdmode and esdmode passed in as part of common_dimm.
+ */
+
+ /* Extended Mode Register */
+ unsigned int mrs = 0; /* Mode Register Set */
+ unsigned int outputs = 0; /* 0=Enabled, 1=Disabled */
+ unsigned int rdqs_en = 0; /* RDQS Enable: 0=no, 1=yes */
+ unsigned int dqs_en = 0; /* DQS# Enable: 0=enable, 1=disable */
+ unsigned int ocd = 0; /* 0x0=OCD not supported,
+ 0x7=OCD default state */
+ unsigned int rtt;
+ unsigned int al; /* Posted CAS# additive latency (AL) */
+ unsigned int ods = 0; /* Output Drive Strength:
+ 0 = Full strength (18ohm)
+ 1 = Reduced strength (4ohm) */
+ unsigned int dll_en = 0; /* DLL Enable 0=Enable (Normal),
+ 1=Disable (Test/Debug) */
+
+ /* Mode Register (MR) */
+ unsigned int mr; /* Mode Register Definition */
+ unsigned int pd; /* Power-Down Mode */
+ unsigned int wr; /* Write Recovery */
+ unsigned int dll_res; /* DLL Reset */
+ unsigned int mode; /* Normal=0 or Test=1 */
+ unsigned int caslat = 0;/* CAS# latency */
+ /* BT: Burst Type (0=Sequential, 1=Interleaved) */
+ unsigned int bt;
+ unsigned int bl; /* BL: Burst Length */
+
+#if defined(CONFIG_SYS_FSL_DDR2)
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+#endif
+ dqs_en = !popts->dqs_config;
+ rtt = fsl_ddr_get_rtt();
+
+ al = additive_latency;
+
+ esdmode = (0
+ | ((mrs & 0x3) << 14)
+ | ((outputs & 0x1) << 12)
+ | ((rdqs_en & 0x1) << 11)
+ | ((dqs_en & 0x1) << 10)
+ | ((ocd & 0x7) << 7)
+ | ((rtt & 0x2) << 5) /* rtt field is split */
+ | ((al & 0x7) << 3)
+ | ((rtt & 0x1) << 2) /* rtt field is split */
+ | ((ods & 0x1) << 1)
+ | ((dll_en & 0x1) << 0)
+ );
+
+ mr = 0; /* FIXME: CHECKME */
+
+ /*
+ * 0 = Fast Exit (Normal)
+ * 1 = Slow Exit (Low Power)
+ */
+ pd = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+ wr = 0; /* Historical */
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ wr = (common_dimm->twr_ps + mclk_ps - 1) / mclk_ps - 1;
+#endif
+ dll_res = 0;
+ mode = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+ if (1 <= cas_latency && cas_latency <= 4) {
+ unsigned char mode_caslat_table[4] = {
+ 0x5, /* 1.5 clocks */
+ 0x2, /* 2.0 clocks */
+ 0x6, /* 2.5 clocks */
+ 0x3 /* 3.0 clocks */
+ };
+ caslat = mode_caslat_table[cas_latency - 1];
+ } else {
+ printf("Warning: unknown cas_latency %d\n", cas_latency);
+ }
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ caslat = cas_latency;
+#endif
+ bt = 0;
+
+ switch (popts->burst_length) {
+ case DDR_BL4:
+ bl = 2;
+ break;
+ case DDR_BL8:
+ bl = 3;
+ break;
+ default:
+ printf("Error: invalid burst length of %u specified. "
+ " Defaulting to 4 beats.\n",
+ popts->burst_length);
+ bl = 2;
+ break;
+ }
+
+ sdmode = (0
+ | ((mr & 0x3) << 14)
+ | ((pd & 0x1) << 12)
+ | ((wr & 0x7) << 9)
+ | ((dll_res & 0x1) << 8)
+ | ((mode & 0x1) << 7)
+ | ((caslat & 0x7) << 4)
+ | ((bt & 0x1) << 3)
+ | ((bl & 0x7) << 0)
+ );
+
+ ddr->ddr_sdram_mode = (0
+ | ((esdmode & 0xFFFF) << 16)
+ | ((sdmode & 0xFFFF) << 0)
+ );
+ debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+}
+#endif
+
+/* DDR SDRAM Data Initialization (DDR_DATA_INIT) */
+static void set_ddr_data_init(fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int init_value; /* Initialization value */
+
+#ifdef CONFIG_MEM_INIT_VALUE
+ init_value = CONFIG_MEM_INIT_VALUE;
+#else
+ init_value = 0xDEADBEEF;
+#endif
+ ddr->ddr_data_init = init_value;
+}
+
+/*
+ * DDR SDRAM Clock Control (DDR_SDRAM_CLK_CNTL)
+ * The old controller on the 8540/60 doesn't have this register.
+ * Hope it's OK to set it (to 0) anyway.
+ */
+static void set_ddr_sdram_clk_cntl(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts)
+{
+ unsigned int clk_adjust; /* Clock adjust */
+
+ clk_adjust = popts->clk_adjust;
+ ddr->ddr_sdram_clk_cntl = (clk_adjust & 0xF) << 23;
+ debug("FSLDDR: clk_cntl = 0x%08x\n", ddr->ddr_sdram_clk_cntl);
+}
+
+/* DDR Initialization Address (DDR_INIT_ADDR) */
+static void set_ddr_init_addr(fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int init_addr = 0; /* Initialization address */
+
+ ddr->ddr_init_addr = init_addr;
+}
+
+/* DDR Initialization Address (DDR_INIT_EXT_ADDR) */
+static void set_ddr_init_ext_addr(fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int uia = 0; /* Use initialization address */
+ unsigned int init_ext_addr = 0; /* Initialization address */
+
+ ddr->ddr_init_ext_addr = (0
+ | ((uia & 0x1) << 31)
+ | (init_ext_addr & 0xF)
+ );
+}
+
+/* DDR SDRAM Timing Configuration 4 (TIMING_CFG_4) */
+static void set_timing_cfg_4(fsl_ddr_cfg_regs_t *ddr,
+ const memctl_options_t *popts)
+{
+ unsigned int rwt = 0; /* Read-to-write turnaround for same CS */
+ unsigned int wrt = 0; /* Write-to-read turnaround for same CS */
+ unsigned int rrt = 0; /* Read-to-read turnaround for same CS */
+ unsigned int wwt = 0; /* Write-to-write turnaround for same CS */
+ unsigned int dll_lock = 0; /* DDR SDRAM DLL Lock Time */
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+ if (popts->burst_length == DDR_BL8) {
+ /* We set BL/2 for fixed BL8 */
+ rrt = 0; /* BL/2 clocks */
+ wwt = 0; /* BL/2 clocks */
+ } else {
+ /* We need to set BL/2 + 2 to BC4 and OTF */
+ rrt = 2; /* BL/2 + 2 clocks */
+ wwt = 2; /* BL/2 + 2 clocks */
+ }
+ dll_lock = 1; /* tDLLK = 512 clocks from spec */
+#endif
+ ddr->timing_cfg_4 = (0
+ | ((rwt & 0xf) << 28)
+ | ((wrt & 0xf) << 24)
+ | ((rrt & 0xf) << 20)
+ | ((wwt & 0xf) << 16)
+ | (dll_lock & 0x3)
+ );
+ debug("FSLDDR: timing_cfg_4 = 0x%08x\n", ddr->timing_cfg_4);
+}
+
+/* DDR SDRAM Timing Configuration 5 (TIMING_CFG_5) */
+static void set_timing_cfg_5(fsl_ddr_cfg_regs_t *ddr, unsigned int cas_latency)
+{
+ unsigned int rodt_on = 0; /* Read to ODT on */
+ unsigned int rodt_off = 0; /* Read to ODT off */
+ unsigned int wodt_on = 0; /* Write to ODT on */
+ unsigned int wodt_off = 0; /* Write to ODT off */
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+ /* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
+ rodt_on = cas_latency - ((ddr->timing_cfg_2 & 0x00780000) >> 19) + 1;
+ rodt_off = 4; /* 4 clocks */
+ wodt_on = 1; /* 1 clocks */
+ wodt_off = 4; /* 4 clocks */
+#endif
+
+ ddr->timing_cfg_5 = (0
+ | ((rodt_on & 0x1f) << 24)
+ | ((rodt_off & 0x7) << 20)
+ | ((wodt_on & 0x1f) << 12)
+ | ((wodt_off & 0x7) << 8)
+ );
+ debug("FSLDDR: timing_cfg_5 = 0x%08x\n", ddr->timing_cfg_5);
+}
+
+/* DDR ZQ Calibration Control (DDR_ZQ_CNTL) */
+static void set_ddr_zq_cntl(fsl_ddr_cfg_regs_t *ddr, unsigned int zq_en)
+{
+ unsigned int zqinit = 0;/* POR ZQ Calibration Time (tZQinit) */
+ /* Normal Operation Full Calibration Time (tZQoper) */
+ unsigned int zqoper = 0;
+ /* Normal Operation Short Calibration Time (tZQCS) */
+ unsigned int zqcs = 0;
+
+ if (zq_en) {
+ zqinit = 9; /* 512 clocks */
+ zqoper = 8; /* 256 clocks */
+ zqcs = 6; /* 64 clocks */
+ }
+
+ ddr->ddr_zq_cntl = (0
+ | ((zq_en & 0x1) << 31)
+ | ((zqinit & 0xF) << 24)
+ | ((zqoper & 0xF) << 16)
+ | ((zqcs & 0xF) << 8)
+ );
+ debug("FSLDDR: zq_cntl = 0x%08x\n", ddr->ddr_zq_cntl);
+}
+
+/* DDR Write Leveling Control (DDR_WRLVL_CNTL) */
+static void set_ddr_wrlvl_cntl(fsl_ddr_cfg_regs_t *ddr, unsigned int wrlvl_en,
+ const memctl_options_t *popts)
+{
+ /*
+ * First DQS pulse rising edge after margining mode
+ * is programmed (tWL_MRD)
+ */
+ unsigned int wrlvl_mrd = 0;
+ /* ODT delay after margining mode is programmed (tWL_ODTEN) */
+ unsigned int wrlvl_odten = 0;
+ /* DQS/DQS_ delay after margining mode is programmed (tWL_DQSEN) */
+ unsigned int wrlvl_dqsen = 0;
+ /* WRLVL_SMPL: Write leveling sample time */
+ unsigned int wrlvl_smpl = 0;
+ /* WRLVL_WLR: Write leveling repeition time */
+ unsigned int wrlvl_wlr = 0;
+ /* WRLVL_START: Write leveling start time */
+ unsigned int wrlvl_start = 0;
+
+ /* suggest enable write leveling for DDR3 due to fly-by topology */
+ if (wrlvl_en) {
+ /* tWL_MRD min = 40 nCK, we set it 64 */
+ wrlvl_mrd = 0x6;
+ /* tWL_ODTEN 128 */
+ wrlvl_odten = 0x7;
+ /* tWL_DQSEN min = 25 nCK, we set it 32 */
+ wrlvl_dqsen = 0x5;
+ /*
+ * Write leveling sample time at least need 6 clocks
+ * higher than tWLO to allow enough time for progagation
+ * delay and sampling the prime data bits.
+ */
+ wrlvl_smpl = 0xf;
+ /*
+ * Write leveling repetition time
+ * at least tWLO + 6 clocks clocks
+ * we set it 64
+ */
+ wrlvl_wlr = 0x6;
+ /*
+ * Write leveling start time
+ * The value use for the DQS_ADJUST for the first sample
+ * when write leveling is enabled. It probably needs to be
+ * overriden per platform.
+ */
+ wrlvl_start = 0x8;
+ /*
+ * Override the write leveling sample and start time
+ * according to specific board
+ */
+ if (popts->wrlvl_override) {
+ wrlvl_smpl = popts->wrlvl_sample;
+ wrlvl_start = popts->wrlvl_start;
+ }
+ }
+
+ ddr->ddr_wrlvl_cntl = (0
+ | ((wrlvl_en & 0x1) << 31)
+ | ((wrlvl_mrd & 0x7) << 24)
+ | ((wrlvl_odten & 0x7) << 20)
+ | ((wrlvl_dqsen & 0x7) << 16)
+ | ((wrlvl_smpl & 0xf) << 12)
+ | ((wrlvl_wlr & 0x7) << 8)
+ | ((wrlvl_start & 0x1F) << 0)
+ );
+ debug("FSLDDR: wrlvl_cntl = 0x%08x\n", ddr->ddr_wrlvl_cntl);
+ ddr->ddr_wrlvl_cntl_2 = popts->wrlvl_ctl_2;
+ debug("FSLDDR: wrlvl_cntl_2 = 0x%08x\n", ddr->ddr_wrlvl_cntl_2);
+ ddr->ddr_wrlvl_cntl_3 = popts->wrlvl_ctl_3;
+ debug("FSLDDR: wrlvl_cntl_3 = 0x%08x\n", ddr->ddr_wrlvl_cntl_3);
+
+}
+
+/* DDR Self Refresh Counter (DDR_SR_CNTR) */
+static void set_ddr_sr_cntr(fsl_ddr_cfg_regs_t *ddr, unsigned int sr_it)
+{
+ /* Self Refresh Idle Threshold */
+ ddr->ddr_sr_cntr = (sr_it & 0xF) << 16;
+}
+
+static void set_ddr_eor(fsl_ddr_cfg_regs_t *ddr, const memctl_options_t *popts)
+{
+ if (popts->addr_hash) {
+ ddr->ddr_eor = 0x40000000; /* address hash enable */
+ puts("Address hashing enabled.\n");
+ }
+}
+
+static void set_ddr_cdr1(fsl_ddr_cfg_regs_t *ddr, const memctl_options_t *popts)
+{
+ ddr->ddr_cdr1 = popts->ddr_cdr1;
+ debug("FSLDDR: ddr_cdr1 = 0x%08x\n", ddr->ddr_cdr1);
+}
+
+static void set_ddr_cdr2(fsl_ddr_cfg_regs_t *ddr, const memctl_options_t *popts)
+{
+ ddr->ddr_cdr2 = popts->ddr_cdr2;
+ debug("FSLDDR: ddr_cdr2 = 0x%08x\n", ddr->ddr_cdr2);
+}
+
+unsigned int
+check_fsl_memctl_config_regs(const fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int res = 0;
+
+ /*
+ * Check that DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] are
+ * not set at the same time.
+ */
+ if (ddr->ddr_sdram_cfg & 0x10000000
+ && ddr->ddr_sdram_cfg & 0x00008000) {
+ printf("Error: DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] "
+ " should not be set at the same time.\n");
+ res++;
+ }
+
+ return res;
+}
+
+unsigned int
+compute_fsl_memctl_config_regs(const memctl_options_t *popts,
+ fsl_ddr_cfg_regs_t *ddr,
+ const common_timing_params_t *common_dimm,
+ const dimm_params_t *dimm_params,
+ unsigned int dbw_cap_adj,
+ unsigned int size_only)
+{
+ unsigned int i;
+ unsigned int cas_latency;
+ unsigned int additive_latency;
+ unsigned int sr_it;
+ unsigned int zq_en;
+ unsigned int wrlvl_en;
+ unsigned int ip_rev = 0;
+ unsigned int unq_mrs_en = 0;
+ int cs_en = 1;
+
+ memset(ddr, 0, sizeof(fsl_ddr_cfg_regs_t));
+
+ if (common_dimm == NULL) {
+ printf("Error: subset DIMM params struct null pointer\n");
+ return 1;
+ }
+
+ /*
+ * Process overrides first.
+ *
+ * FIXME: somehow add dereated caslat to this
+ */
+ cas_latency = (popts->cas_latency_override)
+ ? popts->cas_latency_override_value
+ : common_dimm->lowest_common_SPD_caslat;
+
+ additive_latency = (popts->additive_latency_override)
+ ? popts->additive_latency_override_value
+ : common_dimm->additive_latency;
+
+ sr_it = (popts->auto_self_refresh_en)
+ ? popts->sr_it
+ : 0;
+ /* ZQ calibration */
+ zq_en = (popts->zq_en) ? 1 : 0;
+ /* write leveling */
+ wrlvl_en = (popts->wrlvl_en) ? 1 : 0;
+
+ /* Chip Select Memory Bounds (CSn_BNDS) */
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ unsigned long long ea, sa;
+ unsigned int cs_per_dimm
+ = CONFIG_CHIP_SELECTS_PER_CTRL / CONFIG_DIMM_SLOTS_PER_CTLR;
+ unsigned int dimm_number
+ = i / cs_per_dimm;
+ unsigned long long rank_density
+ = dimm_params[dimm_number].rank_density >> dbw_cap_adj;
+
+ if (dimm_params[dimm_number].n_ranks == 0) {
+ debug("Skipping setup of CS%u "
+ "because n_ranks on DIMM %u is 0\n", i, dimm_number);
+ continue;
+ }
+ if (popts->memctl_interleaving) {
+ switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ break;
+ case FSL_DDR_CS0_CS1:
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ if (i > 1)
+ cs_en = 0;
+ break;
+ case FSL_DDR_CS2_CS3:
+ default:
+ if (i > 0)
+ cs_en = 0;
+ break;
+ }
+ sa = common_dimm->base_address;
+ ea = sa + common_dimm->total_mem - 1;
+ } else if (!popts->memctl_interleaving) {
+ /*
+ * If memory interleaving between controllers is NOT
+ * enabled, the starting address for each memory
+ * controller is distinct. However, because rank
+ * interleaving is enabled, the starting and ending
+ * addresses of the total memory on that memory
+ * controller needs to be programmed into its
+ * respective CS0_BNDS.
+ */
+ switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ sa = common_dimm->base_address;
+ ea = sa + common_dimm->total_mem - 1;
+ break;
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ if ((i >= 2) && (dimm_number == 0)) {
+ sa = dimm_params[dimm_number].base_address +
+ 2 * rank_density;
+ ea = sa + 2 * rank_density - 1;
+ } else {
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + 2 * rank_density - 1;
+ }
+ break;
+ case FSL_DDR_CS0_CS1:
+ if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + rank_density - 1;
+ if (i != 1)
+ sa += (i % cs_per_dimm) * rank_density;
+ ea += (i % cs_per_dimm) * rank_density;
+ } else {
+ sa = 0;
+ ea = 0;
+ }
+ if (i == 0)
+ ea += rank_density;
+ break;
+ case FSL_DDR_CS2_CS3:
+ if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + rank_density - 1;
+ if (i != 3)
+ sa += (i % cs_per_dimm) * rank_density;
+ ea += (i % cs_per_dimm) * rank_density;
+ } else {
+ sa = 0;
+ ea = 0;
+ }
+ if (i == 2)
+ ea += (rank_density >> dbw_cap_adj);
+ break;
+ default: /* No bank(chip-select) interleaving */
+ sa = dimm_params[dimm_number].base_address;
+ ea = sa + rank_density - 1;
+ if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+ sa += (i % cs_per_dimm) * rank_density;
+ ea += (i % cs_per_dimm) * rank_density;
+ } else {
+ sa = 0;
+ ea = 0;
+ }
+ break;
+ }
+ }
+
+ sa >>= 24;
+ ea >>= 24;
+
+ if (cs_en) {
+ ddr->cs[i].bnds = (0
+ | ((sa & 0xffff) << 16) /* starting address */
+ | ((ea & 0xffff) << 0) /* ending address */
+ );
+ } else {
+ /* setting bnds to 0xffffffff for inactive CS */
+ ddr->cs[i].bnds = 0xffffffff;
+ }
+
+ debug("FSLDDR: cs[%d]_bnds = 0x%08x\n", i, ddr->cs[i].bnds);
+ set_csn_config(dimm_number, i, ddr, popts, dimm_params);
+ set_csn_config_2(i, ddr);
+ }
+
+ /*
+ * In the case we only need to compute the ddr sdram size, we only need
+ * to set csn registers, so return from here.
+ */
+ if (size_only)
+ return 0;
+
+ set_ddr_eor(ddr, popts);
+
+#if !defined(CONFIG_SYS_FSL_DDR1)
+ set_timing_cfg_0(ddr, popts, dimm_params);
+#endif
+
+ set_timing_cfg_3(ddr, popts, common_dimm, cas_latency,
+ additive_latency);
+ set_timing_cfg_1(ddr, popts, common_dimm, cas_latency);
+ set_timing_cfg_2(ddr, popts, common_dimm,
+ cas_latency, additive_latency);
+
+ set_ddr_cdr1(ddr, popts);
+ set_ddr_cdr2(ddr, popts);
+ set_ddr_sdram_cfg(ddr, popts, common_dimm);
+ ip_rev = fsl_ddr_get_version();
+ if (ip_rev > 0x40400)
+ unq_mrs_en = 1;
+
+ set_ddr_sdram_cfg_2(ddr, popts, unq_mrs_en);
+ set_ddr_sdram_mode(ddr, popts, common_dimm,
+ cas_latency, additive_latency, unq_mrs_en);
+ set_ddr_sdram_mode_2(ddr, popts, common_dimm, unq_mrs_en);
+ set_ddr_sdram_interval(ddr, popts, common_dimm);
+ set_ddr_data_init(ddr);
+ set_ddr_sdram_clk_cntl(ddr, popts);
+ set_ddr_init_addr(ddr);
+ set_ddr_init_ext_addr(ddr);
+ set_timing_cfg_4(ddr, popts);
+ set_timing_cfg_5(ddr, cas_latency);
+
+ set_ddr_zq_cntl(ddr, zq_en);
+ set_ddr_wrlvl_cntl(ddr, wrlvl_en, popts);
+
+ set_ddr_sr_cntr(ddr, sr_it);
+
+ set_ddr_sdram_rcw(ddr, popts, common_dimm);
+
+#ifdef CONFIG_SYS_FSL_DDR_EMU
+ /* disble DDR training for emulator */
+ ddr->debug[2] = 0x00000400;
+ ddr->debug[4] = 0xff800000;
+#endif
+ return check_fsl_memctl_config_regs(ddr);
+}
diff --git a/drivers/ddr/fsl/ddr1_dimm_params.c b/drivers/ddr/fsl/ddr1_dimm_params.c
new file mode 100644
index 0000000..7df27b9
--- /dev/null
+++ b/drivers/ddr/fsl/ddr1_dimm_params.c
@@ -0,0 +1,343 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ * DDR I DDR II
+ * Bit Size Size
+ * --- ----- ------
+ * 7 high 512MB 512MB
+ * 6 256MB 256MB
+ * 5 128MB 128MB
+ * 4 64MB 16GB
+ * 3 32MB 8GB
+ * 2 16MB 4GB
+ * 1 2GB 2GB
+ * 0 low 1GB 1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ */
+
+static unsigned long long
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+ unsigned long long bsize;
+
+ /* Bottom 2 bits up to the top. */
+ bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
+ bsize <<= 24ULL;
+ debug("DDR: DDR I rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II. No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+ /* Table look up the lower nibble, allow DDR I & II. */
+ unsigned int tenths_ps[16] = {
+ 0,
+ 100,
+ 200,
+ 300,
+ 400,
+ 500,
+ 600,
+ 700,
+ 800,
+ 900,
+ 250, /* This and the next 3 entries valid ... */
+ 330, /* ... only for tCK calculations. */
+ 660,
+ 750,
+ 0, /* undefined */
+ 0 /* undefined */
+ };
+
+ unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+ unsigned int tenth_ns = spd_val & 0x0F;
+ unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+ return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+ unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+ unsigned int hundredth_ns = spd_val & 0x0F;
+ unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+ return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+ 0,
+ 250,
+ 330,
+ 500,
+ 660,
+ 750,
+ 0, /* supposed to be RFC, but not sure what that means */
+ 0 /* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+ unsigned int trfc_ps;
+
+ trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+ + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+
+ return trfc_ps;
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+ unsigned int trc_ps;
+
+ trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+
+ return trc_ps;
+}
+
+/*
+ * tCKmax from DDR I SPD Byte 43
+ *
+ * Bits 7:2 == whole ns
+ * Bits 1:0 == quarter ns
+ * 00 == 0.00 ns
+ * 01 == 0.25 ns
+ * 10 == 0.50 ns
+ * 11 == 0.75 ns
+ *
+ * Returns picoseconds.
+ */
+static unsigned int
+compute_tckmax_from_spd_ps(unsigned int byte43)
+{
+ return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
+}
+
+/*
+ * Determine Refresh Rate. Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+ unsigned int refresh_time_ps[8] = {
+ 15625000, /* 0 Normal 1.00x */
+ 3900000, /* 1 Reduced .25x */
+ 7800000, /* 2 Extended .50x */
+ 31300000, /* 3 Extended 2.00x */
+ 62500000, /* 4 Extended 4.00x */
+ 125000000, /* 5 Extended 8.00x */
+ 15625000, /* 6 Normal 1.00x filler */
+ 15625000, /* 7 Normal 1.00x filler */
+ };
+
+ return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period. The SPD only
+ * defines at most 3 CAS latencies. Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can be.
+ * If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD. This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-E
+ * Table 11.
+ *
+ * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
+ */
+ /* CL2.0 CL2.5 CL3.0 */
+unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
+
+unsigned int
+compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
+{
+ const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
+ unsigned int lowest_tCKmin_found = 0;
+ unsigned int lowest_tCKmin_CL = 0;
+ unsigned int i;
+
+ debug("mclk_ps = %u\n", mclk_ps);
+
+ for (i = 0; i < num_speed_bins; i++) {
+ unsigned int x = ddr1_speed_bins[i];
+ debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+ i, x, lowest_tCKmin_found);
+ if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
+ lowest_tCKmin_found = x;
+ lowest_tCKmin_CL = i + 1;
+ }
+ }
+
+ debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+ return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR1 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr1_spd_eeprom_t *spd,
+ dimm_params_t *pdimm,
+ unsigned int dimm_number)
+{
+ unsigned int retval;
+
+ if (spd->mem_type) {
+ if (spd->mem_type != SPD_MEMTYPE_DDR) {
+ printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
+ return 1;
+ }
+ } else {
+ memset(pdimm, 0, sizeof(dimm_params_t));
+ return 1;
+ }
+
+ retval = ddr1_spd_check(spd);
+ if (retval) {
+ printf("DIMM %u: failed checksum\n", dimm_number);
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = spd->nrows;
+ pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->data_width = spd->dataw_lsb;
+ pdimm->primary_sdram_width = spd->primw;
+ pdimm->ec_sdram_width = spd->ecw;
+
+ /*
+ * FIXME: Need to determine registered_dimm status.
+ * 1 == register buffered
+ * 0 == unbuffered
+ */
+ pdimm->registered_dimm = 0; /* unbuffered */
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = spd->nrow_addr;
+ pdimm->n_col_addr = spd->ncol_addr;
+ pdimm->n_banks_per_sdram_device = spd->nbanks;
+ pdimm->edc_config = spd->config;
+ pdimm->burst_lengths_bitmask = spd->burstl;
+ pdimm->row_density = spd->bank_dens;
+
+ /*
+ * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+ * The SPD clk_cycle field (tCKmin) is measured in tenths of
+ * nanoseconds and represented as BCD.
+ */
+ pdimm->tckmin_x_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+ pdimm->tckmin_x_minus_1_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+ pdimm->tckmin_x_minus_2_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+ pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
+
+ /*
+ * Compute CAS latencies defined by SPD
+ * The SPD caslat_x should have at least 1 and at most 3 bits set.
+ *
+ * If cas_lat after masking is 0, the __ilog2 function returns
+ * 255 into the variable. This behavior is abused once.
+ */
+ pdimm->caslat_x = __ilog2(spd->cas_lat);
+ pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x));
+ pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x)
+ & ~(1 << pdimm->caslat_x_minus_1));
+
+ /* Compute CAS latencies below that defined by SPD */
+ pdimm->caslat_lowest_derated
+ = compute_derated_DDR1_CAS_latency(get_memory_clk_period_ps());
+
+ /* Compute timing parameters */
+ pdimm->trcd_ps = spd->trcd * 250;
+ pdimm->trp_ps = spd->trp * 250;
+ pdimm->tras_ps = spd->tras * 1000;
+
+ pdimm->twr_ps = mclk_to_picos(3);
+ pdimm->twtr_ps = mclk_to_picos(1);
+ pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc);
+
+ pdimm->trrd_ps = spd->trrd * 250;
+ pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc);
+
+ pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+ pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+ pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+ pdimm->tds_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+ pdimm->tdh_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+ pdimm->trtp_ps = mclk_to_picos(2); /* By the book. */
+ pdimm->tdqsq_max_ps = spd->tdqsq * 10;
+ pdimm->tqhs_ps = spd->tqhs * 10;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/ddr2_dimm_params.c b/drivers/ddr/fsl/ddr2_dimm_params.c
new file mode 100644
index 0000000..d865df7
--- /dev/null
+++ b/drivers/ddr/fsl/ddr2_dimm_params.c
@@ -0,0 +1,342 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ * DDR I DDR II
+ * Bit Size Size
+ * --- ----- ------
+ * 7 high 512MB 512MB
+ * 6 256MB 256MB
+ * 5 128MB 128MB
+ * 4 64MB 16GB
+ * 3 32MB 8GB
+ * 2 16MB 4GB
+ * 1 2GB 2GB
+ * 0 low 1GB 1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ *
+ */
+static unsigned long long
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+ unsigned long long bsize;
+
+ /* Bottom 5 bits up to the top. */
+ bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
+ bsize <<= 27ULL;
+ debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II. No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+ /* Table look up the lower nibble, allow DDR I & II. */
+ unsigned int tenths_ps[16] = {
+ 0,
+ 100,
+ 200,
+ 300,
+ 400,
+ 500,
+ 600,
+ 700,
+ 800,
+ 900,
+ 250, /* This and the next 3 entries valid ... */
+ 330, /* ... only for tCK calculations. */
+ 660,
+ 750,
+ 0, /* undefined */
+ 0 /* undefined */
+ };
+
+ unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+ unsigned int tenth_ns = spd_val & 0x0F;
+ unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+ return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+ unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+ unsigned int hundredth_ns = spd_val & 0x0F;
+ unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+ return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+ 0,
+ 250,
+ 330,
+ 500,
+ 660,
+ 750,
+ 0, /* supposed to be RFC, but not sure what that means */
+ 0 /* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+ unsigned int trfc_ps;
+
+ trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+ + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+
+ return trfc_ps;
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+ unsigned int trc_ps;
+
+ trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+
+ return trc_ps;
+}
+
+/*
+ * Determine Refresh Rate. Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+ unsigned int refresh_time_ps[8] = {
+ 15625000, /* 0 Normal 1.00x */
+ 3900000, /* 1 Reduced .25x */
+ 7800000, /* 2 Extended .50x */
+ 31300000, /* 3 Extended 2.00x */
+ 62500000, /* 4 Extended 4.00x */
+ 125000000, /* 5 Extended 8.00x */
+ 15625000, /* 6 Normal 1.00x filler */
+ 15625000, /* 7 Normal 1.00x filler */
+ };
+
+ return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period. The SPD only
+ * defines at most 3 CAS latencies. Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can.
+ * be. If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD. This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
+ * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
+ * and tRC for corresponding bin"
+ *
+ * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
+ * Not certain if any good value exists for CL=2
+ */
+ /* CL2 CL3 CL4 CL5 CL6 CL7*/
+unsigned short ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
+
+unsigned int
+compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
+{
+ const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
+ unsigned int lowest_tCKmin_found = 0;
+ unsigned int lowest_tCKmin_CL = 0;
+ unsigned int i;
+
+ debug("mclk_ps = %u\n", mclk_ps);
+
+ for (i = 0; i < num_speed_bins; i++) {
+ unsigned int x = ddr2_speed_bins[i];
+ debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+ i, x, lowest_tCKmin_found);
+ if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
+ lowest_tCKmin_found = x;
+ lowest_tCKmin_CL = i + 2;
+ }
+ }
+
+ debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+ return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR2 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr2_spd_eeprom_t *spd,
+ dimm_params_t *pdimm,
+ unsigned int dimm_number)
+{
+ unsigned int retval;
+
+ if (spd->mem_type) {
+ if (spd->mem_type != SPD_MEMTYPE_DDR2) {
+ printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
+ return 1;
+ }
+ } else {
+ memset(pdimm, 0, sizeof(dimm_params_t));
+ return 1;
+ }
+
+ retval = ddr2_spd_check(spd);
+ if (retval) {
+ printf("DIMM %u: failed checksum\n", dimm_number);
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
+ pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->data_width = spd->dataw;
+ pdimm->primary_sdram_width = spd->primw;
+ pdimm->ec_sdram_width = spd->ecw;
+
+ /* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
+ switch (spd->dimm_type) {
+ case DDR2_SPD_DIMMTYPE_RDIMM:
+ case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
+ case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
+ /* Registered/buffered DIMMs */
+ pdimm->registered_dimm = 1;
+ break;
+
+ case DDR2_SPD_DIMMTYPE_UDIMM:
+ case DDR2_SPD_DIMMTYPE_SO_DIMM:
+ case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
+ case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
+ /* Unbuffered DIMMs */
+ pdimm->registered_dimm = 0;
+ break;
+
+ case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
+ default:
+ printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
+ return 1;
+ }
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = spd->nrow_addr;
+ pdimm->n_col_addr = spd->ncol_addr;
+ pdimm->n_banks_per_sdram_device = spd->nbanks;
+ pdimm->edc_config = spd->config;
+ pdimm->burst_lengths_bitmask = spd->burstl;
+ pdimm->row_density = spd->rank_dens;
+
+ /*
+ * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+ * The SPD clk_cycle field (tCKmin) is measured in tenths of
+ * nanoseconds and represented as BCD.
+ */
+ pdimm->tckmin_x_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+ pdimm->tckmin_x_minus_1_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+ pdimm->tckmin_x_minus_2_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+ pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
+
+ /*
+ * Compute CAS latencies defined by SPD
+ * The SPD caslat_x should have at least 1 and at most 3 bits set.
+ *
+ * If cas_lat after masking is 0, the __ilog2 function returns
+ * 255 into the variable. This behavior is abused once.
+ */
+ pdimm->caslat_x = __ilog2(spd->cas_lat);
+ pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x));
+ pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_x)
+ & ~(1 << pdimm->caslat_x_minus_1));
+
+ /* Compute CAS latencies below that defined by SPD */
+ pdimm->caslat_lowest_derated
+ = compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
+
+ /* Compute timing parameters */
+ pdimm->trcd_ps = spd->trcd * 250;
+ pdimm->trp_ps = spd->trp * 250;
+ pdimm->tras_ps = spd->tras * 1000;
+
+ pdimm->twr_ps = spd->twr * 250;
+ pdimm->twtr_ps = spd->twtr * 250;
+ pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
+
+ pdimm->trrd_ps = spd->trrd * 250;
+ pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
+
+ pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+ pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+ pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+ pdimm->tds_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+ pdimm->tdh_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+ pdimm->trtp_ps = spd->trtp * 250;
+ pdimm->tdqsq_max_ps = spd->tdqsq * 10;
+ pdimm->tqhs_ps = spd->tqhs * 10;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/ddr3_dimm_params.c b/drivers/ddr/fsl/ddr3_dimm_params.c
new file mode 100644
index 0000000..a4b8c10
--- /dev/null
+++ b/drivers/ddr/fsl/ddr3_dimm_params.c
@@ -0,0 +1,341 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ * Dave Liu <daveliu@freescale.com>
+ *
+ * calculate the organization and timing parameter
+ * from ddr3 spd, please refer to the spec
+ * JEDEC standard No.21-C 4_01_02_11R18.pdf
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * each rank size =
+ * sdram capacity(bit) / 8 * primary bus width / sdram width
+ *
+ * where: sdram capacity = spd byte4[3:0]
+ * primary bus width = spd byte8[2:0]
+ * sdram width = spd byte7[2:0]
+ *
+ * SPD byte4 - sdram density and banks
+ * bit[3:0] size(bit) size(byte)
+ * 0000 256Mb 32MB
+ * 0001 512Mb 64MB
+ * 0010 1Gb 128MB
+ * 0011 2Gb 256MB
+ * 0100 4Gb 512MB
+ * 0101 8Gb 1GB
+ * 0110 16Gb 2GB
+ *
+ * SPD byte8 - module memory bus width
+ * bit[2:0] primary bus width
+ * 000 8bits
+ * 001 16bits
+ * 010 32bits
+ * 011 64bits
+ *
+ * SPD byte7 - module organiztion
+ * bit[2:0] sdram device width
+ * 000 4bits
+ * 001 8bits
+ * 010 16bits
+ * 011 32bits
+ *
+ */
+static unsigned long long
+compute_ranksize(const ddr3_spd_eeprom_t *spd)
+{
+ unsigned long long bsize;
+
+ int nbit_sdram_cap_bsize = 0;
+ int nbit_primary_bus_width = 0;
+ int nbit_sdram_width = 0;
+
+ if ((spd->density_banks & 0xf) < 7)
+ nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
+ if ((spd->bus_width & 0x7) < 4)
+ nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
+ if ((spd->organization & 0x7) < 4)
+ nbit_sdram_width = (spd->organization & 0x7) + 2;
+
+ bsize = 1ULL << (nbit_sdram_cap_bsize - 3
+ + nbit_primary_bus_width - nbit_sdram_width);
+
+ debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
+
+ return bsize;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR3 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr3_spd_eeprom_t *spd,
+ dimm_params_t *pdimm,
+ unsigned int dimm_number)
+{
+ unsigned int retval;
+ unsigned int mtb_ps;
+ int ftb_10th_ps;
+ int i;
+
+ if (spd->mem_type) {
+ if (spd->mem_type != SPD_MEMTYPE_DDR3) {
+ printf("DIMM %u: is not a DDR3 SPD.\n", dimm_number);
+ return 1;
+ }
+ } else {
+ memset(pdimm, 0, sizeof(dimm_params_t));
+ return 1;
+ }
+
+ retval = ddr3_spd_check(spd);
+ if (retval) {
+ printf("DIMM %u: failed checksum\n", dimm_number);
+ return 2;
+ }
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ if ((spd->info_size_crc & 0xF) > 1)
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
+ pdimm->rank_density = compute_ranksize(spd);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
+ if ((spd->bus_width >> 3) & 0x3)
+ pdimm->ec_sdram_width = 8;
+ else
+ pdimm->ec_sdram_width = 0;
+ pdimm->data_width = pdimm->primary_sdram_width
+ + pdimm->ec_sdram_width;
+ pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
+
+ /* These are the types defined by the JEDEC DDR3 SPD spec */
+ pdimm->mirrored_dimm = 0;
+ pdimm->registered_dimm = 0;
+ switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
+ case DDR3_SPD_MODULETYPE_RDIMM:
+ case DDR3_SPD_MODULETYPE_MINI_RDIMM:
+ case DDR3_SPD_MODULETYPE_72B_SO_RDIMM:
+ /* Registered/buffered DIMMs */
+ pdimm->registered_dimm = 1;
+ for (i = 0; i < 16; i += 2) {
+ u8 rcw = spd->mod_section.registered.rcw[i/2];
+ pdimm->rcw[i] = (rcw >> 0) & 0x0F;
+ pdimm->rcw[i+1] = (rcw >> 4) & 0x0F;
+ }
+ break;
+
+ case DDR3_SPD_MODULETYPE_UDIMM:
+ case DDR3_SPD_MODULETYPE_SO_DIMM:
+ case DDR3_SPD_MODULETYPE_MICRO_DIMM:
+ case DDR3_SPD_MODULETYPE_MINI_UDIMM:
+ case DDR3_SPD_MODULETYPE_MINI_CDIMM:
+ case DDR3_SPD_MODULETYPE_72B_SO_UDIMM:
+ case DDR3_SPD_MODULETYPE_72B_SO_CDIMM:
+ case DDR3_SPD_MODULETYPE_LRDIMM:
+ case DDR3_SPD_MODULETYPE_16B_SO_DIMM:
+ case DDR3_SPD_MODULETYPE_32B_SO_DIMM:
+ /* Unbuffered DIMMs */
+ if (spd->mod_section.unbuffered.addr_mapping & 0x1)
+ pdimm->mirrored_dimm = 1;
+ break;
+
+ default:
+ printf("unknown module_type 0x%02X\n", spd->module_type);
+ return 1;
+ }
+
+ /* SDRAM device parameters */
+ pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
+ pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
+ pdimm->n_banks_per_sdram_device = 8 << ((spd->density_banks >> 4) & 0x7);
+
+ /*
+ * The SPD spec has not the ECC bit,
+ * We consider the DIMM as ECC capability
+ * when the extension bus exist
+ */
+ if (pdimm->ec_sdram_width)
+ pdimm->edc_config = 0x02;
+ else
+ pdimm->edc_config = 0x00;
+
+ /*
+ * The SPD spec has not the burst length byte
+ * but DDR3 spec has nature BL8 and BC4,
+ * BL8 -bit3, BC4 -bit2
+ */
+ pdimm->burst_lengths_bitmask = 0x0c;
+ pdimm->row_density = __ilog2(pdimm->rank_density);
+
+ /* MTB - medium timebase
+ * The unit in the SPD spec is ns,
+ * We convert it to ps.
+ * eg: MTB = 0.125ns (125ps)
+ */
+ mtb_ps = (spd->mtb_dividend * 1000) /spd->mtb_divisor;
+ pdimm->mtb_ps = mtb_ps;
+
+ /*
+ * FTB - fine timebase
+ * use 1/10th of ps as our unit to avoid floating point
+ * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
+ */
+ ftb_10th_ps =
+ ((spd->ftb_div & 0xf0) >> 4) * 10 / (spd->ftb_div & 0x0f);
+ pdimm->ftb_10th_ps = ftb_10th_ps;
+ /*
+ * sdram minimum cycle time
+ * we assume the MTB is 0.125ns
+ * eg:
+ * tck_min=15 MTB (1.875ns) ->DDR3-1066
+ * =12 MTB (1.5ns) ->DDR3-1333
+ * =10 MTB (1.25ns) ->DDR3-1600
+ */
+ pdimm->tckmin_x_ps = spd->tck_min * mtb_ps +
+ (spd->fine_tck_min * ftb_10th_ps) / 10;
+
+ /*
+ * CAS latency supported
+ * bit4 - CL4
+ * bit5 - CL5
+ * bit18 - CL18
+ */
+ pdimm->caslat_x = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4;
+
+ /*
+ * min CAS latency time
+ * eg: taa_min =
+ * DDR3-800D 100 MTB (12.5ns)
+ * DDR3-1066F 105 MTB (13.125ns)
+ * DDR3-1333H 108 MTB (13.5ns)
+ * DDR3-1600H 90 MTB (11.25ns)
+ */
+ pdimm->taa_ps = spd->taa_min * mtb_ps +
+ (spd->fine_taa_min * ftb_10th_ps) / 10;
+
+ /*
+ * min write recovery time
+ * eg:
+ * twr_min = 120 MTB (15ns) -> all speed grades.
+ */
+ pdimm->twr_ps = spd->twr_min * mtb_ps;
+
+ /*
+ * min RAS to CAS delay time
+ * eg: trcd_min =
+ * DDR3-800 100 MTB (12.5ns)
+ * DDR3-1066F 105 MTB (13.125ns)
+ * DDR3-1333H 108 MTB (13.5ns)
+ * DDR3-1600H 90 MTB (11.25)
+ */
+ pdimm->trcd_ps = spd->trcd_min * mtb_ps +
+ (spd->fine_trcd_min * ftb_10th_ps) / 10;
+
+ /*
+ * min row active to row active delay time
+ * eg: trrd_min =
+ * DDR3-800(1KB page) 80 MTB (10ns)
+ * DDR3-1333(1KB page) 48 MTB (6ns)
+ */
+ pdimm->trrd_ps = spd->trrd_min * mtb_ps;
+
+ /*
+ * min row precharge delay time
+ * eg: trp_min =
+ * DDR3-800D 100 MTB (12.5ns)
+ * DDR3-1066F 105 MTB (13.125ns)
+ * DDR3-1333H 108 MTB (13.5ns)
+ * DDR3-1600H 90 MTB (11.25ns)
+ */
+ pdimm->trp_ps = spd->trp_min * mtb_ps +
+ (spd->fine_trp_min * ftb_10th_ps) / 10;
+
+ /* min active to precharge delay time
+ * eg: tRAS_min =
+ * DDR3-800D 300 MTB (37.5ns)
+ * DDR3-1066F 300 MTB (37.5ns)
+ * DDR3-1333H 288 MTB (36ns)
+ * DDR3-1600H 280 MTB (35ns)
+ */
+ pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb)
+ * mtb_ps;
+ /*
+ * min active to actice/refresh delay time
+ * eg: tRC_min =
+ * DDR3-800D 400 MTB (50ns)
+ * DDR3-1066F 405 MTB (50.625ns)
+ * DDR3-1333H 396 MTB (49.5ns)
+ * DDR3-1600H 370 MTB (46.25ns)
+ */
+ pdimm->trc_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb)
+ * mtb_ps + (spd->fine_trc_min * ftb_10th_ps) / 10;
+ /*
+ * min refresh recovery delay time
+ * eg: tRFC_min =
+ * 512Mb 720 MTB (90ns)
+ * 1Gb 880 MTB (110ns)
+ * 2Gb 1280 MTB (160ns)
+ */
+ pdimm->trfc_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb)
+ * mtb_ps;
+ /*
+ * min internal write to read command delay time
+ * eg: twtr_min = 40 MTB (7.5ns) - all speed bins.
+ * tWRT is at least 4 mclk independent of operating freq.
+ */
+ pdimm->twtr_ps = spd->twtr_min * mtb_ps;
+
+ /*
+ * min internal read to precharge command delay time
+ * eg: trtp_min = 40 MTB (7.5ns) - all speed bins.
+ * tRTP is at least 4 mclk independent of operating freq.
+ */
+ pdimm->trtp_ps = spd->trtp_min * mtb_ps;
+
+ /*
+ * Average periodic refresh interval
+ * tREFI = 7.8 us at normal temperature range
+ * = 3.9 us at ext temperature range
+ */
+ pdimm->refresh_rate_ps = 7800000;
+ if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) {
+ pdimm->refresh_rate_ps = 3900000;
+ pdimm->extended_op_srt = 1;
+ }
+
+ /*
+ * min four active window delay time
+ * eg: tfaw_min =
+ * DDR3-800(1KB page) 320 MTB (40ns)
+ * DDR3-1066(1KB page) 300 MTB (37.5ns)
+ * DDR3-1333(1KB page) 240 MTB (30ns)
+ * DDR3-1600(1KB page) 240 MTB (30ns)
+ */
+ pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min)
+ * mtb_ps;
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/interactive.c b/drivers/ddr/fsl/interactive.c
new file mode 100644
index 0000000..ebf3ed6
--- /dev/null
+++ b/drivers/ddr/fsl/interactive.c
@@ -0,0 +1,1871 @@
+/*
+ * Copyright 2010-2012 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ * York Sun [at freescale.com]
+ */
+
+#include <common.h>
+#include <linux/ctype.h>
+#include <asm/types.h>
+#include <asm/io.h>
+
+#include <fsl_ddr_sdram.h>
+#include <fsl_ddr.h>
+
+/* Option parameter Structures */
+struct options_string {
+ const char *option_name;
+ size_t offset;
+ unsigned int size;
+ const char printhex;
+};
+
+static unsigned int picos_to_mhz(unsigned int picos)
+{
+ return 1000000 / picos;
+}
+
+static void print_option_table(const struct options_string *table,
+ int table_size,
+ const void *base)
+{
+ unsigned int i;
+ unsigned int *ptr;
+ unsigned long long *ptr_l;
+
+ for (i = 0; i < table_size; i++) {
+ switch (table[i].size) {
+ case 4:
+ ptr = (unsigned int *) (base + table[i].offset);
+ if (table[i].printhex) {
+ printf("%s = 0x%08X\n",
+ table[i].option_name, *ptr);
+ } else {
+ printf("%s = %u\n",
+ table[i].option_name, *ptr);
+ }
+ break;
+ case 8:
+ ptr_l = (unsigned long long *) (base + table[i].offset);
+ printf("%s = %llu\n",
+ table[i].option_name, *ptr_l);
+ break;
+ default:
+ printf("Unrecognized size!\n");
+ break;
+ }
+ }
+}
+
+static int handle_option_table(const struct options_string *table,
+ int table_size,
+ void *base,
+ const char *opt,
+ const char *val)
+{
+ unsigned int i;
+ unsigned int value, *ptr;
+ unsigned long long value_l, *ptr_l;
+
+ for (i = 0; i < table_size; i++) {
+ if (strcmp(table[i].option_name, opt) != 0)
+ continue;
+ switch (table[i].size) {
+ case 4:
+ value = simple_strtoul(val, NULL, 0);
+ ptr = base + table[i].offset;
+ *ptr = value;
+ break;
+ case 8:
+ value_l = simple_strtoull(val, NULL, 0);
+ ptr_l = base + table[i].offset;
+ *ptr_l = value_l;
+ break;
+ default:
+ printf("Unrecognized size!\n");
+ break;
+ }
+ return 1;
+ }
+
+ return 0;
+}
+
+static void fsl_ddr_generic_edit(void *pdata,
+ void *pend,
+ unsigned int element_size,
+ unsigned int element_num,
+ unsigned int value)
+{
+ char *pcdata = (char *)pdata; /* BIG ENDIAN ONLY */
+
+ pcdata += element_num * element_size;
+ if ((pcdata + element_size) > (char *) pend) {
+ printf("trying to write past end of data\n");
+ return;
+ }
+
+ switch (element_size) {
+ case 1:
+ __raw_writeb(value, pcdata);
+ break;
+ case 2:
+ __raw_writew(value, pcdata);
+ break;
+ case 4:
+ __raw_writel(value, pcdata);
+ break;
+ default:
+ printf("unexpected element size %u\n", element_size);
+ break;
+ }
+}
+
+static void fsl_ddr_spd_edit(fsl_ddr_info_t *pinfo,
+ unsigned int ctrl_num,
+ unsigned int dimm_num,
+ unsigned int element_num,
+ unsigned int value)
+{
+ generic_spd_eeprom_t *pspd;
+
+ pspd = &(pinfo->spd_installed_dimms[ctrl_num][dimm_num]);
+ fsl_ddr_generic_edit(pspd, pspd + 1, 1, element_num, value);
+}
+
+#define COMMON_TIMING(x) {#x, offsetof(common_timing_params_t, x), \
+ sizeof((common_timing_params_t *)0)->x, 0}
+
+static void lowest_common_dimm_parameters_edit(fsl_ddr_info_t *pinfo,
+ unsigned int ctrl_num,
+ const char *optname_str,
+ const char *value_str)
+{
+ common_timing_params_t *p = &pinfo->common_timing_params[ctrl_num];
+
+ static const struct options_string options[] = {
+ COMMON_TIMING(tckmin_x_ps),
+ COMMON_TIMING(tckmax_ps),
+ COMMON_TIMING(tckmax_max_ps),
+ COMMON_TIMING(trcd_ps),
+ COMMON_TIMING(trp_ps),
+ COMMON_TIMING(tras_ps),
+ COMMON_TIMING(twr_ps),
+ COMMON_TIMING(twtr_ps),
+ COMMON_TIMING(trfc_ps),
+ COMMON_TIMING(trrd_ps),
+ COMMON_TIMING(trc_ps),
+ COMMON_TIMING(refresh_rate_ps),
+ COMMON_TIMING(tis_ps),
+ COMMON_TIMING(tih_ps),
+ COMMON_TIMING(tds_ps),
+ COMMON_TIMING(tdh_ps),
+ COMMON_TIMING(trtp_ps),
+ COMMON_TIMING(tdqsq_max_ps),
+ COMMON_TIMING(tqhs_ps),
+ COMMON_TIMING(ndimms_present),
+ COMMON_TIMING(lowest_common_SPD_caslat),
+ COMMON_TIMING(highest_common_derated_caslat),
+ COMMON_TIMING(additive_latency),
+ COMMON_TIMING(all_dimms_burst_lengths_bitmask),
+ COMMON_TIMING(all_dimms_registered),
+ COMMON_TIMING(all_dimms_unbuffered),
+ COMMON_TIMING(all_dimms_ecc_capable),
+ COMMON_TIMING(total_mem),
+ COMMON_TIMING(base_address),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ if (handle_option_table(options, n_opts, p, optname_str, value_str))
+ return;
+
+ printf("Error: couldn't find option string %s\n", optname_str);
+}
+
+#define DIMM_PARM(x) {#x, offsetof(dimm_params_t, x), \
+ sizeof((dimm_params_t *)0)->x, 0}
+
+static void fsl_ddr_dimm_parameters_edit(fsl_ddr_info_t *pinfo,
+ unsigned int ctrl_num,
+ unsigned int dimm_num,
+ const char *optname_str,
+ const char *value_str)
+{
+ dimm_params_t *p = &(pinfo->dimm_params[ctrl_num][dimm_num]);
+
+ static const struct options_string options[] = {
+ DIMM_PARM(n_ranks),
+ DIMM_PARM(data_width),
+ DIMM_PARM(primary_sdram_width),
+ DIMM_PARM(ec_sdram_width),
+ DIMM_PARM(registered_dimm),
+ DIMM_PARM(device_width),
+
+ DIMM_PARM(n_row_addr),
+ DIMM_PARM(n_col_addr),
+ DIMM_PARM(edc_config),
+ DIMM_PARM(n_banks_per_sdram_device),
+ DIMM_PARM(burst_lengths_bitmask),
+ DIMM_PARM(row_density),
+
+ DIMM_PARM(tckmin_x_ps),
+ DIMM_PARM(tckmin_x_minus_1_ps),
+ DIMM_PARM(tckmin_x_minus_2_ps),
+ DIMM_PARM(tckmax_ps),
+
+ DIMM_PARM(caslat_x),
+ DIMM_PARM(caslat_x_minus_1),
+ DIMM_PARM(caslat_x_minus_2),
+
+ DIMM_PARM(caslat_lowest_derated),
+
+ DIMM_PARM(trcd_ps),
+ DIMM_PARM(trp_ps),
+ DIMM_PARM(tras_ps),
+ DIMM_PARM(twr_ps),
+ DIMM_PARM(twtr_ps),
+ DIMM_PARM(trfc_ps),
+ DIMM_PARM(trrd_ps),
+ DIMM_PARM(trc_ps),
+ DIMM_PARM(refresh_rate_ps),
+
+ DIMM_PARM(tis_ps),
+ DIMM_PARM(tih_ps),
+ DIMM_PARM(tds_ps),
+ DIMM_PARM(tdh_ps),
+ DIMM_PARM(trtp_ps),
+ DIMM_PARM(tdqsq_max_ps),
+ DIMM_PARM(tqhs_ps),
+
+ DIMM_PARM(rank_density),
+ DIMM_PARM(capacity),
+ DIMM_PARM(base_address),
+ };
+
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ if (handle_option_table(options, n_opts, p, optname_str, value_str))
+ return;
+
+ printf("couldn't find option string %s\n", optname_str);
+}
+
+static void print_dimm_parameters(const dimm_params_t *pdimm)
+{
+ static const struct options_string options[] = {
+ DIMM_PARM(n_ranks),
+ DIMM_PARM(data_width),
+ DIMM_PARM(primary_sdram_width),
+ DIMM_PARM(ec_sdram_width),
+ DIMM_PARM(registered_dimm),
+ DIMM_PARM(device_width),
+
+ DIMM_PARM(n_row_addr),
+ DIMM_PARM(n_col_addr),
+ DIMM_PARM(edc_config),
+ DIMM_PARM(n_banks_per_sdram_device),
+
+ DIMM_PARM(tckmin_x_ps),
+ DIMM_PARM(tckmin_x_minus_1_ps),
+ DIMM_PARM(tckmin_x_minus_2_ps),
+ DIMM_PARM(tckmax_ps),
+
+ DIMM_PARM(caslat_x),
+ DIMM_PARM(taa_ps),
+ DIMM_PARM(caslat_x_minus_1),
+ DIMM_PARM(caslat_x_minus_2),
+ DIMM_PARM(caslat_lowest_derated),
+
+ DIMM_PARM(trcd_ps),
+ DIMM_PARM(trp_ps),
+ DIMM_PARM(tras_ps),
+ DIMM_PARM(twr_ps),
+ DIMM_PARM(twtr_ps),
+ DIMM_PARM(trfc_ps),
+ DIMM_PARM(trrd_ps),
+ DIMM_PARM(trc_ps),
+ DIMM_PARM(refresh_rate_ps),
+
+ DIMM_PARM(tis_ps),
+ DIMM_PARM(tih_ps),
+ DIMM_PARM(tds_ps),
+ DIMM_PARM(tdh_ps),
+ DIMM_PARM(trtp_ps),
+ DIMM_PARM(tdqsq_max_ps),
+ DIMM_PARM(tqhs_ps),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ if (pdimm->n_ranks == 0) {
+ printf("DIMM not present\n");
+ return;
+ }
+ printf("DIMM organization parameters:\n");
+ printf("module part name = %s\n", pdimm->mpart);
+ printf("rank_density = %llu bytes (%llu megabytes)\n",
+ pdimm->rank_density, pdimm->rank_density / 0x100000);
+ printf("capacity = %llu bytes (%llu megabytes)\n",
+ pdimm->capacity, pdimm->capacity / 0x100000);
+ printf("burst_lengths_bitmask = %02X\n",
+ pdimm->burst_lengths_bitmask);
+ printf("base_addresss = %llu (%08llX %08llX)\n",
+ pdimm->base_address,
+ (pdimm->base_address >> 32),
+ pdimm->base_address & 0xFFFFFFFF);
+ print_option_table(options, n_opts, pdimm);
+}
+
+static void print_lowest_common_dimm_parameters(
+ const common_timing_params_t *plcd_dimm_params)
+{
+ static const struct options_string options[] = {
+ COMMON_TIMING(tckmax_max_ps),
+ COMMON_TIMING(trcd_ps),
+ COMMON_TIMING(trp_ps),
+ COMMON_TIMING(tras_ps),
+ COMMON_TIMING(twr_ps),
+ COMMON_TIMING(twtr_ps),
+ COMMON_TIMING(trfc_ps),
+ COMMON_TIMING(trrd_ps),
+ COMMON_TIMING(trc_ps),
+ COMMON_TIMING(refresh_rate_ps),
+ COMMON_TIMING(tis_ps),
+ COMMON_TIMING(tds_ps),
+ COMMON_TIMING(tdh_ps),
+ COMMON_TIMING(trtp_ps),
+ COMMON_TIMING(tdqsq_max_ps),
+ COMMON_TIMING(tqhs_ps),
+ COMMON_TIMING(lowest_common_SPD_caslat),
+ COMMON_TIMING(highest_common_derated_caslat),
+ COMMON_TIMING(additive_latency),
+ COMMON_TIMING(ndimms_present),
+ COMMON_TIMING(all_dimms_registered),
+ COMMON_TIMING(all_dimms_unbuffered),
+ COMMON_TIMING(all_dimms_ecc_capable),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ /* Clock frequencies */
+ printf("tckmin_x_ps = %u (%u MHz)\n",
+ plcd_dimm_params->tckmin_x_ps,
+ picos_to_mhz(plcd_dimm_params->tckmin_x_ps));
+ printf("tckmax_ps = %u (%u MHz)\n",
+ plcd_dimm_params->tckmax_ps,
+ picos_to_mhz(plcd_dimm_params->tckmax_ps));
+ printf("all_dimms_burst_lengths_bitmask = %02X\n",
+ plcd_dimm_params->all_dimms_burst_lengths_bitmask);
+
+ print_option_table(options, n_opts, plcd_dimm_params);
+
+ printf("total_mem = %llu (%llu megabytes)\n",
+ plcd_dimm_params->total_mem,
+ plcd_dimm_params->total_mem / 0x100000);
+ printf("base_address = %llu (%llu megabytes)\n",
+ plcd_dimm_params->base_address,
+ plcd_dimm_params->base_address / 0x100000);
+}
+
+#define CTRL_OPTIONS(x) {#x, offsetof(memctl_options_t, x), \
+ sizeof((memctl_options_t *)0)->x, 0}
+#define CTRL_OPTIONS_CS(x, y) {"cs" #x "_" #y, \
+ offsetof(memctl_options_t, cs_local_opts[x].y), \
+ sizeof((memctl_options_t *)0)->cs_local_opts[x].y, 0}
+
+static void fsl_ddr_options_edit(fsl_ddr_info_t *pinfo,
+ unsigned int ctl_num,
+ const char *optname_str,
+ const char *value_str)
+{
+ memctl_options_t *p = &(pinfo->memctl_opts[ctl_num]);
+ /*
+ * This array all on the stack and *computed* each time this
+ * function is rung.
+ */
+ static const struct options_string options[] = {
+ CTRL_OPTIONS_CS(0, odt_rd_cfg),
+ CTRL_OPTIONS_CS(0, odt_wr_cfg),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+ CTRL_OPTIONS_CS(1, odt_rd_cfg),
+ CTRL_OPTIONS_CS(1, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CTRL_OPTIONS_CS(2, odt_rd_cfg),
+ CTRL_OPTIONS_CS(2, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CTRL_OPTIONS_CS(3, odt_rd_cfg),
+ CTRL_OPTIONS_CS(3, odt_wr_cfg),
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3)
+ CTRL_OPTIONS_CS(0, odt_rtt_norm),
+ CTRL_OPTIONS_CS(0, odt_rtt_wr),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+ CTRL_OPTIONS_CS(1, odt_rtt_norm),
+ CTRL_OPTIONS_CS(1, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CTRL_OPTIONS_CS(2, odt_rtt_norm),
+ CTRL_OPTIONS_CS(2, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CTRL_OPTIONS_CS(3, odt_rtt_norm),
+ CTRL_OPTIONS_CS(3, odt_rtt_wr),
+#endif
+#endif
+ CTRL_OPTIONS(memctl_interleaving),
+ CTRL_OPTIONS(memctl_interleaving_mode),
+ CTRL_OPTIONS(ba_intlv_ctl),
+ CTRL_OPTIONS(ecc_mode),
+ CTRL_OPTIONS(ecc_init_using_memctl),
+ CTRL_OPTIONS(dqs_config),
+ CTRL_OPTIONS(self_refresh_in_sleep),
+ CTRL_OPTIONS(dynamic_power),
+ CTRL_OPTIONS(data_bus_width),
+ CTRL_OPTIONS(burst_length),
+ CTRL_OPTIONS(cas_latency_override),
+ CTRL_OPTIONS(cas_latency_override_value),
+ CTRL_OPTIONS(use_derated_caslat),
+ CTRL_OPTIONS(additive_latency_override),
+ CTRL_OPTIONS(additive_latency_override_value),
+ CTRL_OPTIONS(clk_adjust),
+ CTRL_OPTIONS(cpo_override),
+ CTRL_OPTIONS(write_data_delay),
+ CTRL_OPTIONS(half_strength_driver_enable),
+
+ /*
+ * These can probably be changed to 2T_EN and 3T_EN
+ * (using a leading numerical character) without problem
+ */
+ CTRL_OPTIONS(twot_en),
+ CTRL_OPTIONS(threet_en),
+ CTRL_OPTIONS(ap_en),
+ CTRL_OPTIONS(x4_en),
+ CTRL_OPTIONS(bstopre),
+ CTRL_OPTIONS(wrlvl_override),
+ CTRL_OPTIONS(wrlvl_sample),
+ CTRL_OPTIONS(wrlvl_start),
+ CTRL_OPTIONS(rcw_override),
+ CTRL_OPTIONS(rcw_1),
+ CTRL_OPTIONS(rcw_2),
+ CTRL_OPTIONS(ddr_cdr1),
+ CTRL_OPTIONS(ddr_cdr2),
+ CTRL_OPTIONS(tcke_clock_pulse_width_ps),
+ CTRL_OPTIONS(tfaw_window_four_activates_ps),
+ CTRL_OPTIONS(trwt_override),
+ CTRL_OPTIONS(trwt),
+ };
+
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ if (handle_option_table(options, n_opts, p,
+ optname_str, value_str))
+ return;
+
+ printf("couldn't find option string %s\n", optname_str);
+}
+
+#define CFG_REGS(x) {#x, offsetof(fsl_ddr_cfg_regs_t, x), \
+ sizeof((fsl_ddr_cfg_regs_t *)0)->x, 1}
+#define CFG_REGS_CS(x, y) {"cs" #x "_" #y, \
+ offsetof(fsl_ddr_cfg_regs_t, cs[x].y), \
+ sizeof((fsl_ddr_cfg_regs_t *)0)->cs[x].y, 1}
+
+static void print_fsl_memctl_config_regs(const fsl_ddr_cfg_regs_t *ddr)
+{
+ unsigned int i;
+ static const struct options_string options[] = {
+ CFG_REGS_CS(0, bnds),
+ CFG_REGS_CS(0, config),
+ CFG_REGS_CS(0, config_2),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+ CFG_REGS_CS(1, bnds),
+ CFG_REGS_CS(1, config),
+ CFG_REGS_CS(1, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CFG_REGS_CS(2, bnds),
+ CFG_REGS_CS(2, config),
+ CFG_REGS_CS(2, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CFG_REGS_CS(3, bnds),
+ CFG_REGS_CS(3, config),
+ CFG_REGS_CS(3, config_2),
+#endif
+ CFG_REGS(timing_cfg_3),
+ CFG_REGS(timing_cfg_0),
+ CFG_REGS(timing_cfg_1),
+ CFG_REGS(timing_cfg_2),
+ CFG_REGS(ddr_sdram_cfg),
+ CFG_REGS(ddr_sdram_cfg_2),
+ CFG_REGS(ddr_sdram_mode),
+ CFG_REGS(ddr_sdram_mode_2),
+ CFG_REGS(ddr_sdram_mode_3),
+ CFG_REGS(ddr_sdram_mode_4),
+ CFG_REGS(ddr_sdram_mode_5),
+ CFG_REGS(ddr_sdram_mode_6),
+ CFG_REGS(ddr_sdram_mode_7),
+ CFG_REGS(ddr_sdram_mode_8),
+ CFG_REGS(ddr_sdram_interval),
+ CFG_REGS(ddr_data_init),
+ CFG_REGS(ddr_sdram_clk_cntl),
+ CFG_REGS(ddr_init_addr),
+ CFG_REGS(ddr_init_ext_addr),
+ CFG_REGS(timing_cfg_4),
+ CFG_REGS(timing_cfg_5),
+ CFG_REGS(ddr_zq_cntl),
+ CFG_REGS(ddr_wrlvl_cntl),
+ CFG_REGS(ddr_wrlvl_cntl_2),
+ CFG_REGS(ddr_wrlvl_cntl_3),
+ CFG_REGS(ddr_sr_cntr),
+ CFG_REGS(ddr_sdram_rcw_1),
+ CFG_REGS(ddr_sdram_rcw_2),
+ CFG_REGS(ddr_cdr1),
+ CFG_REGS(ddr_cdr2),
+ CFG_REGS(err_disable),
+ CFG_REGS(err_int_en),
+ CFG_REGS(ddr_eor),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ print_option_table(options, n_opts, ddr);
+
+ for (i = 0; i < 32; i++)
+ printf("debug_%02d = 0x%08X\n", i+1, ddr->debug[i]);
+}
+
+static void fsl_ddr_regs_edit(fsl_ddr_info_t *pinfo,
+ unsigned int ctrl_num,
+ const char *regname,
+ const char *value_str)
+{
+ unsigned int i;
+ fsl_ddr_cfg_regs_t *ddr;
+ char buf[20];
+ static const struct options_string options[] = {
+ CFG_REGS_CS(0, bnds),
+ CFG_REGS_CS(0, config),
+ CFG_REGS_CS(0, config_2),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+ CFG_REGS_CS(1, bnds),
+ CFG_REGS_CS(1, config),
+ CFG_REGS_CS(1, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CFG_REGS_CS(2, bnds),
+ CFG_REGS_CS(2, config),
+ CFG_REGS_CS(2, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 3)
+ CFG_REGS_CS(3, bnds),
+ CFG_REGS_CS(3, config),
+ CFG_REGS_CS(3, config_2),
+#endif
+ CFG_REGS(timing_cfg_3),
+ CFG_REGS(timing_cfg_0),
+ CFG_REGS(timing_cfg_1),
+ CFG_REGS(timing_cfg_2),
+ CFG_REGS(ddr_sdram_cfg),
+ CFG_REGS(ddr_sdram_cfg_2),
+ CFG_REGS(ddr_sdram_mode),
+ CFG_REGS(ddr_sdram_mode_2),
+ CFG_REGS(ddr_sdram_mode_3),
+ CFG_REGS(ddr_sdram_mode_4),
+ CFG_REGS(ddr_sdram_mode_5),
+ CFG_REGS(ddr_sdram_mode_6),
+ CFG_REGS(ddr_sdram_mode_7),
+ CFG_REGS(ddr_sdram_mode_8),
+ CFG_REGS(ddr_sdram_interval),
+ CFG_REGS(ddr_data_init),
+ CFG_REGS(ddr_sdram_clk_cntl),
+ CFG_REGS(ddr_init_addr),
+ CFG_REGS(ddr_init_ext_addr),
+ CFG_REGS(timing_cfg_4),
+ CFG_REGS(timing_cfg_5),
+ CFG_REGS(ddr_zq_cntl),
+ CFG_REGS(ddr_wrlvl_cntl),
+ CFG_REGS(ddr_wrlvl_cntl_2),
+ CFG_REGS(ddr_wrlvl_cntl_3),
+ CFG_REGS(ddr_sr_cntr),
+ CFG_REGS(ddr_sdram_rcw_1),
+ CFG_REGS(ddr_sdram_rcw_2),
+ CFG_REGS(ddr_cdr1),
+ CFG_REGS(ddr_cdr2),
+ CFG_REGS(err_disable),
+ CFG_REGS(err_int_en),
+ CFG_REGS(ddr_sdram_rcw_2),
+ CFG_REGS(ddr_sdram_rcw_2),
+ CFG_REGS(ddr_eor),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ debug("fsl_ddr_regs_edit: ctrl_num = %u, "
+ "regname = %s, value = %s\n",
+ ctrl_num, regname, value_str);
+ if (ctrl_num > CONFIG_NUM_DDR_CONTROLLERS)
+ return;
+
+ ddr = &(pinfo->fsl_ddr_config_reg[ctrl_num]);
+
+ if (handle_option_table(options, n_opts, ddr, regname, value_str))
+ return;
+
+ for (i = 0; i < 32; i++) {
+ unsigned int value = simple_strtoul(value_str, NULL, 0);
+ sprintf(buf, "debug_%u", i + 1);
+ if (strcmp(buf, regname) == 0) {
+ ddr->debug[i] = value;
+ return;
+ }
+ }
+ printf("Error: couldn't find register string %s\n", regname);
+}
+
+#define CTRL_OPTIONS_HEX(x) {#x, offsetof(memctl_options_t, x), \
+ sizeof((memctl_options_t *)0)->x, 1}
+
+static void print_memctl_options(const memctl_options_t *popts)
+{
+ static const struct options_string options[] = {
+ CTRL_OPTIONS_CS(0, odt_rd_cfg),
+ CTRL_OPTIONS_CS(0, odt_wr_cfg),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+ CTRL_OPTIONS_CS(1, odt_rd_cfg),
+ CTRL_OPTIONS_CS(1, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CTRL_OPTIONS_CS(2, odt_rd_cfg),
+ CTRL_OPTIONS_CS(2, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 3)
+ CTRL_OPTIONS_CS(3, odt_rd_cfg),
+ CTRL_OPTIONS_CS(3, odt_wr_cfg),
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3)
+ CTRL_OPTIONS_CS(0, odt_rtt_norm),
+ CTRL_OPTIONS_CS(0, odt_rtt_wr),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+ CTRL_OPTIONS_CS(1, odt_rtt_norm),
+ CTRL_OPTIONS_CS(1, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+ CTRL_OPTIONS_CS(2, odt_rtt_norm),
+ CTRL_OPTIONS_CS(2, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 3)
+ CTRL_OPTIONS_CS(3, odt_rtt_norm),
+ CTRL_OPTIONS_CS(3, odt_rtt_wr),
+#endif
+#endif
+ CTRL_OPTIONS(memctl_interleaving),
+ CTRL_OPTIONS(memctl_interleaving_mode),
+ CTRL_OPTIONS_HEX(ba_intlv_ctl),
+ CTRL_OPTIONS(ecc_mode),
+ CTRL_OPTIONS(ecc_init_using_memctl),
+ CTRL_OPTIONS(dqs_config),
+ CTRL_OPTIONS(self_refresh_in_sleep),
+ CTRL_OPTIONS(dynamic_power),
+ CTRL_OPTIONS(data_bus_width),
+ CTRL_OPTIONS(burst_length),
+ CTRL_OPTIONS(cas_latency_override),
+ CTRL_OPTIONS(cas_latency_override_value),
+ CTRL_OPTIONS(use_derated_caslat),
+ CTRL_OPTIONS(additive_latency_override),
+ CTRL_OPTIONS(additive_latency_override_value),
+ CTRL_OPTIONS(clk_adjust),
+ CTRL_OPTIONS(cpo_override),
+ CTRL_OPTIONS(write_data_delay),
+ CTRL_OPTIONS(half_strength_driver_enable),
+ /*
+ * These can probably be changed to 2T_EN and 3T_EN
+ * (using a leading numerical character) without problem
+ */
+ CTRL_OPTIONS(twot_en),
+ CTRL_OPTIONS(threet_en),
+ CTRL_OPTIONS(registered_dimm_en),
+ CTRL_OPTIONS(ap_en),
+ CTRL_OPTIONS(x4_en),
+ CTRL_OPTIONS(bstopre),
+ CTRL_OPTIONS(wrlvl_override),
+ CTRL_OPTIONS(wrlvl_sample),
+ CTRL_OPTIONS(wrlvl_start),
+ CTRL_OPTIONS(rcw_override),
+ CTRL_OPTIONS(rcw_1),
+ CTRL_OPTIONS(rcw_2),
+ CTRL_OPTIONS_HEX(ddr_cdr1),
+ CTRL_OPTIONS_HEX(ddr_cdr2),
+ CTRL_OPTIONS(tcke_clock_pulse_width_ps),
+ CTRL_OPTIONS(tfaw_window_four_activates_ps),
+ CTRL_OPTIONS(trwt_override),
+ CTRL_OPTIONS(trwt),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ print_option_table(options, n_opts, popts);
+}
+
+#ifdef CONFIG_SYS_FSL_DDR1
+void ddr1_spd_dump(const ddr1_spd_eeprom_t *spd)
+{
+ unsigned int i;
+
+ printf("%-3d : %02x %s\n", 0, spd->info_size,
+ " spd->info_size, * 0 # bytes written into serial memory *");
+ printf("%-3d : %02x %s\n", 1, spd->chip_size,
+ " spd->chip_size, * 1 Total # bytes of SPD memory device *");
+ printf("%-3d : %02x %s\n", 2, spd->mem_type,
+ " spd->mem_type, * 2 Fundamental memory type *");
+ printf("%-3d : %02x %s\n", 3, spd->nrow_addr,
+ " spd->nrow_addr, * 3 # of Row Addresses on this assembly *");
+ printf("%-3d : %02x %s\n", 4, spd->ncol_addr,
+ " spd->ncol_addr, * 4 # of Column Addrs on this assembly *");
+ printf("%-3d : %02x %s\n", 5, spd->nrows,
+ " spd->nrows * 5 # of DIMM Banks *");
+ printf("%-3d : %02x %s\n", 6, spd->dataw_lsb,
+ " spd->dataw_lsb, * 6 Data Width lsb of this assembly *");
+ printf("%-3d : %02x %s\n", 7, spd->dataw_msb,
+ " spd->dataw_msb, * 7 Data Width msb of this assembly *");
+ printf("%-3d : %02x %s\n", 8, spd->voltage,
+ " spd->voltage, * 8 Voltage intf std of this assembly *");
+ printf("%-3d : %02x %s\n", 9, spd->clk_cycle,
+ " spd->clk_cycle, * 9 SDRAM Cycle time at CL=X *");
+ printf("%-3d : %02x %s\n", 10, spd->clk_access,
+ " spd->clk_access, * 10 SDRAM Access from Clock at CL=X *");
+ printf("%-3d : %02x %s\n", 11, spd->config,
+ " spd->config, * 11 DIMM Configuration type *");
+ printf("%-3d : %02x %s\n", 12, spd->refresh,
+ " spd->refresh, * 12 Refresh Rate/Type *");
+ printf("%-3d : %02x %s\n", 13, spd->primw,
+ " spd->primw, * 13 Primary SDRAM Width *");
+ printf("%-3d : %02x %s\n", 14, spd->ecw,
+ " spd->ecw, * 14 Error Checking SDRAM width *");
+ printf("%-3d : %02x %s\n", 15, spd->min_delay,
+ " spd->min_delay, * 15 Back to Back Random Access *");
+ printf("%-3d : %02x %s\n", 16, spd->burstl,
+ " spd->burstl, * 16 Burst Lengths Supported *");
+ printf("%-3d : %02x %s\n", 17, spd->nbanks,
+ " spd->nbanks, * 17 # of Banks on Each SDRAM Device *");
+ printf("%-3d : %02x %s\n", 18, spd->cas_lat,
+ " spd->cas_lat, * 18 CAS# Latencies Supported *");
+ printf("%-3d : %02x %s\n", 19, spd->cs_lat,
+ " spd->cs_lat, * 19 Chip Select Latency *");
+ printf("%-3d : %02x %s\n", 20, spd->write_lat,
+ " spd->write_lat, * 20 Write Latency/Recovery *");
+ printf("%-3d : %02x %s\n", 21, spd->mod_attr,
+ " spd->mod_attr, * 21 SDRAM Module Attributes *");
+ printf("%-3d : %02x %s\n", 22, spd->dev_attr,
+ " spd->dev_attr, * 22 SDRAM Device Attributes *");
+ printf("%-3d : %02x %s\n", 23, spd->clk_cycle2,
+ " spd->clk_cycle2, * 23 Min SDRAM Cycle time at CL=X-1 *");
+ printf("%-3d : %02x %s\n", 24, spd->clk_access2,
+ " spd->clk_access2, * 24 SDRAM Access from Clock at CL=X-1 *");
+ printf("%-3d : %02x %s\n", 25, spd->clk_cycle3,
+ " spd->clk_cycle3, * 25 Min SDRAM Cycle time at CL=X-2 *");
+ printf("%-3d : %02x %s\n", 26, spd->clk_access3,
+ " spd->clk_access3, * 26 Max Access from Clock at CL=X-2 *");
+ printf("%-3d : %02x %s\n", 27, spd->trp,
+ " spd->trp, * 27 Min Row Precharge Time (tRP)*");
+ printf("%-3d : %02x %s\n", 28, spd->trrd,
+ " spd->trrd, * 28 Min Row Active to Row Active (tRRD) *");
+ printf("%-3d : %02x %s\n", 29, spd->trcd,
+ " spd->trcd, * 29 Min RAS to CAS Delay (tRCD) *");
+ printf("%-3d : %02x %s\n", 30, spd->tras,
+ " spd->tras, * 30 Minimum RAS Pulse Width (tRAS) *");
+ printf("%-3d : %02x %s\n", 31, spd->bank_dens,
+ " spd->bank_dens, * 31 Density of each bank on module *");
+ printf("%-3d : %02x %s\n", 32, spd->ca_setup,
+ " spd->ca_setup, * 32 Cmd + Addr signal input setup time *");
+ printf("%-3d : %02x %s\n", 33, spd->ca_hold,
+ " spd->ca_hold, * 33 Cmd and Addr signal input hold time *");
+ printf("%-3d : %02x %s\n", 34, spd->data_setup,
+ " spd->data_setup, * 34 Data signal input setup time *");
+ printf("%-3d : %02x %s\n", 35, spd->data_hold,
+ " spd->data_hold, * 35 Data signal input hold time *");
+ printf("%-3d : %02x %s\n", 36, spd->res_36_40[0],
+ " spd->res_36_40[0], * 36 Reserved / tWR *");
+ printf("%-3d : %02x %s\n", 37, spd->res_36_40[1],
+ " spd->res_36_40[1], * 37 Reserved / tWTR *");
+ printf("%-3d : %02x %s\n", 38, spd->res_36_40[2],
+ " spd->res_36_40[2], * 38 Reserved / tRTP *");
+ printf("%-3d : %02x %s\n", 39, spd->res_36_40[3],
+ " spd->res_36_40[3], * 39 Reserved / mem_probe *");
+ printf("%-3d : %02x %s\n", 40, spd->res_36_40[4],
+ " spd->res_36_40[4], * 40 Reserved / trc,trfc extensions *");
+ printf("%-3d : %02x %s\n", 41, spd->trc,
+ " spd->trc, * 41 Min Active to Auto refresh time tRC *");
+ printf("%-3d : %02x %s\n", 42, spd->trfc,
+ " spd->trfc, * 42 Min Auto to Active period tRFC *");
+ printf("%-3d : %02x %s\n", 43, spd->tckmax,
+ " spd->tckmax, * 43 Max device cycle time tCKmax *");
+ printf("%-3d : %02x %s\n", 44, spd->tdqsq,
+ " spd->tdqsq, * 44 Max DQS to DQ skew *");
+ printf("%-3d : %02x %s\n", 45, spd->tqhs,
+ " spd->tqhs, * 45 Max Read DataHold skew tQHS *");
+ printf("%-3d : %02x %s\n", 46, spd->res_46,
+ " spd->res_46, * 46 Reserved/ PLL Relock time *");
+ printf("%-3d : %02x %s\n", 47, spd->dimm_height,
+ " spd->dimm_height * 47 SDRAM DIMM Height *");
+
+ printf("%-3d-%3d: ", 48, 61);
+
+ for (i = 0; i < 14; i++)
+ printf("%02x", spd->res_48_61[i]);
+
+ printf(" * 48-61 IDD in SPD and Reserved space *\n");
+
+ printf("%-3d : %02x %s\n", 62, spd->spd_rev,
+ " spd->spd_rev, * 62 SPD Data Revision Code *");
+ printf("%-3d : %02x %s\n", 63, spd->cksum,
+ " spd->cksum, * 63 Checksum for bytes 0-62 *");
+ printf("%-3d-%3d: ", 64, 71);
+
+ for (i = 0; i < 8; i++)
+ printf("%02x", spd->mid[i]);
+
+ printf("* 64 Mfr's JEDEC ID code per JEP-108E *\n");
+ printf("%-3d : %02x %s\n", 72, spd->mloc,
+ " spd->mloc, * 72 Manufacturing Location *");
+
+ printf("%-3d-%3d: >>", 73, 90);
+
+ for (i = 0; i < 18; i++)
+ printf("%c", spd->mpart[i]);
+
+ printf("<<* 73 Manufacturer's Part Number *\n");
+
+ printf("%-3d-%3d: %02x %02x %s\n", 91, 92, spd->rev[0], spd->rev[1],
+ "* 91 Revision Code *");
+ printf("%-3d-%3d: %02x %02x %s\n", 93, 94, spd->mdate[0], spd->mdate[1],
+ "* 93 Manufacturing Date *");
+ printf("%-3d-%3d: ", 95, 98);
+
+ for (i = 0; i < 4; i++)
+ printf("%02x", spd->sernum[i]);
+
+ printf("* 95 Assembly Serial Number *\n");
+
+ printf("%-3d-%3d: ", 99, 127);
+
+ for (i = 0; i < 27; i++)
+ printf("%02x", spd->mspec[i]);
+
+ printf("* 99 Manufacturer Specific Data *\n");
+}
+#endif
+
+#ifdef CONFIG_SYS_FSL_DDR2
+void ddr2_spd_dump(const ddr2_spd_eeprom_t *spd)
+{
+ unsigned int i;
+
+ printf("%-3d : %02x %s\n", 0, spd->info_size,
+ " spd->info_size, * 0 # bytes written into serial memory *");
+ printf("%-3d : %02x %s\n", 1, spd->chip_size,
+ " spd->chip_size, * 1 Total # bytes of SPD memory device *");
+ printf("%-3d : %02x %s\n", 2, spd->mem_type,
+ " spd->mem_type, * 2 Fundamental memory type *");
+ printf("%-3d : %02x %s\n", 3, spd->nrow_addr,
+ " spd->nrow_addr, * 3 # of Row Addresses on this assembly *");
+ printf("%-3d : %02x %s\n", 4, spd->ncol_addr,
+ " spd->ncol_addr, * 4 # of Column Addrs on this assembly *");
+ printf("%-3d : %02x %s\n", 5, spd->mod_ranks,
+ " spd->mod_ranks * 5 # of Module Rows on this assembly *");
+ printf("%-3d : %02x %s\n", 6, spd->dataw,
+ " spd->dataw, * 6 Data Width of this assembly *");
+ printf("%-3d : %02x %s\n", 7, spd->res_7,
+ " spd->res_7, * 7 Reserved *");
+ printf("%-3d : %02x %s\n", 8, spd->voltage,
+ " spd->voltage, * 8 Voltage intf std of this assembly *");
+ printf("%-3d : %02x %s\n", 9, spd->clk_cycle,
+ " spd->clk_cycle, * 9 SDRAM Cycle time at CL=X *");
+ printf("%-3d : %02x %s\n", 10, spd->clk_access,
+ " spd->clk_access, * 10 SDRAM Access from Clock at CL=X *");
+ printf("%-3d : %02x %s\n", 11, spd->config,
+ " spd->config, * 11 DIMM Configuration type *");
+ printf("%-3d : %02x %s\n", 12, spd->refresh,
+ " spd->refresh, * 12 Refresh Rate/Type *");
+ printf("%-3d : %02x %s\n", 13, spd->primw,
+ " spd->primw, * 13 Primary SDRAM Width *");
+ printf("%-3d : %02x %s\n", 14, spd->ecw,
+ " spd->ecw, * 14 Error Checking SDRAM width *");
+ printf("%-3d : %02x %s\n", 15, spd->res_15,
+ " spd->res_15, * 15 Reserved *");
+ printf("%-3d : %02x %s\n", 16, spd->burstl,
+ " spd->burstl, * 16 Burst Lengths Supported *");
+ printf("%-3d : %02x %s\n", 17, spd->nbanks,
+ " spd->nbanks, * 17 # of Banks on Each SDRAM Device *");
+ printf("%-3d : %02x %s\n", 18, spd->cas_lat,
+ " spd->cas_lat, * 18 CAS# Latencies Supported *");
+ printf("%-3d : %02x %s\n", 19, spd->mech_char,
+ " spd->mech_char, * 19 Mechanical Characteristics *");
+ printf("%-3d : %02x %s\n", 20, spd->dimm_type,
+ " spd->dimm_type, * 20 DIMM type *");
+ printf("%-3d : %02x %s\n", 21, spd->mod_attr,
+ " spd->mod_attr, * 21 SDRAM Module Attributes *");
+ printf("%-3d : %02x %s\n", 22, spd->dev_attr,
+ " spd->dev_attr, * 22 SDRAM Device Attributes *");
+ printf("%-3d : %02x %s\n", 23, spd->clk_cycle2,
+ " spd->clk_cycle2, * 23 Min SDRAM Cycle time at CL=X-1 *");
+ printf("%-3d : %02x %s\n", 24, spd->clk_access2,
+ " spd->clk_access2, * 24 SDRAM Access from Clock at CL=X-1 *");
+ printf("%-3d : %02x %s\n", 25, spd->clk_cycle3,
+ " spd->clk_cycle3, * 25 Min SDRAM Cycle time at CL=X-2 *");
+ printf("%-3d : %02x %s\n", 26, spd->clk_access3,
+ " spd->clk_access3, * 26 Max Access from Clock at CL=X-2 *");
+ printf("%-3d : %02x %s\n", 27, spd->trp,
+ " spd->trp, * 27 Min Row Precharge Time (tRP)*");
+ printf("%-3d : %02x %s\n", 28, spd->trrd,
+ " spd->trrd, * 28 Min Row Active to Row Active (tRRD) *");
+ printf("%-3d : %02x %s\n", 29, spd->trcd,
+ " spd->trcd, * 29 Min RAS to CAS Delay (tRCD) *");
+ printf("%-3d : %02x %s\n", 30, spd->tras,
+ " spd->tras, * 30 Minimum RAS Pulse Width (tRAS) *");
+ printf("%-3d : %02x %s\n", 31, spd->rank_dens,
+ " spd->rank_dens, * 31 Density of each rank on module *");
+ printf("%-3d : %02x %s\n", 32, spd->ca_setup,
+ " spd->ca_setup, * 32 Cmd + Addr signal input setup time *");
+ printf("%-3d : %02x %s\n", 33, spd->ca_hold,
+ " spd->ca_hold, * 33 Cmd and Addr signal input hold time *");
+ printf("%-3d : %02x %s\n", 34, spd->data_setup,
+ " spd->data_setup, * 34 Data signal input setup time *");
+ printf("%-3d : %02x %s\n", 35, spd->data_hold,
+ " spd->data_hold, * 35 Data signal input hold time *");
+ printf("%-3d : %02x %s\n", 36, spd->twr,
+ " spd->twr, * 36 Write Recovery time tWR *");
+ printf("%-3d : %02x %s\n", 37, spd->twtr,
+ " spd->twtr, * 37 Int write to read delay tWTR *");
+ printf("%-3d : %02x %s\n", 38, spd->trtp,
+ " spd->trtp, * 38 Int read to precharge delay tRTP *");
+ printf("%-3d : %02x %s\n", 39, spd->mem_probe,
+ " spd->mem_probe, * 39 Mem analysis probe characteristics *");
+ printf("%-3d : %02x %s\n", 40, spd->trctrfc_ext,
+ " spd->trctrfc_ext, * 40 Extensions to trc and trfc *");
+ printf("%-3d : %02x %s\n", 41, spd->trc,
+ " spd->trc, * 41 Min Active to Auto refresh time tRC *");
+ printf("%-3d : %02x %s\n", 42, spd->trfc,
+ " spd->trfc, * 42 Min Auto to Active period tRFC *");
+ printf("%-3d : %02x %s\n", 43, spd->tckmax,
+ " spd->tckmax, * 43 Max device cycle time tCKmax *");
+ printf("%-3d : %02x %s\n", 44, spd->tdqsq,
+ " spd->tdqsq, * 44 Max DQS to DQ skew *");
+ printf("%-3d : %02x %s\n", 45, spd->tqhs,
+ " spd->tqhs, * 45 Max Read DataHold skew tQHS *");
+ printf("%-3d : %02x %s\n", 46, spd->pll_relock,
+ " spd->pll_relock, * 46 PLL Relock time *");
+ printf("%-3d : %02x %s\n", 47, spd->t_casemax,
+ " spd->t_casemax, * 47 t_casemax *");
+ printf("%-3d : %02x %s\n", 48, spd->psi_ta_dram,
+ " spd->psi_ta_dram, * 48 Thermal Resistance of DRAM Package "
+ "from Top (Case) to Ambient (Psi T-A DRAM) *");
+ printf("%-3d : %02x %s\n", 49, spd->dt0_mode,
+ " spd->dt0_mode, * 49 DRAM Case Temperature Rise from "
+ "Ambient due to Activate-Precharge/Mode Bits "
+ "(DT0/Mode Bits) *)");
+ printf("%-3d : %02x %s\n", 50, spd->dt2n_dt2q,
+ " spd->dt2n_dt2q, * 50 DRAM Case Temperature Rise from "
+ "Ambient due to Precharge/Quiet Standby "
+ "(DT2N/DT2Q) *");
+ printf("%-3d : %02x %s\n", 51, spd->dt2p,
+ " spd->dt2p, * 51 DRAM Case Temperature Rise from "
+ "Ambient due to Precharge Power-Down (DT2P) *");
+ printf("%-3d : %02x %s\n", 52, spd->dt3n,
+ " spd->dt3n, * 52 DRAM Case Temperature Rise from "
+ "Ambient due to Active Standby (DT3N) *");
+ printf("%-3d : %02x %s\n", 53, spd->dt3pfast,
+ " spd->dt3pfast, * 53 DRAM Case Temperature Rise from "
+ "Ambient due to Active Power-Down with Fast PDN Exit "
+ "(DT3Pfast) *");
+ printf("%-3d : %02x %s\n", 54, spd->dt3pslow,
+ " spd->dt3pslow, * 54 DRAM Case Temperature Rise from "
+ "Ambient due to Active Power-Down with Slow PDN Exit "
+ "(DT3Pslow) *");
+ printf("%-3d : %02x %s\n", 55, spd->dt4r_dt4r4w,
+ " spd->dt4r_dt4r4w, * 55 DRAM Case Temperature Rise from "
+ "Ambient due to Page Open Burst Read/DT4R4W Mode Bit "
+ "(DT4R/DT4R4W Mode Bit) *");
+ printf("%-3d : %02x %s\n", 56, spd->dt5b,
+ " spd->dt5b, * 56 DRAM Case Temperature Rise from "
+ "Ambient due to Burst Refresh (DT5B) *");
+ printf("%-3d : %02x %s\n", 57, spd->dt7,
+ " spd->dt7, * 57 DRAM Case Temperature Rise from "
+ "Ambient due to Bank Interleave Reads with "
+ "Auto-Precharge (DT7) *");
+ printf("%-3d : %02x %s\n", 58, spd->psi_ta_pll,
+ " spd->psi_ta_pll, * 58 Thermal Resistance of PLL Package form"
+ " Top (Case) to Ambient (Psi T-A PLL) *");
+ printf("%-3d : %02x %s\n", 59, spd->psi_ta_reg,
+ " spd->psi_ta_reg, * 59 Thermal Reisitance of Register Package"
+ " from Top (Case) to Ambient (Psi T-A Register) *");
+ printf("%-3d : %02x %s\n", 60, spd->dtpllactive,
+ " spd->dtpllactive, * 60 PLL Case Temperature Rise from "
+ "Ambient due to PLL Active (DT PLL Active) *");
+ printf("%-3d : %02x %s\n", 61, spd->dtregact,
+ " spd->dtregact, "
+ "* 61 Register Case Temperature Rise from Ambient due to "
+ "Register Active/Mode Bit (DT Register Active/Mode Bit) *");
+ printf("%-3d : %02x %s\n", 62, spd->spd_rev,
+ " spd->spd_rev, * 62 SPD Data Revision Code *");
+ printf("%-3d : %02x %s\n", 63, spd->cksum,
+ " spd->cksum, * 63 Checksum for bytes 0-62 *");
+
+ printf("%-3d-%3d: ", 64, 71);
+
+ for (i = 0; i < 8; i++)
+ printf("%02x", spd->mid[i]);
+
+ printf("* 64 Mfr's JEDEC ID code per JEP-108E *\n");
+
+ printf("%-3d : %02x %s\n", 72, spd->mloc,
+ " spd->mloc, * 72 Manufacturing Location *");
+
+ printf("%-3d-%3d: >>", 73, 90);
+ for (i = 0; i < 18; i++)
+ printf("%c", spd->mpart[i]);
+
+
+ printf("<<* 73 Manufacturer's Part Number *\n");
+
+ printf("%-3d-%3d: %02x %02x %s\n", 91, 92, spd->rev[0], spd->rev[1],
+ "* 91 Revision Code *");
+ printf("%-3d-%3d: %02x %02x %s\n", 93, 94, spd->mdate[0], spd->mdate[1],
+ "* 93 Manufacturing Date *");
+ printf("%-3d-%3d: ", 95, 98);
+
+ for (i = 0; i < 4; i++)
+ printf("%02x", spd->sernum[i]);
+
+ printf("* 95 Assembly Serial Number *\n");
+
+ printf("%-3d-%3d: ", 99, 127);
+ for (i = 0; i < 27; i++)
+ printf("%02x", spd->mspec[i]);
+
+
+ printf("* 99 Manufacturer Specific Data *\n");
+}
+#endif
+
+#ifdef CONFIG_SYS_FSL_DDR3
+void ddr3_spd_dump(const ddr3_spd_eeprom_t *spd)
+{
+ unsigned int i;
+
+ /* General Section: Bytes 0-59 */
+
+#define PRINT_NXS(x, y, z...) printf("%-3d : %02x " z "\n", x, (u8)y);
+#define PRINT_NNXXS(n0, n1, x0, x1, s) \
+ printf("%-3d-%3d: %02x %02x " s "\n", n0, n1, x0, x1);
+
+ PRINT_NXS(0, spd->info_size_crc,
+ "info_size_crc bytes written into serial memory, "
+ "CRC coverage");
+ PRINT_NXS(1, spd->spd_rev,
+ "spd_rev SPD Revision");
+ PRINT_NXS(2, spd->mem_type,
+ "mem_type Key Byte / DRAM Device Type");
+ PRINT_NXS(3, spd->module_type,
+ "module_type Key Byte / Module Type");
+ PRINT_NXS(4, spd->density_banks,
+ "density_banks SDRAM Density and Banks");
+ PRINT_NXS(5, spd->addressing,
+ "addressing SDRAM Addressing");
+ PRINT_NXS(6, spd->module_vdd,
+ "module_vdd Module Nominal Voltage, VDD");
+ PRINT_NXS(7, spd->organization,
+ "organization Module Organization");
+ PRINT_NXS(8, spd->bus_width,
+ "bus_width Module Memory Bus Width");
+ PRINT_NXS(9, spd->ftb_div,
+ "ftb_div Fine Timebase (FTB) Dividend / Divisor");
+ PRINT_NXS(10, spd->mtb_dividend,
+ "mtb_dividend Medium Timebase (MTB) Dividend");
+ PRINT_NXS(11, spd->mtb_divisor,
+ "mtb_divisor Medium Timebase (MTB) Divisor");
+ PRINT_NXS(12, spd->tck_min,
+ "tck_min SDRAM Minimum Cycle Time");
+ PRINT_NXS(13, spd->res_13,
+ "res_13 Reserved");
+ PRINT_NXS(14, spd->caslat_lsb,
+ "caslat_lsb CAS Latencies Supported, LSB");
+ PRINT_NXS(15, spd->caslat_msb,
+ "caslat_msb CAS Latencies Supported, MSB");
+ PRINT_NXS(16, spd->taa_min,
+ "taa_min Min CAS Latency Time");
+ PRINT_NXS(17, spd->twr_min,
+ "twr_min Min Write REcovery Time");
+ PRINT_NXS(18, spd->trcd_min,
+ "trcd_min Min RAS# to CAS# Delay Time");
+ PRINT_NXS(19, spd->trrd_min,
+ "trrd_min Min Row Active to Row Active Delay Time");
+ PRINT_NXS(20, spd->trp_min,
+ "trp_min Min Row Precharge Delay Time");
+ PRINT_NXS(21, spd->tras_trc_ext,
+ "tras_trc_ext Upper Nibbles for tRAS and tRC");
+ PRINT_NXS(22, spd->tras_min_lsb,
+ "tras_min_lsb Min Active to Precharge Delay Time, LSB");
+ PRINT_NXS(23, spd->trc_min_lsb,
+ "trc_min_lsb Min Active to Active/Refresh Delay Time, LSB");
+ PRINT_NXS(24, spd->trfc_min_lsb,
+ "trfc_min_lsb Min Refresh Recovery Delay Time LSB");
+ PRINT_NXS(25, spd->trfc_min_msb,
+ "trfc_min_msb Min Refresh Recovery Delay Time MSB");
+ PRINT_NXS(26, spd->twtr_min,
+ "twtr_min Min Internal Write to Read Command Delay Time");
+ PRINT_NXS(27, spd->trtp_min,
+ "trtp_min "
+ "Min Internal Read to Precharge Command Delay Time");
+ PRINT_NXS(28, spd->tfaw_msb,
+ "tfaw_msb Upper Nibble for tFAW");
+ PRINT_NXS(29, spd->tfaw_min,
+ "tfaw_min Min Four Activate Window Delay Time");
+ PRINT_NXS(30, spd->opt_features,
+ "opt_features SDRAM Optional Features");
+ PRINT_NXS(31, spd->therm_ref_opt,
+ "therm_ref_opt SDRAM Thermal and Refresh Opts");
+ PRINT_NXS(32, spd->therm_sensor,
+ "therm_sensor SDRAM Thermal Sensor");
+ PRINT_NXS(33, spd->device_type,
+ "device_type SDRAM Device Type");
+ PRINT_NXS(34, spd->fine_tck_min,
+ "fine_tck_min Fine offset for tCKmin");
+ PRINT_NXS(35, spd->fine_taa_min,
+ "fine_taa_min Fine offset for tAAmin");
+ PRINT_NXS(36, spd->fine_trcd_min,
+ "fine_trcd_min Fine offset for tRCDmin");
+ PRINT_NXS(37, spd->fine_trp_min,
+ "fine_trp_min Fine offset for tRPmin");
+ PRINT_NXS(38, spd->fine_trc_min,
+ "fine_trc_min Fine offset for tRCmin");
+
+ printf("%-3d-%3d: ", 39, 59); /* Reserved, General Section */
+
+ for (i = 39; i <= 59; i++)
+ printf("%02x ", spd->res_39_59[i - 39]);
+
+ puts("\n");
+
+ switch (spd->module_type) {
+ case 0x02: /* UDIMM */
+ case 0x03: /* SO-DIMM */
+ case 0x04: /* Micro-DIMM */
+ case 0x06: /* Mini-UDIMM */
+ PRINT_NXS(60, spd->mod_section.unbuffered.mod_height,
+ "mod_height (Unbuffered) Module Nominal Height");
+ PRINT_NXS(61, spd->mod_section.unbuffered.mod_thickness,
+ "mod_thickness (Unbuffered) Module Maximum Thickness");
+ PRINT_NXS(62, spd->mod_section.unbuffered.ref_raw_card,
+ "ref_raw_card (Unbuffered) Reference Raw Card Used");
+ PRINT_NXS(63, spd->mod_section.unbuffered.addr_mapping,
+ "addr_mapping (Unbuffered) Address mapping from "
+ "Edge Connector to DRAM");
+ break;
+ case 0x01: /* RDIMM */
+ case 0x05: /* Mini-RDIMM */
+ PRINT_NXS(60, spd->mod_section.registered.mod_height,
+ "mod_height (Registered) Module Nominal Height");
+ PRINT_NXS(61, spd->mod_section.registered.mod_thickness,
+ "mod_thickness (Registered) Module Maximum Thickness");
+ PRINT_NXS(62, spd->mod_section.registered.ref_raw_card,
+ "ref_raw_card (Registered) Reference Raw Card Used");
+ PRINT_NXS(63, spd->mod_section.registered.modu_attr,
+ "modu_attr (Registered) DIMM Module Attributes");
+ PRINT_NXS(64, spd->mod_section.registered.thermal,
+ "thermal (Registered) Thermal Heat "
+ "Spreader Solution");
+ PRINT_NXS(65, spd->mod_section.registered.reg_id_lo,
+ "reg_id_lo (Registered) Register Manufacturer ID "
+ "Code, LSB");
+ PRINT_NXS(66, spd->mod_section.registered.reg_id_hi,
+ "reg_id_hi (Registered) Register Manufacturer ID "
+ "Code, MSB");
+ PRINT_NXS(67, spd->mod_section.registered.reg_rev,
+ "reg_rev (Registered) Register "
+ "Revision Number");
+ PRINT_NXS(68, spd->mod_section.registered.reg_type,
+ "reg_type (Registered) Register Type");
+ for (i = 69; i <= 76; i++) {
+ printf("%-3d : %02x rcw[%d]\n", i,
+ spd->mod_section.registered.rcw[i-69], i-69);
+ }
+ break;
+ default:
+ /* Module-specific Section, Unsupported Module Type */
+ printf("%-3d-%3d: ", 60, 116);
+
+ for (i = 60; i <= 116; i++)
+ printf("%02x", spd->mod_section.uc[i - 60]);
+
+ break;
+ }
+
+ /* Unique Module ID: Bytes 117-125 */
+ PRINT_NXS(117, spd->mmid_lsb, "Module MfgID Code LSB - JEP-106");
+ PRINT_NXS(118, spd->mmid_msb, "Module MfgID Code MSB - JEP-106");
+ PRINT_NXS(119, spd->mloc, "Mfg Location");
+ PRINT_NNXXS(120, 121, spd->mdate[0], spd->mdate[1], "Mfg Date");
+
+ printf("%-3d-%3d: ", 122, 125);
+
+ for (i = 122; i <= 125; i++)
+ printf("%02x ", spd->sernum[i - 122]);
+ printf(" Module Serial Number\n");
+
+ /* CRC: Bytes 126-127 */
+ PRINT_NNXXS(126, 127, spd->crc[0], spd->crc[1], " SPD CRC");
+
+ /* Other Manufacturer Fields and User Space: Bytes 128-255 */
+ printf("%-3d-%3d: ", 128, 145);
+ for (i = 128; i <= 145; i++)
+ printf("%02x ", spd->mpart[i - 128]);
+ printf(" Mfg's Module Part Number\n");
+
+ PRINT_NNXXS(146, 147, spd->mrev[0], spd->mrev[1],
+ "Module Revision code");
+
+ PRINT_NXS(148, spd->dmid_lsb, "DRAM MfgID Code LSB - JEP-106");
+ PRINT_NXS(149, spd->dmid_msb, "DRAM MfgID Code MSB - JEP-106");
+
+ printf("%-3d-%3d: ", 150, 175);
+ for (i = 150; i <= 175; i++)
+ printf("%02x ", spd->msd[i - 150]);
+ printf(" Mfg's Specific Data\n");
+
+ printf("%-3d-%3d: ", 176, 255);
+ for (i = 176; i <= 255; i++)
+ printf("%02x", spd->cust[i - 176]);
+ printf(" Mfg's Specific Data\n");
+
+}
+#endif
+
+static inline void generic_spd_dump(const generic_spd_eeprom_t *spd)
+{
+#if defined(CONFIG_SYS_FSL_DDR1)
+ ddr1_spd_dump(spd);
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ ddr2_spd_dump(spd);
+#elif defined(CONFIG_SYS_FSL_DDR3)
+ ddr3_spd_dump(spd);
+#endif
+}
+
+static void fsl_ddr_printinfo(const fsl_ddr_info_t *pinfo,
+ unsigned int ctrl_mask,
+ unsigned int dimm_mask,
+ unsigned int do_mask)
+{
+ unsigned int i, j, retval;
+
+ /* STEP 1: DIMM SPD data */
+ if (do_mask & STEP_GET_SPD) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (!(ctrl_mask & (1 << i)))
+ continue;
+
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ if (!(dimm_mask & (1 << j)))
+ continue;
+
+ printf("SPD info: Controller=%u "
+ "DIMM=%u\n", i, j);
+ generic_spd_dump(
+ &(pinfo->spd_installed_dimms[i][j]));
+ printf("\n");
+ }
+ printf("\n");
+ }
+ printf("\n");
+ }
+
+ /* STEP 2: DIMM Parameters */
+ if (do_mask & STEP_COMPUTE_DIMM_PARMS) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (!(ctrl_mask & (1 << i)))
+ continue;
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ if (!(dimm_mask & (1 << j)))
+ continue;
+ printf("DIMM parameters: Controller=%u "
+ "DIMM=%u\n", i, j);
+ print_dimm_parameters(
+ &(pinfo->dimm_params[i][j]));
+ printf("\n");
+ }
+ printf("\n");
+ }
+ printf("\n");
+ }
+
+ /* STEP 3: Common Parameters */
+ if (do_mask & STEP_COMPUTE_COMMON_PARMS) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (!(ctrl_mask & (1 << i)))
+ continue;
+ printf("\"lowest common\" DIMM parameters: "
+ "Controller=%u\n", i);
+ print_lowest_common_dimm_parameters(
+ &pinfo->common_timing_params[i]);
+ printf("\n");
+ }
+ printf("\n");
+ }
+
+ /* STEP 4: User Configuration Options */
+ if (do_mask & STEP_GATHER_OPTS) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (!(ctrl_mask & (1 << i)))
+ continue;
+ printf("User Config Options: Controller=%u\n", i);
+ print_memctl_options(&pinfo->memctl_opts[i]);
+ printf("\n");
+ }
+ printf("\n");
+ }
+
+ /* STEP 5: Address assignment */
+ if (do_mask & STEP_ASSIGN_ADDRESSES) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (!(ctrl_mask & (1 << i)))
+ continue;
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ printf("Address Assignment: Controller=%u "
+ "DIMM=%u\n", i, j);
+ printf("Don't have this functionality yet\n");
+ }
+ printf("\n");
+ }
+ printf("\n");
+ }
+
+ /* STEP 6: computed controller register values */
+ if (do_mask & STEP_COMPUTE_REGS) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (!(ctrl_mask & (1 << i)))
+ continue;
+ printf("Computed Register Values: Controller=%u\n", i);
+ print_fsl_memctl_config_regs(
+ &pinfo->fsl_ddr_config_reg[i]);
+ retval = check_fsl_memctl_config_regs(
+ &pinfo->fsl_ddr_config_reg[i]);
+ if (retval) {
+ printf("check_fsl_memctl_config_regs "
+ "result = %u\n", retval);
+ }
+ printf("\n");
+ }
+ printf("\n");
+ }
+}
+
+struct data_strings {
+ const char *data_name;
+ unsigned int step_mask;
+ unsigned int dimm_number_required;
+};
+
+#define DATA_OPTIONS(name, step, dimm) {#name, step, dimm}
+
+static unsigned int fsl_ddr_parse_interactive_cmd(
+ char **argv,
+ int argc,
+ unsigned int *pstep_mask,
+ unsigned int *pctlr_mask,
+ unsigned int *pdimm_mask,
+ unsigned int *pdimm_number_required
+ ) {
+
+ static const struct data_strings options[] = {
+ DATA_OPTIONS(spd, STEP_GET_SPD, 1),
+ DATA_OPTIONS(dimmparms, STEP_COMPUTE_DIMM_PARMS, 1),
+ DATA_OPTIONS(commonparms, STEP_COMPUTE_COMMON_PARMS, 0),
+ DATA_OPTIONS(opts, STEP_GATHER_OPTS, 0),
+ DATA_OPTIONS(addresses, STEP_ASSIGN_ADDRESSES, 0),
+ DATA_OPTIONS(regs, STEP_COMPUTE_REGS, 0),
+ };
+ static const unsigned int n_opts = ARRAY_SIZE(options);
+
+ unsigned int i, j;
+ unsigned int error = 0;
+
+ for (i = 1; i < argc; i++) {
+ unsigned int matched = 0;
+
+ for (j = 0; j < n_opts; j++) {
+ if (strcmp(options[j].data_name, argv[i]) != 0)
+ continue;
+ *pstep_mask |= options[j].step_mask;
+ *pdimm_number_required =
+ options[j].dimm_number_required;
+ matched = 1;
+ break;
+ }
+
+ if (matched)
+ continue;
+
+ if (argv[i][0] == 'c') {
+ char c = argv[i][1];
+ if (isdigit(c))
+ *pctlr_mask |= 1 << (c - '0');
+ continue;
+ }
+
+ if (argv[i][0] == 'd') {
+ char c = argv[i][1];
+ if (isdigit(c))
+ *pdimm_mask |= 1 << (c - '0');
+ continue;
+ }
+
+ printf("unknown arg %s\n", argv[i]);
+ *pstep_mask = 0;
+ error = 1;
+ break;
+ }
+
+ return error;
+}
+
+int fsl_ddr_interactive_env_var_exists(void)
+{
+ char buffer[CONFIG_SYS_CBSIZE];
+
+ if (getenv_f("ddr_interactive", buffer, CONFIG_SYS_CBSIZE) >= 0)
+ return 1;
+
+ return 0;
+}
+
+unsigned long long fsl_ddr_interactive(fsl_ddr_info_t *pinfo, int var_is_set)
+{
+ unsigned long long ddrsize;
+ const char *prompt = "FSL DDR>";
+ char buffer[CONFIG_SYS_CBSIZE];
+ char buffer2[CONFIG_SYS_CBSIZE];
+ char *p = NULL;
+ char *argv[CONFIG_SYS_MAXARGS + 1]; /* NULL terminated */
+ int argc;
+ unsigned int next_step = STEP_GET_SPD;
+ const char *usage = {
+ "commands:\n"
+ "print print SPD and intermediate computed data\n"
+ "reset reboot machine\n"
+ "recompute reload SPD and options to default and recompute regs\n"
+ "edit modify spd, parameter, or option\n"
+ "compute recompute registers from current next_step to end\n"
+ "copy copy parameters\n"
+ "next_step shows current next_step\n"
+ "help this message\n"
+ "go program the memory controller and continue with u-boot\n"
+ };
+
+ if (var_is_set) {
+ if (getenv_f("ddr_interactive", buffer2, CONFIG_SYS_CBSIZE) > 0) {
+ p = buffer2;
+ } else {
+ var_is_set = 0;
+ }
+ }
+
+ /*
+ * The strategy for next_step is that it points to the next
+ * step in the computation process that needs to be done.
+ */
+ while (1) {
+ if (var_is_set) {
+ char *pend = strchr(p, ';');
+ if (pend) {
+ /* found command separator, copy sub-command */
+ *pend = '\0';
+ strcpy(buffer, p);
+ p = pend + 1;
+ } else {
+ /* separator not found, copy whole string */
+ strcpy(buffer, p);
+ p = NULL;
+ var_is_set = 0;
+ }
+ } else {
+ /*
+ * No need to worry for buffer overflow here in
+ * this function; readline() maxes out at CFG_CBSIZE
+ */
+ readline_into_buffer(prompt, buffer, 0);
+ }
+ argc = parse_line(buffer, argv);
+ if (argc == 0)
+ continue;
+
+
+ if (strcmp(argv[0], "help") == 0) {
+ puts(usage);
+ continue;
+ }
+
+ if (strcmp(argv[0], "next_step") == 0) {
+ printf("next_step = 0x%02X (%s)\n",
+ next_step,
+ step_to_string(next_step));
+ continue;
+ }
+
+ if (strcmp(argv[0], "copy") == 0) {
+ unsigned int error = 0;
+ unsigned int step_mask = 0;
+ unsigned int src_ctlr_mask = 0;
+ unsigned int src_dimm_mask = 0;
+ unsigned int dimm_number_required = 0;
+ unsigned int src_ctlr_num = 0;
+ unsigned int src_dimm_num = 0;
+ unsigned int dst_ctlr_num = -1;
+ unsigned int dst_dimm_num = -1;
+ unsigned int i, num_dest_parms;
+
+ if (argc == 1) {
+ printf("copy <src c#> <src d#> <spd|dimmparms|commonparms|opts|addresses|regs> <dst c#> <dst d#>\n");
+ continue;
+ }
+
+ error = fsl_ddr_parse_interactive_cmd(
+ argv, argc,
+ &step_mask,
+ &src_ctlr_mask,
+ &src_dimm_mask,
+ &dimm_number_required
+ );
+
+ /* XXX: only dimm_number_required and step_mask will
+ be used by this function. Parse the controller and
+ DIMM number separately because it is easier. */
+
+ if (error)
+ continue;
+
+ /* parse source destination controller / DIMM */
+
+ num_dest_parms = dimm_number_required ? 2 : 1;
+
+ for (i = 0; i < argc; i++) {
+ if (argv[i][0] == 'c') {
+ char c = argv[i][1];
+ if (isdigit(c)) {
+ src_ctlr_num = (c - '0');
+ break;
+ }
+ }
+ }
+
+ for (i = 0; i < argc; i++) {
+ if (argv[i][0] == 'd') {
+ char c = argv[i][1];
+ if (isdigit(c)) {
+ src_dimm_num = (c - '0');
+ break;
+ }
+ }
+ }
+
+ /* parse destination controller / DIMM */
+
+ for (i = argc - 1; i >= argc - num_dest_parms; i--) {
+ if (argv[i][0] == 'c') {
+ char c = argv[i][1];
+ if (isdigit(c)) {
+ dst_ctlr_num = (c - '0');
+ break;
+ }
+ }
+ }
+
+ for (i = argc - 1; i >= argc - num_dest_parms; i--) {
+ if (argv[i][0] == 'd') {
+ char c = argv[i][1];
+ if (isdigit(c)) {
+ dst_dimm_num = (c - '0');
+ break;
+ }
+ }
+ }
+
+ /* TODO: validate inputs */
+
+ debug("src_ctlr_num = %u, src_dimm_num = %u, dst_ctlr_num = %u, dst_dimm_num = %u, step_mask = %x\n",
+ src_ctlr_num, src_dimm_num, dst_ctlr_num, dst_dimm_num, step_mask);
+
+
+ switch (step_mask) {
+
+ case STEP_GET_SPD:
+ memcpy(&(pinfo->spd_installed_dimms[dst_ctlr_num][dst_dimm_num]),
+ &(pinfo->spd_installed_dimms[src_ctlr_num][src_dimm_num]),
+ sizeof(pinfo->spd_installed_dimms[0][0]));
+ break;
+
+ case STEP_COMPUTE_DIMM_PARMS:
+ memcpy(&(pinfo->dimm_params[dst_ctlr_num][dst_dimm_num]),
+ &(pinfo->dimm_params[src_ctlr_num][src_dimm_num]),
+ sizeof(pinfo->dimm_params[0][0]));
+ break;
+
+ case STEP_COMPUTE_COMMON_PARMS:
+ memcpy(&(pinfo->common_timing_params[dst_ctlr_num]),
+ &(pinfo->common_timing_params[src_ctlr_num]),
+ sizeof(pinfo->common_timing_params[0]));
+ break;
+
+ case STEP_GATHER_OPTS:
+ memcpy(&(pinfo->memctl_opts[dst_ctlr_num]),
+ &(pinfo->memctl_opts[src_ctlr_num]),
+ sizeof(pinfo->memctl_opts[0]));
+ break;
+
+ /* someday be able to have addresses to copy addresses... */
+
+ case STEP_COMPUTE_REGS:
+ memcpy(&(pinfo->fsl_ddr_config_reg[dst_ctlr_num]),
+ &(pinfo->fsl_ddr_config_reg[src_ctlr_num]),
+ sizeof(pinfo->memctl_opts[0]));
+ break;
+
+ default:
+ printf("unexpected step_mask value\n");
+ }
+
+ continue;
+
+ }
+
+ if (strcmp(argv[0], "edit") == 0) {
+ unsigned int error = 0;
+ unsigned int step_mask = 0;
+ unsigned int ctlr_mask = 0;
+ unsigned int dimm_mask = 0;
+ char *p_element = NULL;
+ char *p_value = NULL;
+ unsigned int dimm_number_required = 0;
+ unsigned int ctrl_num;
+ unsigned int dimm_num;
+
+ if (argc == 1) {
+ /* Only the element and value must be last */
+ printf("edit <c#> <d#> "
+ "<spd|dimmparms|commonparms|opts|"
+ "addresses|regs> <element> <value>\n");
+ printf("for spd, specify byte number for "
+ "element\n");
+ continue;
+ }
+
+ error = fsl_ddr_parse_interactive_cmd(
+ argv, argc - 2,
+ &step_mask,
+ &ctlr_mask,
+ &dimm_mask,
+ &dimm_number_required
+ );
+
+ if (error)
+ continue;
+
+
+ /* Check arguments */
+
+ /* ERROR: If no steps were found */
+ if (step_mask == 0) {
+ printf("Error: No valid steps were specified "
+ "in argument.\n");
+ continue;
+ }
+
+ /* ERROR: If multiple steps were found */
+ if (step_mask & (step_mask - 1)) {
+ printf("Error: Multiple steps specified in "
+ "argument.\n");
+ continue;
+ }
+
+ /* ERROR: Controller not specified */
+ if (ctlr_mask == 0) {
+ printf("Error: controller number not "
+ "specified or no element and "
+ "value specified\n");
+ continue;
+ }
+
+ if (ctlr_mask & (ctlr_mask - 1)) {
+ printf("Error: multiple controllers "
+ "specified, %X\n", ctlr_mask);
+ continue;
+ }
+
+ /* ERROR: DIMM number not specified */
+ if (dimm_number_required && dimm_mask == 0) {
+ printf("Error: DIMM number number not "
+ "specified or no element and "
+ "value specified\n");
+ continue;
+ }
+
+ if (dimm_mask & (dimm_mask - 1)) {
+ printf("Error: multipled DIMMs specified\n");
+ continue;
+ }
+
+ p_element = argv[argc - 2];
+ p_value = argv[argc - 1];
+
+ ctrl_num = __ilog2(ctlr_mask);
+ dimm_num = __ilog2(dimm_mask);
+
+ switch (step_mask) {
+ case STEP_GET_SPD:
+ {
+ unsigned int element_num;
+ unsigned int value;
+
+ element_num = simple_strtoul(p_element,
+ NULL, 0);
+ value = simple_strtoul(p_value,
+ NULL, 0);
+ fsl_ddr_spd_edit(pinfo,
+ ctrl_num,
+ dimm_num,
+ element_num,
+ value);
+ next_step = STEP_COMPUTE_DIMM_PARMS;
+ }
+ break;
+
+ case STEP_COMPUTE_DIMM_PARMS:
+ fsl_ddr_dimm_parameters_edit(
+ pinfo, ctrl_num, dimm_num,
+ p_element, p_value);
+ next_step = STEP_COMPUTE_COMMON_PARMS;
+ break;
+
+ case STEP_COMPUTE_COMMON_PARMS:
+ lowest_common_dimm_parameters_edit(pinfo,
+ ctrl_num, p_element, p_value);
+ next_step = STEP_GATHER_OPTS;
+ break;
+
+ case STEP_GATHER_OPTS:
+ fsl_ddr_options_edit(pinfo, ctrl_num,
+ p_element, p_value);
+ next_step = STEP_ASSIGN_ADDRESSES;
+ break;
+
+ case STEP_ASSIGN_ADDRESSES:
+ printf("editing of address assignment "
+ "not yet implemented\n");
+ break;
+
+ case STEP_COMPUTE_REGS:
+ {
+ fsl_ddr_regs_edit(pinfo,
+ ctrl_num,
+ p_element,
+ p_value);
+ next_step = STEP_PROGRAM_REGS;
+ }
+ break;
+
+ default:
+ printf("programming error\n");
+ while (1)
+ ;
+ break;
+ }
+ continue;
+ }
+
+ if (strcmp(argv[0], "reset") == 0) {
+ /*
+ * Reboot machine.
+ * Args don't seem to matter because this
+ * doesn't return
+ */
+ do_reset(NULL, 0, 0, NULL);
+ printf("Reset didn't work\n");
+ }
+
+ if (strcmp(argv[0], "recompute") == 0) {
+ /*
+ * Recalculate everything, starting with
+ * loading SPD EEPROM from DIMMs
+ */
+ next_step = STEP_GET_SPD;
+ ddrsize = fsl_ddr_compute(pinfo, next_step, 0);
+ continue;
+ }
+
+ if (strcmp(argv[0], "compute") == 0) {
+ /*
+ * Compute rest of steps starting at
+ * the current next_step/
+ */
+ ddrsize = fsl_ddr_compute(pinfo, next_step, 0);
+ continue;
+ }
+
+ if (strcmp(argv[0], "print") == 0) {
+ unsigned int error = 0;
+ unsigned int step_mask = 0;
+ unsigned int ctlr_mask = 0;
+ unsigned int dimm_mask = 0;
+ unsigned int dimm_number_required = 0;
+
+ if (argc == 1) {
+ printf("print [c<n>] [d<n>] [spd] [dimmparms] "
+ "[commonparms] [opts] [addresses] [regs]\n");
+ continue;
+ }
+
+ error = fsl_ddr_parse_interactive_cmd(
+ argv, argc,
+ &step_mask,
+ &ctlr_mask,
+ &dimm_mask,
+ &dimm_number_required
+ );
+
+ if (error)
+ continue;
+
+ /* If no particular controller was found, print all */
+ if (ctlr_mask == 0)
+ ctlr_mask = 0xFF;
+
+ /* If no particular dimm was found, print all dimms. */
+ if (dimm_mask == 0)
+ dimm_mask = 0xFF;
+
+ /* If no steps were found, print all steps. */
+ if (step_mask == 0)
+ step_mask = STEP_ALL;
+
+ fsl_ddr_printinfo(pinfo, ctlr_mask,
+ dimm_mask, step_mask);
+ continue;
+ }
+
+ if (strcmp(argv[0], "go") == 0) {
+ if (next_step)
+ ddrsize = fsl_ddr_compute(pinfo, next_step, 0);
+ break;
+ }
+
+ printf("unknown command %s\n", argv[0]);
+ }
+
+ debug("end of memory = %llu\n", (u64)ddrsize);
+
+ return ddrsize;
+}
diff --git a/drivers/ddr/fsl/lc_common_dimm_params.c b/drivers/ddr/fsl/lc_common_dimm_params.c
new file mode 100644
index 0000000..610318a
--- /dev/null
+++ b/drivers/ddr/fsl/lc_common_dimm_params.c
@@ -0,0 +1,526 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+static unsigned int
+compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
+ common_timing_params_t *outpdimm,
+ unsigned int number_of_dimms)
+{
+ unsigned int i;
+ unsigned int taamin_ps = 0;
+ unsigned int tckmin_x_ps = 0;
+ unsigned int common_caslat;
+ unsigned int caslat_actual;
+ unsigned int retry = 16;
+ unsigned int tmp;
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+
+ /* compute the common CAS latency supported between slots */
+ tmp = dimm_params[0].caslat_x;
+ for (i = 1; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks)
+ tmp &= dimm_params[i].caslat_x;
+ }
+ common_caslat = tmp;
+
+ /* compute the max tAAmin tCKmin between slots */
+ for (i = 0; i < number_of_dimms; i++) {
+ taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
+ tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
+ }
+ /* validate if the memory clk is in the range of dimms */
+ if (mclk_ps < tckmin_x_ps) {
+ printf("DDR clock (MCLK cycle %u ps) is faster than "
+ "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
+ mclk_ps, tckmin_x_ps);
+ }
+ /* determine the acutal cas latency */
+ caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps;
+ /* check if the dimms support the CAS latency */
+ while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
+ caslat_actual++;
+ retry--;
+ }
+ /* once the caculation of caslat_actual is completed
+ * we must verify that this CAS latency value does not
+ * exceed tAAmax, which is 20 ns for all DDR3 speed grades
+ */
+ if (caslat_actual * mclk_ps > 20000) {
+ printf("The choosen cas latency %d is too large\n",
+ caslat_actual);
+ }
+ outpdimm->lowest_common_SPD_caslat = caslat_actual;
+
+ return 0;
+}
+#endif
+
+/*
+ * compute_lowest_common_dimm_parameters()
+ *
+ * Determine the worst-case DIMM timing parameters from the set of DIMMs
+ * whose parameters have been computed into the array pointed to
+ * by dimm_params.
+ */
+unsigned int
+compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
+ common_timing_params_t *outpdimm,
+ const unsigned int number_of_dimms)
+{
+ unsigned int i, j;
+
+ unsigned int tckmin_x_ps = 0;
+ unsigned int tckmax_ps = 0xFFFFFFFF;
+ unsigned int tckmax_max_ps = 0;
+ unsigned int trcd_ps = 0;
+ unsigned int trp_ps = 0;
+ unsigned int tras_ps = 0;
+ unsigned int twr_ps = 0;
+ unsigned int twtr_ps = 0;
+ unsigned int trfc_ps = 0;
+ unsigned int trrd_ps = 0;
+ unsigned int trc_ps = 0;
+ unsigned int refresh_rate_ps = 0;
+ unsigned int extended_op_srt = 1;
+ unsigned int tis_ps = 0;
+ unsigned int tih_ps = 0;
+ unsigned int tds_ps = 0;
+ unsigned int tdh_ps = 0;
+ unsigned int trtp_ps = 0;
+ unsigned int tdqsq_max_ps = 0;
+ unsigned int tqhs_ps = 0;
+
+ unsigned int temp1, temp2;
+ unsigned int additive_latency = 0;
+#if !defined(CONFIG_SYS_FSL_DDR3)
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+ unsigned int lowest_good_caslat;
+ unsigned int not_ok;
+
+ debug("using mclk_ps = %u\n", mclk_ps);
+#endif
+
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ /*
+ * If there are no ranks on this DIMM,
+ * it probably doesn't exist, so skip it.
+ */
+ if (dimm_params[i].n_ranks == 0) {
+ temp1++;
+ continue;
+ }
+ if (dimm_params[i].n_ranks == 4 && i != 0) {
+ printf("Found Quad-rank DIMM in wrong bank, ignored."
+ " Software may not run as expected.\n");
+ temp1++;
+ continue;
+ }
+
+ /*
+ * check if quad-rank DIMM is plugged if
+ * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
+ * Only the board with proper design is capable
+ */
+#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+ if (dimm_params[i].n_ranks == 4 && \
+ CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
+ printf("Found Quad-rank DIMM, not able to support.");
+ temp1++;
+ continue;
+ }
+#endif
+ /*
+ * Find minimum tckmax_ps to find fastest slow speed,
+ * i.e., this is the slowest the whole system can go.
+ */
+ tckmax_ps = min(tckmax_ps, dimm_params[i].tckmax_ps);
+
+ /* Either find maximum value to determine slowest
+ * speed, delay, time, period, etc */
+ tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
+ tckmax_max_ps = max(tckmax_max_ps, dimm_params[i].tckmax_ps);
+ trcd_ps = max(trcd_ps, dimm_params[i].trcd_ps);
+ trp_ps = max(trp_ps, dimm_params[i].trp_ps);
+ tras_ps = max(tras_ps, dimm_params[i].tras_ps);
+ twr_ps = max(twr_ps, dimm_params[i].twr_ps);
+ twtr_ps = max(twtr_ps, dimm_params[i].twtr_ps);
+ trfc_ps = max(trfc_ps, dimm_params[i].trfc_ps);
+ trrd_ps = max(trrd_ps, dimm_params[i].trrd_ps);
+ trc_ps = max(trc_ps, dimm_params[i].trc_ps);
+ tis_ps = max(tis_ps, dimm_params[i].tis_ps);
+ tih_ps = max(tih_ps, dimm_params[i].tih_ps);
+ tds_ps = max(tds_ps, dimm_params[i].tds_ps);
+ tdh_ps = max(tdh_ps, dimm_params[i].tdh_ps);
+ trtp_ps = max(trtp_ps, dimm_params[i].trtp_ps);
+ tqhs_ps = max(tqhs_ps, dimm_params[i].tqhs_ps);
+ refresh_rate_ps = max(refresh_rate_ps,
+ dimm_params[i].refresh_rate_ps);
+ /* extended_op_srt is either 0 or 1, 0 having priority */
+ extended_op_srt = min(extended_op_srt,
+ dimm_params[i].extended_op_srt);
+
+ /*
+ * Find maximum tdqsq_max_ps to find slowest.
+ *
+ * FIXME: is finding the slowest value the correct
+ * strategy for this parameter?
+ */
+ tdqsq_max_ps = max(tdqsq_max_ps, dimm_params[i].tdqsq_max_ps);
+ }
+
+ outpdimm->ndimms_present = number_of_dimms - temp1;
+
+ if (temp1 == number_of_dimms) {
+ debug("no dimms this memory controller\n");
+ return 0;
+ }
+
+ outpdimm->tckmin_x_ps = tckmin_x_ps;
+ outpdimm->tckmax_ps = tckmax_ps;
+ outpdimm->tckmax_max_ps = tckmax_max_ps;
+ outpdimm->trcd_ps = trcd_ps;
+ outpdimm->trp_ps = trp_ps;
+ outpdimm->tras_ps = tras_ps;
+ outpdimm->twr_ps = twr_ps;
+ outpdimm->twtr_ps = twtr_ps;
+ outpdimm->trfc_ps = trfc_ps;
+ outpdimm->trrd_ps = trrd_ps;
+ outpdimm->trc_ps = trc_ps;
+ outpdimm->refresh_rate_ps = refresh_rate_ps;
+ outpdimm->extended_op_srt = extended_op_srt;
+ outpdimm->tis_ps = tis_ps;
+ outpdimm->tih_ps = tih_ps;
+ outpdimm->tds_ps = tds_ps;
+ outpdimm->tdh_ps = tdh_ps;
+ outpdimm->trtp_ps = trtp_ps;
+ outpdimm->tdqsq_max_ps = tdqsq_max_ps;
+ outpdimm->tqhs_ps = tqhs_ps;
+
+ /* Determine common burst length for all DIMMs. */
+ temp1 = 0xff;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks) {
+ temp1 &= dimm_params[i].burst_lengths_bitmask;
+ }
+ }
+ outpdimm->all_dimms_burst_lengths_bitmask = temp1;
+
+ /* Determine if all DIMMs registered buffered. */
+ temp1 = temp2 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks) {
+ if (dimm_params[i].registered_dimm) {
+ temp1 = 1;
+#ifndef CONFIG_SPL_BUILD
+ printf("Detected RDIMM %s\n",
+ dimm_params[i].mpart);
+#endif
+ } else {
+ temp2 = 1;
+#ifndef CONFIG_SPL_BUILD
+ printf("Detected UDIMM %s\n",
+ dimm_params[i].mpart);
+#endif
+ }
+ }
+ }
+
+ outpdimm->all_dimms_registered = 0;
+ outpdimm->all_dimms_unbuffered = 0;
+ if (temp1 && !temp2) {
+ outpdimm->all_dimms_registered = 1;
+ } else if (!temp1 && temp2) {
+ outpdimm->all_dimms_unbuffered = 1;
+ } else {
+ printf("ERROR: Mix of registered buffered and unbuffered "
+ "DIMMs detected!\n");
+ }
+
+ temp1 = 0;
+ if (outpdimm->all_dimms_registered)
+ for (j = 0; j < 16; j++) {
+ outpdimm->rcw[j] = dimm_params[0].rcw[j];
+ for (i = 1; i < number_of_dimms; i++) {
+ if (!dimm_params[i].n_ranks)
+ continue;
+ if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
+ temp1 = 1;
+ break;
+ }
+ }
+ }
+
+ if (temp1 != 0)
+ printf("ERROR: Mix different RDIMM detected!\n");
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+ if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
+ return 1;
+#else
+ /*
+ * Compute a CAS latency suitable for all DIMMs
+ *
+ * Strategy for SPD-defined latencies: compute only
+ * CAS latency defined by all DIMMs.
+ */
+
+ /*
+ * Step 1: find CAS latency common to all DIMMs using bitwise
+ * operation.
+ */
+ temp1 = 0xFF;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks) {
+ temp2 = 0;
+ temp2 |= 1 << dimm_params[i].caslat_x;
+ temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
+ temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
+ /*
+ * FIXME: If there was no entry for X-2 (X-1) in
+ * the SPD, then caslat_x_minus_2
+ * (caslat_x_minus_1) contains either 255 or
+ * 0xFFFFFFFF because that's what the glorious
+ * __ilog2 function returns for an input of 0.
+ * On 32-bit PowerPC, left shift counts with bit
+ * 26 set (that the value of 255 or 0xFFFFFFFF
+ * will have), cause the destination register to
+ * be 0. That is why this works.
+ */
+ temp1 &= temp2;
+ }
+ }
+
+ /*
+ * Step 2: check each common CAS latency against tCK of each
+ * DIMM's SPD.
+ */
+ lowest_good_caslat = 0;
+ temp2 = 0;
+ while (temp1) {
+ not_ok = 0;
+ temp2 = __ilog2(temp1);
+ debug("checking common caslat = %u\n", temp2);
+
+ /* Check if this CAS latency will work on all DIMMs at tCK. */
+ for (i = 0; i < number_of_dimms; i++) {
+ if (!dimm_params[i].n_ranks) {
+ continue;
+ }
+ if (dimm_params[i].caslat_x == temp2) {
+ if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
+ debug("CL = %u ok on DIMM %u at tCK=%u"
+ " ps with its tCKmin_X_ps of %u\n",
+ temp2, i, mclk_ps,
+ dimm_params[i].tckmin_x_ps);
+ continue;
+ } else {
+ not_ok++;
+ }
+ }
+
+ if (dimm_params[i].caslat_x_minus_1 == temp2) {
+ unsigned int tckmin_x_minus_1_ps
+ = dimm_params[i].tckmin_x_minus_1_ps;
+ if (mclk_ps >= tckmin_x_minus_1_ps) {
+ debug("CL = %u ok on DIMM %u at "
+ "tCK=%u ps with its "
+ "tckmin_x_minus_1_ps of %u\n",
+ temp2, i, mclk_ps,
+ tckmin_x_minus_1_ps);
+ continue;
+ } else {
+ not_ok++;
+ }
+ }
+
+ if (dimm_params[i].caslat_x_minus_2 == temp2) {
+ unsigned int tckmin_x_minus_2_ps
+ = dimm_params[i].tckmin_x_minus_2_ps;
+ if (mclk_ps >= tckmin_x_minus_2_ps) {
+ debug("CL = %u ok on DIMM %u at "
+ "tCK=%u ps with its "
+ "tckmin_x_minus_2_ps of %u\n",
+ temp2, i, mclk_ps,
+ tckmin_x_minus_2_ps);
+ continue;
+ } else {
+ not_ok++;
+ }
+ }
+ }
+
+ if (!not_ok) {
+ lowest_good_caslat = temp2;
+ }
+
+ temp1 &= ~(1 << temp2);
+ }
+
+ debug("lowest common SPD-defined CAS latency = %u\n",
+ lowest_good_caslat);
+ outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
+
+
+ /*
+ * Compute a common 'de-rated' CAS latency.
+ *
+ * The strategy here is to find the *highest* dereated cas latency
+ * with the assumption that all of the DIMMs will support a dereated
+ * CAS latency higher than or equal to their lowest dereated value.
+ */
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
+ }
+ outpdimm->highest_common_derated_caslat = temp1;
+ debug("highest common dereated CAS latency = %u\n", temp1);
+#endif /* #if defined(CONFIG_SYS_FSL_DDR3) */
+
+ /* Determine if all DIMMs ECC capable. */
+ temp1 = 1;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm_params[i].n_ranks &&
+ !(dimm_params[i].edc_config & EDC_ECC)) {
+ temp1 = 0;
+ break;
+ }
+ }
+ if (temp1) {
+ debug("all DIMMs ECC capable\n");
+ } else {
+ debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
+ }
+ outpdimm->all_dimms_ecc_capable = temp1;
+
+#ifndef CONFIG_SYS_FSL_DDR3
+ /* FIXME: move to somewhere else to validate. */
+ if (mclk_ps > tckmax_max_ps) {
+ printf("Warning: some of the installed DIMMs "
+ "can not operate this slowly.\n");
+ return 1;
+ }
+#endif
+ /*
+ * Compute additive latency.
+ *
+ * For DDR1, additive latency should be 0.
+ *
+ * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
+ * which comes from Trcd, and also note that:
+ * add_lat + caslat must be >= 4
+ *
+ * For DDR3, we use the AL=0
+ *
+ * When to use additive latency for DDR2:
+ *
+ * I. Because you are using CL=3 and need to do ODT on writes and
+ * want functionality.
+ * 1. Are you going to use ODT? (Does your board not have
+ * additional termination circuitry for DQ, DQS, DQS_,
+ * DM, RDQS, RDQS_ for x4/x8 configs?)
+ * 2. If so, is your lowest supported CL going to be 3?
+ * 3. If so, then you must set AL=1 because
+ *
+ * WL >= 3 for ODT on writes
+ * RL = AL + CL
+ * WL = RL - 1
+ * ->
+ * WL = AL + CL - 1
+ * AL + CL - 1 >= 3
+ * AL + CL >= 4
+ * QED
+ *
+ * RL >= 3 for ODT on reads
+ * RL = AL + CL
+ *
+ * Since CL aren't usually less than 2, AL=0 is a minimum,
+ * so the WL-derived AL should be the -- FIXME?
+ *
+ * II. Because you are using auto-precharge globally and want to
+ * use additive latency (posted CAS) to get more bandwidth.
+ * 1. Are you going to use auto-precharge mode globally?
+ *
+ * Use addtivie latency and compute AL to be 1 cycle less than
+ * tRCD, i.e. the READ or WRITE command is in the cycle
+ * immediately following the ACTIVATE command..
+ *
+ * III. Because you feel like it or want to do some sort of
+ * degraded-performance experiment.
+ * 1. Do you just want to use additive latency because you feel
+ * like it?
+ *
+ * Validation: AL is less than tRCD, and within the other
+ * read-to-precharge constraints.
+ */
+
+ additive_latency = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR2)
+ if (lowest_good_caslat < 4) {
+ additive_latency = (picos_to_mclk(trcd_ps) > lowest_good_caslat)
+ ? picos_to_mclk(trcd_ps) - lowest_good_caslat : 0;
+ if (mclk_to_picos(additive_latency) > trcd_ps) {
+ additive_latency = picos_to_mclk(trcd_ps);
+ debug("setting additive_latency to %u because it was "
+ " greater than tRCD_ps\n", additive_latency);
+ }
+ }
+
+#elif defined(CONFIG_SYS_FSL_DDR3)
+ /*
+ * The system will not use the global auto-precharge mode.
+ * However, it uses the page mode, so we set AL=0
+ */
+ additive_latency = 0;
+#endif
+
+ /*
+ * Validate additive latency
+ * FIXME: move to somewhere else to validate
+ *
+ * AL <= tRCD(min)
+ */
+ if (mclk_to_picos(additive_latency) > trcd_ps) {
+ printf("Error: invalid additive latency exceeds tRCD(min).\n");
+ return 1;
+ }
+
+ /*
+ * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
+ * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
+ * ADD_LAT (the register) must be set to a value less
+ * than ACTTORW if WL = 1, then AL must be set to 1
+ * RD_TO_PRE (the register) must be set to a minimum
+ * tRTP + AL if AL is nonzero
+ */
+
+ /*
+ * Additive latency will be applied only if the memctl option to
+ * use it.
+ */
+ outpdimm->additive_latency = additive_latency;
+
+ debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
+ debug("trcd_ps = %u\n", outpdimm->trcd_ps);
+ debug("trp_ps = %u\n", outpdimm->trp_ps);
+ debug("tras_ps = %u\n", outpdimm->tras_ps);
+ debug("twr_ps = %u\n", outpdimm->twr_ps);
+ debug("twtr_ps = %u\n", outpdimm->twtr_ps);
+ debug("trfc_ps = %u\n", outpdimm->trfc_ps);
+ debug("trrd_ps = %u\n", outpdimm->trrd_ps);
+ debug("trc_ps = %u\n", outpdimm->trc_ps);
+
+ return 0;
+}
diff --git a/drivers/ddr/fsl/main.c b/drivers/ddr/fsl/main.c
new file mode 100644
index 0000000..d0cd589
--- /dev/null
+++ b/drivers/ddr/fsl/main.c
@@ -0,0 +1,724 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+
+#include <common.h>
+#include <i2c.h>
+#include <fsl_ddr_sdram.h>
+#include <fsl_ddr.h>
+
+#ifdef CONFIG_PPC
+#include <asm/fsl_law.h>
+
+void fsl_ddr_set_lawbar(
+ const common_timing_params_t *memctl_common_params,
+ unsigned int memctl_interleaved,
+ unsigned int ctrl_num);
+#endif
+
+void fsl_ddr_set_intl3r(const unsigned int granule_size);
+#if defined(SPD_EEPROM_ADDRESS) || \
+ defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
+ defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
+#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+ [0][0] = SPD_EEPROM_ADDRESS,
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+ [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
+ [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+ [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
+ [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+ [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
+ [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
+ [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
+ [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+ [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
+ [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
+ [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+ [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
+ [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
+ [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
+ [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
+ [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
+ [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
+};
+
+#endif
+
+static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
+{
+ int ret;
+
+ i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
+
+ ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
+ sizeof(generic_spd_eeprom_t));
+
+ if (ret) {
+ if (i2c_address ==
+#ifdef SPD_EEPROM_ADDRESS
+ SPD_EEPROM_ADDRESS
+#elif defined(SPD_EEPROM_ADDRESS1)
+ SPD_EEPROM_ADDRESS1
+#endif
+ ) {
+ printf("DDR: failed to read SPD from address %u\n",
+ i2c_address);
+ } else {
+ debug("DDR: failed to read SPD from address %u\n",
+ i2c_address);
+ }
+ memset(spd, 0, sizeof(generic_spd_eeprom_t));
+ }
+}
+
+__attribute__((weak, alias("__get_spd")))
+void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
+
+void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
+ unsigned int ctrl_num)
+{
+ unsigned int i;
+ unsigned int i2c_address = 0;
+
+ if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
+ printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+ return;
+ }
+
+ for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
+ i2c_address = spd_i2c_addr[ctrl_num][i];
+ get_spd(&(ctrl_dimms_spd[i]), i2c_address);
+ }
+}
+#else
+void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
+ unsigned int ctrl_num)
+{
+}
+#endif /* SPD_EEPROM_ADDRESSx */
+
+/*
+ * ASSUMPTIONS:
+ * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
+ * - Same memory data bus width on all controllers
+ *
+ * NOTES:
+ *
+ * The memory controller and associated documentation use confusing
+ * terminology when referring to the orgranization of DRAM.
+ *
+ * Here is a terminology translation table:
+ *
+ * memory controller/documention |industry |this code |signals
+ * -------------------------------|-----------|-----------|-----------------
+ * physical bank/bank |rank |rank |chip select (CS)
+ * logical bank/sub-bank |bank |bank |bank address (BA)
+ * page/row |row |page |row address
+ * ??? |column |column |column address
+ *
+ * The naming confusion is further exacerbated by the descriptions of the
+ * memory controller interleaving feature, where accesses are interleaved
+ * _BETWEEN_ two seperate memory controllers. This is configured only in
+ * CS0_CONFIG[INTLV_CTL] of each memory controller.
+ *
+ * memory controller documentation | number of chip selects
+ * | per memory controller supported
+ * --------------------------------|-----------------------------------------
+ * cache line interleaving | 1 (CS0 only)
+ * page interleaving | 1 (CS0 only)
+ * bank interleaving | 1 (CS0 only)
+ * superbank interleraving | depends on bank (chip select)
+ * | interleraving [rank interleaving]
+ * | mode used on every memory controller
+ *
+ * Even further confusing is the existence of the interleaving feature
+ * _WITHIN_ each memory controller. The feature is referred to in
+ * documentation as chip select interleaving or bank interleaving,
+ * although it is configured in the DDR_SDRAM_CFG field.
+ *
+ * Name of field | documentation name | this code
+ * -----------------------------|-----------------------|------------------
+ * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
+ * | interleaving
+ */
+
+const char *step_string_tbl[] = {
+ "STEP_GET_SPD",
+ "STEP_COMPUTE_DIMM_PARMS",
+ "STEP_COMPUTE_COMMON_PARMS",
+ "STEP_GATHER_OPTS",
+ "STEP_ASSIGN_ADDRESSES",
+ "STEP_COMPUTE_REGS",
+ "STEP_PROGRAM_REGS",
+ "STEP_ALL"
+};
+
+const char * step_to_string(unsigned int step) {
+
+ unsigned int s = __ilog2(step);
+
+ if ((1 << s) != step)
+ return step_string_tbl[7];
+
+ return step_string_tbl[s];
+}
+
+static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
+ unsigned int dbw_cap_adj[])
+{
+ int i, j;
+ unsigned long long total_mem, current_mem_base, total_ctlr_mem;
+ unsigned long long rank_density, ctlr_density = 0;
+
+ /*
+ * If a reduced data width is requested, but the SPD
+ * specifies a physically wider device, adjust the
+ * computed dimm capacities accordingly before
+ * assigning addresses.
+ */
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ unsigned int found = 0;
+
+ switch (pinfo->memctl_opts[i].data_bus_width) {
+ case 2:
+ /* 16-bit */
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ unsigned int dw;
+ if (!pinfo->dimm_params[i][j].n_ranks)
+ continue;
+ dw = pinfo->dimm_params[i][j].primary_sdram_width;
+ if ((dw == 72 || dw == 64)) {
+ dbw_cap_adj[i] = 2;
+ break;
+ } else if ((dw == 40 || dw == 32)) {
+ dbw_cap_adj[i] = 1;
+ break;
+ }
+ }
+ break;
+
+ case 1:
+ /* 32-bit */
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ unsigned int dw;
+ dw = pinfo->dimm_params[i][j].data_width;
+ if (pinfo->dimm_params[i][j].n_ranks
+ && (dw == 72 || dw == 64)) {
+ /*
+ * FIXME: can't really do it
+ * like this because this just
+ * further reduces the memory
+ */
+ found = 1;
+ break;
+ }
+ }
+ if (found) {
+ dbw_cap_adj[i] = 1;
+ }
+ break;
+
+ case 0:
+ /* 64-bit */
+ break;
+
+ default:
+ printf("unexpected data bus width "
+ "specified controller %u\n", i);
+ return 1;
+ }
+ debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
+ }
+
+ current_mem_base = CONFIG_SYS_DDR_SDRAM_BASE;
+ total_mem = 0;
+ if (pinfo->memctl_opts[0].memctl_interleaving) {
+ rank_density = pinfo->dimm_params[0][0].rank_density >>
+ dbw_cap_adj[0];
+ switch (pinfo->memctl_opts[0].ba_intlv_ctl &
+ FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ ctlr_density = 4 * rank_density;
+ break;
+ case FSL_DDR_CS0_CS1:
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ ctlr_density = 2 * rank_density;
+ break;
+ case FSL_DDR_CS2_CS3:
+ default:
+ ctlr_density = rank_density;
+ break;
+ }
+ debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
+ rank_density, ctlr_density);
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (pinfo->memctl_opts[i].memctl_interleaving) {
+ switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ total_ctlr_mem = 2 * ctlr_density;
+ break;
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ total_ctlr_mem = 3 * ctlr_density;
+ break;
+ case FSL_DDR_4WAY_1KB_INTERLEAVING:
+ case FSL_DDR_4WAY_4KB_INTERLEAVING:
+ case FSL_DDR_4WAY_8KB_INTERLEAVING:
+ total_ctlr_mem = 4 * ctlr_density;
+ break;
+ default:
+ panic("Unknown interleaving mode");
+ }
+ pinfo->common_timing_params[i].base_address =
+ current_mem_base;
+ pinfo->common_timing_params[i].total_mem =
+ total_ctlr_mem;
+ total_mem = current_mem_base + total_ctlr_mem;
+ debug("ctrl %d base 0x%llx\n", i, current_mem_base);
+ debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+ } else {
+ /* when 3rd controller not interleaved */
+ current_mem_base = total_mem;
+ total_ctlr_mem = 0;
+ pinfo->common_timing_params[i].base_address =
+ current_mem_base;
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ unsigned long long cap =
+ pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
+ pinfo->dimm_params[i][j].base_address =
+ current_mem_base;
+ debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+ current_mem_base += cap;
+ total_ctlr_mem += cap;
+ }
+ debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+ pinfo->common_timing_params[i].total_mem =
+ total_ctlr_mem;
+ total_mem += total_ctlr_mem;
+ }
+ }
+ } else {
+ /*
+ * Simple linear assignment if memory
+ * controllers are not interleaved.
+ */
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ total_ctlr_mem = 0;
+ pinfo->common_timing_params[i].base_address =
+ current_mem_base;
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ /* Compute DIMM base addresses. */
+ unsigned long long cap =
+ pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
+ pinfo->dimm_params[i][j].base_address =
+ current_mem_base;
+ debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+ current_mem_base += cap;
+ total_ctlr_mem += cap;
+ }
+ debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+ pinfo->common_timing_params[i].total_mem =
+ total_ctlr_mem;
+ total_mem += total_ctlr_mem;
+ }
+ }
+ debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
+
+ return total_mem;
+}
+
+/* Use weak function to allow board file to override the address assignment */
+__attribute__((weak, alias("__step_assign_addresses")))
+unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
+ unsigned int dbw_cap_adj[]);
+
+unsigned long long
+fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
+ unsigned int size_only)
+{
+ unsigned int i, j;
+ unsigned long long total_mem = 0;
+ int assert_reset;
+
+ fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
+ common_timing_params_t *timing_params = pinfo->common_timing_params;
+ assert_reset = board_need_mem_reset();
+
+ /* data bus width capacity adjust shift amount */
+ unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
+
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ dbw_capacity_adjust[i] = 0;
+ }
+
+ debug("starting at step %u (%s)\n",
+ start_step, step_to_string(start_step));
+
+ switch (start_step) {
+ case STEP_GET_SPD:
+#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
+ /* STEP 1: Gather all DIMM SPD data */
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
+ }
+
+ case STEP_COMPUTE_DIMM_PARMS:
+ /* STEP 2: Compute DIMM parameters from SPD data */
+
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ unsigned int retval;
+ generic_spd_eeprom_t *spd =
+ &(pinfo->spd_installed_dimms[i][j]);
+ dimm_params_t *pdimm =
+ &(pinfo->dimm_params[i][j]);
+
+ retval = compute_dimm_parameters(spd, pdimm, i);
+#ifdef CONFIG_SYS_DDR_RAW_TIMING
+ if (!i && !j && retval) {
+ printf("SPD error on controller %d! "
+ "Trying fallback to raw timing "
+ "calculation\n", i);
+ fsl_ddr_get_dimm_params(pdimm, i, j);
+ }
+#else
+ if (retval == 2) {
+ printf("Error: compute_dimm_parameters"
+ " non-zero returned FATAL value "
+ "for memctl=%u dimm=%u\n", i, j);
+ return 0;
+ }
+#endif
+ if (retval) {
+ debug("Warning: compute_dimm_parameters"
+ " non-zero return value for memctl=%u "
+ "dimm=%u\n", i, j);
+ }
+ }
+ }
+
+#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
+ case STEP_COMPUTE_DIMM_PARMS:
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+ dimm_params_t *pdimm =
+ &(pinfo->dimm_params[i][j]);
+ fsl_ddr_get_dimm_params(pdimm, i, j);
+ }
+ }
+ debug("Filling dimm parameters from board specific file\n");
+#endif
+ case STEP_COMPUTE_COMMON_PARMS:
+ /*
+ * STEP 3: Compute a common set of timing parameters
+ * suitable for all of the DIMMs on each memory controller
+ */
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ debug("Computing lowest common DIMM"
+ " parameters for memctl=%u\n", i);
+ compute_lowest_common_dimm_parameters(
+ pinfo->dimm_params[i],
+ &timing_params[i],
+ CONFIG_DIMM_SLOTS_PER_CTLR);
+ }
+
+ case STEP_GATHER_OPTS:
+ /* STEP 4: Gather configuration requirements from user */
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ debug("Reloading memory controller "
+ "configuration options for memctl=%u\n", i);
+ /*
+ * This "reloads" the memory controller options
+ * to defaults. If the user "edits" an option,
+ * next_step points to the step after this,
+ * which is currently STEP_ASSIGN_ADDRESSES.
+ */
+ populate_memctl_options(
+ timing_params[i].all_dimms_registered,
+ &pinfo->memctl_opts[i],
+ pinfo->dimm_params[i], i);
+ /*
+ * For RDIMMs, JEDEC spec requires clocks to be stable
+ * before reset signal is deasserted. For the boards
+ * using fixed parameters, this function should be
+ * be called from board init file.
+ */
+ if (timing_params[i].all_dimms_registered)
+ assert_reset = 1;
+ }
+ if (assert_reset) {
+ debug("Asserting mem reset\n");
+ board_assert_mem_reset();
+ }
+
+ case STEP_ASSIGN_ADDRESSES:
+ /* STEP 5: Assign addresses to chip selects */
+ check_interleaving_options(pinfo);
+ total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
+
+ case STEP_COMPUTE_REGS:
+ /* STEP 6: compute controller register values */
+ debug("FSL Memory ctrl register computation\n");
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (timing_params[i].ndimms_present == 0) {
+ memset(&ddr_reg[i], 0,
+ sizeof(fsl_ddr_cfg_regs_t));
+ continue;
+ }
+
+ compute_fsl_memctl_config_regs(
+ &pinfo->memctl_opts[i],
+ &ddr_reg[i], &timing_params[i],
+ pinfo->dimm_params[i],
+ dbw_capacity_adjust[i],
+ size_only);
+ }
+
+ default:
+ break;
+ }
+
+ {
+ /*
+ * Compute the amount of memory available just by
+ * looking for the highest valid CSn_BNDS value.
+ * This allows us to also experiment with using
+ * only CS0 when using dual-rank DIMMs.
+ */
+ unsigned int max_end = 0;
+
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
+ fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
+ if (reg->cs[j].config & 0x80000000) {
+ unsigned int end;
+ /*
+ * 0xfffffff is a special value we put
+ * for unused bnds
+ */
+ if (reg->cs[j].bnds == 0xffffffff)
+ continue;
+ end = reg->cs[j].bnds & 0xffff;
+ if (end > max_end) {
+ max_end = end;
+ }
+ }
+ }
+ }
+
+ total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
+ 0xFFFFFFULL) - CONFIG_SYS_DDR_SDRAM_BASE;
+ }
+
+ return total_mem;
+}
+
+/*
+ * fsl_ddr_sdram() -- this is the main function to be called by
+ * initdram() in the board file.
+ *
+ * It returns amount of memory configured in bytes.
+ */
+phys_size_t fsl_ddr_sdram(void)
+{
+ unsigned int i;
+#ifdef CONFIG_PPC
+ unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
+#endif
+ unsigned long long total_memory;
+ fsl_ddr_info_t info;
+ int deassert_reset;
+
+ /* Reset info structure. */
+ memset(&info, 0, sizeof(fsl_ddr_info_t));
+
+ /* Compute it once normally. */
+#ifdef CONFIG_FSL_DDR_INTERACTIVE
+ if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
+ total_memory = fsl_ddr_interactive(&info, 0);
+ } else if (fsl_ddr_interactive_env_var_exists()) {
+ total_memory = fsl_ddr_interactive(&info, 1);
+ } else
+#endif
+ total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
+
+ /* setup 3-way interleaving before enabling DDRC */
+ if (info.memctl_opts[0].memctl_interleaving) {
+ switch (info.memctl_opts[0].memctl_interleaving_mode) {
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ fsl_ddr_set_intl3r(
+ info.memctl_opts[0].memctl_interleaving_mode);
+ break;
+ default:
+ break;
+ }
+ }
+
+ /*
+ * Program configuration registers.
+ * JEDEC specs requires clocks to be stable before deasserting reset
+ * for RDIMMs. Clocks start after chip select is enabled and clock
+ * control register is set. During step 1, all controllers have their
+ * registers set but not enabled. Step 2 proceeds after deasserting
+ * reset through board FPGA or GPIO.
+ * For non-registered DIMMs, initialization can go through but it is
+ * also OK to follow the same flow.
+ */
+ deassert_reset = board_need_mem_reset();
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (info.common_timing_params[i].all_dimms_registered)
+ deassert_reset = 1;
+ }
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ debug("Programming controller %u\n", i);
+ if (info.common_timing_params[i].ndimms_present == 0) {
+ debug("No dimms present on controller %u; "
+ "skipping programming\n", i);
+ continue;
+ }
+ /*
+ * The following call with step = 1 returns before enabling
+ * the controller. It has to finish with step = 2 later.
+ */
+ fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
+ deassert_reset ? 1 : 0);
+ }
+ if (deassert_reset) {
+ /* Use board FPGA or GPIO to deassert reset signal */
+ debug("Deasserting mem reset\n");
+ board_deassert_mem_reset();
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ /* Call with step = 2 to continue initialization */
+ fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
+ i, 2);
+ }
+ }
+
+#ifdef CONFIG_PPC
+ /* program LAWs */
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ if (info.memctl_opts[i].memctl_interleaving) {
+ switch (info.memctl_opts[i].memctl_interleaving_mode) {
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ if (i == 0) {
+ law_memctl = LAW_TRGT_IF_DDR_INTRLV;
+ fsl_ddr_set_lawbar(&info.common_timing_params[i],
+ law_memctl, i);
+ } else if (i == 2) {
+ law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
+ fsl_ddr_set_lawbar(&info.common_timing_params[i],
+ law_memctl, i);
+ }
+ break;
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
+ if (i == 0) {
+ fsl_ddr_set_lawbar(&info.common_timing_params[i],
+ law_memctl, i);
+ }
+ break;
+ case FSL_DDR_4WAY_1KB_INTERLEAVING:
+ case FSL_DDR_4WAY_4KB_INTERLEAVING:
+ case FSL_DDR_4WAY_8KB_INTERLEAVING:
+ law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
+ if (i == 0)
+ fsl_ddr_set_lawbar(&info.common_timing_params[i],
+ law_memctl, i);
+ /* place holder for future 4-way interleaving */
+ break;
+ default:
+ break;
+ }
+ } else {
+ switch (i) {
+ case 0:
+ law_memctl = LAW_TRGT_IF_DDR_1;
+ break;
+ case 1:
+ law_memctl = LAW_TRGT_IF_DDR_2;
+ break;
+ case 2:
+ law_memctl = LAW_TRGT_IF_DDR_3;
+ break;
+ case 3:
+ law_memctl = LAW_TRGT_IF_DDR_4;
+ break;
+ default:
+ break;
+ }
+ fsl_ddr_set_lawbar(&info.common_timing_params[i],
+ law_memctl, i);
+ }
+ }
+#endif
+
+ debug("total_memory by %s = %llu\n", __func__, total_memory);
+
+#if !defined(CONFIG_PHYS_64BIT)
+ /* Check for 4G or more. Bad. */
+ if (total_memory >= (1ull << 32)) {
+ puts("Detected ");
+ print_size(total_memory, " of memory\n");
+ printf(" This U-Boot only supports < 4G of DDR\n");
+ printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
+ printf(" "); /* re-align to match init_func_ram print */
+ total_memory = CONFIG_MAX_MEM_MAPPED;
+ }
+#endif
+
+ return total_memory;
+}
+
+/*
+ * fsl_ddr_sdram_size() - This function only returns the size of the total
+ * memory without setting ddr control registers.
+ */
+phys_size_t
+fsl_ddr_sdram_size(void)
+{
+ fsl_ddr_info_t info;
+ unsigned long long total_memory = 0;
+
+ memset(&info, 0 , sizeof(fsl_ddr_info_t));
+
+ /* Compute it once normally. */
+ total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
+
+ return total_memory;
+}
diff --git a/drivers/ddr/fsl/mpc85xx_ddr_gen1.c b/drivers/ddr/fsl/mpc85xx_ddr_gen1.c
new file mode 100644
index 0000000..8dd4a91
--- /dev/null
+++ b/drivers/ddr/fsl/mpc85xx_ddr_gen1.c
@@ -0,0 +1,91 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+ unsigned int ctrl_num, int step)
+{
+ unsigned int i;
+ struct ccsr_ddr __iomem *ddr =
+ (struct ccsr_ddr __iomem *)CONFIG_SYS_FSL_DDR_ADDR;
+
+ if (ctrl_num != 0) {
+ printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+ return;
+ }
+
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (i == 0) {
+ out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs0_config, regs->cs[i].config);
+
+ } else if (i == 1) {
+ out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs1_config, regs->cs[i].config);
+
+ } else if (i == 2) {
+ out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs2_config, regs->cs[i].config);
+
+ } else if (i == 3) {
+ out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs3_config, regs->cs[i].config);
+ }
+ }
+
+ out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+#if defined(CONFIG_MPC8555) || defined(CONFIG_MPC8541)
+ out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+#endif
+
+ /*
+ * 200 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ */
+ udelay(200);
+ asm volatile("sync;isync");
+
+ out_be32(&ddr->sdram_cfg, regs->ddr_sdram_cfg);
+
+ asm("sync;isync;msync");
+ udelay(500);
+}
+
+#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+/*
+ * Initialize all of memory for ECC, then enable errors.
+ */
+
+void
+ddr_enable_ecc(unsigned int dram_size)
+{
+ struct ccsr_ddr __iomem *ddr =
+ (struct ccsr_ddr __iomem *)(CONFIG_SYS_FSL_DDR_ADDR);
+
+ dma_meminit(CONFIG_MEM_INIT_VALUE, dram_size);
+
+ /*
+ * Enable errors for ECC.
+ */
+ debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
+ ddr->err_disable = 0x00000000;
+ asm("sync;isync;msync");
+ debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
+}
+
+#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */
diff --git a/drivers/ddr/fsl/mpc85xx_ddr_gen2.c b/drivers/ddr/fsl/mpc85xx_ddr_gen2.c
new file mode 100644
index 0000000..988b4a4
--- /dev/null
+++ b/drivers/ddr/fsl/mpc85xx_ddr_gen2.c
@@ -0,0 +1,96 @@
+/*
+ * Copyright 2008-2011 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <fsl_ddr_sdram.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+ unsigned int ctrl_num, int step)
+{
+ unsigned int i;
+ struct ccsr_ddr __iomem *ddr =
+ (struct ccsr_ddr __iomem *)CONFIG_SYS_FSL_DDR_ADDR;
+
+#if defined(CONFIG_SYS_FSL_ERRATUM_NMG_DDR120) && defined(CONFIG_MPC85xx)
+ ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
+ uint svr;
+#endif
+
+ if (ctrl_num) {
+ printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+ return;
+ }
+
+#ifdef CONFIG_SYS_FSL_ERRATUM_NMG_DDR120
+ /*
+ * Set the DDR IO receiver to an acceptable bias point.
+ * Fixed in Rev 2.1.
+ */
+ svr = get_svr();
+ if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0)) {
+ if ((regs->ddr_sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) ==
+ SDRAM_CFG_SDRAM_TYPE_DDR2)
+ out_be32(&gur->ddrioovcr, 0x90000000);
+ else
+ out_be32(&gur->ddrioovcr, 0xA8000000);
+ }
+#endif
+
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (i == 0) {
+ out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs0_config, regs->cs[i].config);
+
+ } else if (i == 1) {
+ out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs1_config, regs->cs[i].config);
+
+ } else if (i == 2) {
+ out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs2_config, regs->cs[i].config);
+
+ } else if (i == 3) {
+ out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs3_config, regs->cs[i].config);
+ }
+ }
+
+ out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+ out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+ out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+ out_be32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+ out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+ out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+ out_be32(&ddr->init_addr, regs->ddr_init_addr);
+ out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+ /*
+ * 200 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ */
+ udelay(200);
+ asm volatile("sync;isync");
+
+ out_be32(&ddr->sdram_cfg, regs->ddr_sdram_cfg);
+
+ /* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done. */
+ while (in_be32(&ddr->sdram_cfg_2) & 0x10) {
+ udelay(10000); /* throttle polling rate */
+ }
+}
diff --git a/drivers/ddr/fsl/mpc85xx_ddr_gen3.c b/drivers/ddr/fsl/mpc85xx_ddr_gen3.c
new file mode 100644
index 0000000..9f04133
--- /dev/null
+++ b/drivers/ddr/fsl/mpc85xx_ddr_gen3.c
@@ -0,0 +1,464 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+#include <asm/processor.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+
+/*
+ * regs has the to-be-set values for DDR controller registers
+ * ctrl_num is the DDR controller number
+ * step: 0 goes through the initialization in one pass
+ * 1 sets registers and returns before enabling controller
+ * 2 resumes from step 1 and continues to initialize
+ * Dividing the initialization to two steps to deassert DDR reset signal
+ * to comply with JEDEC specs for RDIMMs.
+ */
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+ unsigned int ctrl_num, int step)
+{
+ unsigned int i, bus_width;
+ struct ccsr_ddr __iomem *ddr;
+ u32 temp_sdram_cfg;
+ u32 total_gb_size_per_controller;
+ int timeout;
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+ int timeout_save;
+ volatile ccsr_local_ecm_t *ecm = (void *)CONFIG_SYS_MPC85xx_ECM_ADDR;
+ unsigned int csn_bnds_backup = 0, cs_sa, cs_ea, *csn_bnds_t;
+ int csn = -1;
+#endif
+
+ switch (ctrl_num) {
+ case 0:
+ ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+ break;
+#if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 1)
+ case 1:
+ ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
+ break;
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 2)
+ case 2:
+ ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR;
+ break;
+#endif
+#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 3)
+ case 3:
+ ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
+ break;
+#endif
+ default:
+ printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+ return;
+ }
+
+ if (step == 2)
+ goto step2;
+
+ if (regs->ddr_eor)
+ out_be32(&ddr->eor, regs->ddr_eor);
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+ debug("Workaround for ERRATUM_DDR111_DDR134\n");
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ cs_sa = (regs->cs[i].bnds >> 16) & 0xfff;
+ cs_ea = regs->cs[i].bnds & 0xfff;
+ if ((cs_sa <= 0xff) && (cs_ea >= 0xff)) {
+ csn = i;
+ csn_bnds_backup = regs->cs[i].bnds;
+ csn_bnds_t = (unsigned int *) &regs->cs[i].bnds;
+ if (cs_ea > 0xeff)
+ *csn_bnds_t = regs->cs[i].bnds + 0x01000000;
+ else
+ *csn_bnds_t = regs->cs[i].bnds + 0x01000100;
+ debug("Found cs%d_bns (0x%08x) covering 0xff000000, "
+ "change it to 0x%x\n",
+ csn, csn_bnds_backup, regs->cs[i].bnds);
+ break;
+ }
+ }
+#endif
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (i == 0) {
+ out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs0_config, regs->cs[i].config);
+ out_be32(&ddr->cs0_config_2, regs->cs[i].config_2);
+
+ } else if (i == 1) {
+ out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs1_config, regs->cs[i].config);
+ out_be32(&ddr->cs1_config_2, regs->cs[i].config_2);
+
+ } else if (i == 2) {
+ out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs2_config, regs->cs[i].config);
+ out_be32(&ddr->cs2_config_2, regs->cs[i].config_2);
+
+ } else if (i == 3) {
+ out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs3_config, regs->cs[i].config);
+ out_be32(&ddr->cs3_config_2, regs->cs[i].config_2);
+ }
+ }
+
+ out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+ out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+ out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+ out_be32(&ddr->sdram_mode_3, regs->ddr_sdram_mode_3);
+ out_be32(&ddr->sdram_mode_4, regs->ddr_sdram_mode_4);
+ out_be32(&ddr->sdram_mode_5, regs->ddr_sdram_mode_5);
+ out_be32(&ddr->sdram_mode_6, regs->ddr_sdram_mode_6);
+ out_be32(&ddr->sdram_mode_7, regs->ddr_sdram_mode_7);
+ out_be32(&ddr->sdram_mode_8, regs->ddr_sdram_mode_8);
+ out_be32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+ out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+ out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+ out_be32(&ddr->init_addr, regs->ddr_init_addr);
+ out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+ out_be32(&ddr->timing_cfg_4, regs->timing_cfg_4);
+ out_be32(&ddr->timing_cfg_5, regs->timing_cfg_5);
+ out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+ out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+#ifndef CONFIG_SYS_FSL_DDR_EMU
+ /*
+ * Skip these two registers if running on emulator
+ * because emulator doesn't have skew between bytes.
+ */
+
+ if (regs->ddr_wrlvl_cntl_2)
+ out_be32(&ddr->ddr_wrlvl_cntl_2, regs->ddr_wrlvl_cntl_2);
+ if (regs->ddr_wrlvl_cntl_3)
+ out_be32(&ddr->ddr_wrlvl_cntl_3, regs->ddr_wrlvl_cntl_3);
+#endif
+
+ out_be32(&ddr->ddr_sr_cntr, regs->ddr_sr_cntr);
+ out_be32(&ddr->ddr_sdram_rcw_1, regs->ddr_sdram_rcw_1);
+ out_be32(&ddr->ddr_sdram_rcw_2, regs->ddr_sdram_rcw_2);
+ out_be32(&ddr->ddr_cdr1, regs->ddr_cdr1);
+ out_be32(&ddr->ddr_cdr2, regs->ddr_cdr2);
+ out_be32(&ddr->err_disable, regs->err_disable);
+ out_be32(&ddr->err_int_en, regs->err_int_en);
+ for (i = 0; i < 32; i++) {
+ if (regs->debug[i]) {
+ debug("Write to debug_%d as %08x\n", i+1, regs->debug[i]);
+ out_be32(&ddr->debug[i], regs->debug[i]);
+ }
+ }
+#ifdef CONFIG_SYS_FSL_ERRATUM_A_004934
+ out_be32(&ddr->debug[28], 0x30003000);
+#endif
+
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR_A003474
+ out_be32(&ddr->debug[12], 0x00000015);
+ out_be32(&ddr->debug[21], 0x24000000);
+#endif /* CONFIG_SYS_FSL_ERRATUM_DDR_A003474 */
+
+ /*
+ * For RDIMMs, JEDEC spec requires clocks to be stable before reset is
+ * deasserted. Clocks start when any chip select is enabled and clock
+ * control register is set. Because all DDR components are connected to
+ * one reset signal, this needs to be done in two steps. Step 1 is to
+ * get the clocks started. Step 2 resumes after reset signal is
+ * deasserted.
+ */
+ if (step == 1) {
+ udelay(200);
+ return;
+ }
+
+step2:
+ /* Set, but do not enable the memory */
+ temp_sdram_cfg = regs->ddr_sdram_cfg;
+ temp_sdram_cfg &= ~(SDRAM_CFG_MEM_EN);
+ out_be32(&ddr->sdram_cfg, temp_sdram_cfg);
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR_A003
+ debug("Workaround for ERRATUM_DDR_A003\n");
+ if (regs->ddr_sdram_rcw_2 & 0x00f00000) {
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2 & 0xf07fffff);
+ out_be32(&ddr->debug[2], 0x00000400);
+ out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl & 0x7fffffff);
+ out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl & 0x7fffffff);
+ out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2 & 0xffffffeb);
+ out_be32(&ddr->mtcr, 0);
+ out_be32(&ddr->debug[12], 0x00000015);
+ out_be32(&ddr->debug[21], 0x24000000);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval & 0xffff);
+ out_be32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_BI | SDRAM_CFG_MEM_EN);
+
+ asm volatile("sync;isync");
+ while (!(in_be32(&ddr->debug[1]) & 0x2))
+ ;
+
+ switch (regs->ddr_sdram_rcw_2 & 0x00f00000) {
+ case 0x00000000:
+ out_be32(&ddr->sdram_md_cntl,
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL_CS0_CS1 |
+ 0x04000000 |
+ MD_CNTL_WRCW |
+ MD_CNTL_MD_VALUE(0x02));
+ break;
+ case 0x00100000:
+ out_be32(&ddr->sdram_md_cntl,
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL_CS0_CS1 |
+ 0x04000000 |
+ MD_CNTL_WRCW |
+ MD_CNTL_MD_VALUE(0x0a));
+ break;
+ case 0x00200000:
+ out_be32(&ddr->sdram_md_cntl,
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL_CS0_CS1 |
+ 0x04000000 |
+ MD_CNTL_WRCW |
+ MD_CNTL_MD_VALUE(0x12));
+ break;
+ case 0x00300000:
+ out_be32(&ddr->sdram_md_cntl,
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL_CS0_CS1 |
+ 0x04000000 |
+ MD_CNTL_WRCW |
+ MD_CNTL_MD_VALUE(0x1a));
+ break;
+ default:
+ out_be32(&ddr->sdram_md_cntl,
+ MD_CNTL_MD_EN |
+ MD_CNTL_CS_SEL_CS0_CS1 |
+ 0x04000000 |
+ MD_CNTL_WRCW |
+ MD_CNTL_MD_VALUE(0x02));
+ printf("Unsupported RC10\n");
+ break;
+ }
+
+ while (in_be32(&ddr->sdram_md_cntl) & 0x80000000)
+ ;
+ udelay(6);
+ out_be32(&ddr->sdram_cfg, temp_sdram_cfg);
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ out_be32(&ddr->debug[2], 0x0);
+ out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+ out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+ out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ out_be32(&ddr->debug[12], 0x0);
+ out_be32(&ddr->debug[21], 0x0);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+
+ }
+#endif
+ /*
+ * For 8572 DDR1 erratum - DDR controller may enter illegal state
+ * when operatiing in 32-bit bus mode with 4-beat bursts,
+ * This erratum does not affect DDR3 mode, only for DDR2 mode.
+ */
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR_115
+ debug("Workaround for ERRATUM_DDR_115\n");
+ if ((((in_be32(&ddr->sdram_cfg) >> 24) & 0x7) == SDRAM_TYPE_DDR2)
+ && in_be32(&ddr->sdram_cfg) & 0x80000) {
+ /* set DEBUG_1[31] */
+ setbits_be32(&ddr->debug[0], 1);
+ }
+#endif
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+ debug("Workaround for ERRATUM_DDR111_DDR134\n");
+ /*
+ * This is the combined workaround for DDR111 and DDR134
+ * following the published errata for MPC8572
+ */
+
+ /* 1. Set EEBACR[3] */
+ setbits_be32(&ecm->eebacr, 0x10000000);
+ debug("Setting EEBACR[3] to 0x%08x\n", in_be32(&ecm->eebacr));
+
+ /* 2. Set DINIT in SDRAM_CFG_2*/
+ setbits_be32(&ddr->sdram_cfg_2, SDRAM_CFG2_D_INIT);
+ debug("Setting sdram_cfg_2[D_INIT] to 0x%08x\n",
+ in_be32(&ddr->sdram_cfg_2));
+
+ /* 3. Set DEBUG_3[21] */
+ setbits_be32(&ddr->debug[2], 0x400);
+ debug("Setting DEBUG_3[21] to 0x%08x\n", in_be32(&ddr->debug[2]));
+
+#endif /* part 1 of the workaound */
+
+ /*
+ * 500 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ * DDR2 need 200 us, and DDR3 need 500 us from spec,
+ * we choose the max, that is 500 us for all of case.
+ */
+ udelay(500);
+ asm volatile("sync;isync");
+
+ /* Let the controller go */
+ temp_sdram_cfg = in_be32(&ddr->sdram_cfg) & ~SDRAM_CFG_BI;
+ out_be32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_MEM_EN);
+ asm volatile("sync;isync");
+
+ total_gb_size_per_controller = 0;
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (!(regs->cs[i].config & 0x80000000))
+ continue;
+ total_gb_size_per_controller += 1 << (
+ ((regs->cs[i].config >> 14) & 0x3) + 2 +
+ ((regs->cs[i].config >> 8) & 0x7) + 12 +
+ ((regs->cs[i].config >> 0) & 0x7) + 8 +
+ 3 - ((regs->ddr_sdram_cfg >> 19) & 0x3) -
+ 26); /* minus 26 (count of 64M) */
+ }
+ if (fsl_ddr_get_intl3r() & 0x80000000) /* 3-way interleaving */
+ total_gb_size_per_controller *= 3;
+ else if (regs->cs[0].config & 0x20000000) /* 2-way interleaving */
+ total_gb_size_per_controller <<= 1;
+ /*
+ * total memory / bus width = transactions needed
+ * transactions needed / data rate = seconds
+ * to add plenty of buffer, double the time
+ * For example, 2GB on 666MT/s 64-bit bus takes about 402ms
+ * Let's wait for 800ms
+ */
+ bus_width = 3 - ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK)
+ >> SDRAM_CFG_DBW_SHIFT);
+ timeout = ((total_gb_size_per_controller << (6 - bus_width)) * 100 /
+ (get_ddr_freq(0) >> 20)) << 1;
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+ timeout_save = timeout;
+#endif
+ total_gb_size_per_controller >>= 4; /* shift down to gb size */
+ debug("total %d GB\n", total_gb_size_per_controller);
+ debug("Need to wait up to %d * 10ms\n", timeout);
+
+ /* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done. */
+ while ((in_be32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+ (timeout >= 0)) {
+ udelay(10000); /* throttle polling rate */
+ timeout--;
+ }
+
+ if (timeout <= 0)
+ printf("Waiting for D_INIT timeout. Memory may not work.\n");
+
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+ /* continue this workaround */
+
+ /* 4. Clear DEBUG3[21] */
+ clrbits_be32(&ddr->debug[2], 0x400);
+ debug("Clearing D3[21] to 0x%08x\n", in_be32(&ddr->debug[2]));
+
+ /* DDR134 workaround starts */
+ /* A: Clear sdram_cfg_2[odt_cfg] */
+ clrbits_be32(&ddr->sdram_cfg_2, SDRAM_CFG2_ODT_CFG_MASK);
+ debug("Clearing SDRAM_CFG2[ODT_CFG] to 0x%08x\n",
+ in_be32(&ddr->sdram_cfg_2));
+
+ /* B: Set DEBUG1[15] */
+ setbits_be32(&ddr->debug[0], 0x10000);
+ debug("Setting D1[15] to 0x%08x\n", in_be32(&ddr->debug[0]));
+
+ /* C: Set timing_cfg_2[cpo] to 0b11111 */
+ setbits_be32(&ddr->timing_cfg_2, TIMING_CFG_2_CPO_MASK);
+ debug("Setting TMING_CFG_2[CPO] to 0x%08x\n",
+ in_be32(&ddr->timing_cfg_2));
+
+ /* D: Set D6 to 0x9f9f9f9f */
+ out_be32(&ddr->debug[5], 0x9f9f9f9f);
+ debug("Setting D6 to 0x%08x\n", in_be32(&ddr->debug[5]));
+
+ /* E: Set D7 to 0x9f9f9f9f */
+ out_be32(&ddr->debug[6], 0x9f9f9f9f);
+ debug("Setting D7 to 0x%08x\n", in_be32(&ddr->debug[6]));
+
+ /* F: Set D2[20] */
+ setbits_be32(&ddr->debug[1], 0x800);
+ debug("Setting D2[20] to 0x%08x\n", in_be32(&ddr->debug[1]));
+
+ /* G: Poll on D2[20] until cleared */
+ while (in_be32(&ddr->debug[1]) & 0x800)
+ udelay(10000); /* throttle polling rate */
+
+ /* H: Clear D1[15] */
+ clrbits_be32(&ddr->debug[0], 0x10000);
+ debug("Setting D1[15] to 0x%08x\n", in_be32(&ddr->debug[0]));
+
+ /* I: Set sdram_cfg_2[odt_cfg] */
+ setbits_be32(&ddr->sdram_cfg_2,
+ regs->ddr_sdram_cfg_2 & SDRAM_CFG2_ODT_CFG_MASK);
+ debug("Setting sdram_cfg_2 to 0x%08x\n", in_be32(&ddr->sdram_cfg_2));
+
+ /* Continuing with the DDR111 workaround */
+ /* 5. Set D2[21] */
+ setbits_be32(&ddr->debug[1], 0x400);
+ debug("Setting D2[21] to 0x%08x\n", in_be32(&ddr->debug[1]));
+
+ /* 6. Poll D2[21] until its cleared */
+ while (in_be32(&ddr->debug[1]) & 0x400)
+ udelay(10000); /* throttle polling rate */
+
+ /* 7. Wait for state machine 2nd run, roughly 400ms/GB */
+ debug("Wait for %d * 10ms\n", timeout_save);
+ udelay(timeout_save * 10000);
+
+ /* 8. Set sdram_cfg_2[dinit] if options requires */
+ setbits_be32(&ddr->sdram_cfg_2,
+ regs->ddr_sdram_cfg_2 & SDRAM_CFG2_D_INIT);
+ debug("Setting sdram_cfg_2 to 0x%08x\n", in_be32(&ddr->sdram_cfg_2));
+
+ /* 9. Poll until dinit is cleared */
+ timeout = timeout_save;
+ debug("Need to wait up to %d * 10ms\n", timeout);
+ while ((in_be32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+ (timeout >= 0)) {
+ udelay(10000); /* throttle polling rate */
+ timeout--;
+ }
+
+ if (timeout <= 0)
+ printf("Waiting for D_INIT timeout. Memory may not work.\n");
+
+ /* 10. Clear EEBACR[3] */
+ clrbits_be32(&ecm->eebacr, 10000000);
+ debug("Clearing EEBACR[3] to 0x%08x\n", in_be32(&ecm->eebacr));
+
+ if (csn != -1) {
+ csn_bnds_t = (unsigned int *) &regs->cs[csn].bnds;
+ *csn_bnds_t = csn_bnds_backup;
+ debug("Change cs%d_bnds back to 0x%08x\n",
+ csn, regs->cs[csn].bnds);
+ setbits_be32(&ddr->sdram_cfg, 0x2); /* MEM_HALT */
+ switch (csn) {
+ case 0:
+ out_be32(&ddr->cs0_bnds, regs->cs[csn].bnds);
+ break;
+ case 1:
+ out_be32(&ddr->cs1_bnds, regs->cs[csn].bnds);
+ break;
+ case 2:
+ out_be32(&ddr->cs2_bnds, regs->cs[csn].bnds);
+ break;
+ case 3:
+ out_be32(&ddr->cs3_bnds, regs->cs[csn].bnds);
+ break;
+ }
+ clrbits_be32(&ddr->sdram_cfg, 0x2);
+ }
+#endif /* CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134 */
+}
diff --git a/drivers/ddr/fsl/mpc86xx_ddr.c b/drivers/ddr/fsl/mpc86xx_ddr.c
new file mode 100644
index 0000000..4551ed8
--- /dev/null
+++ b/drivers/ddr/fsl/mpc86xx_ddr.c
@@ -0,0 +1,85 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+ unsigned int ctrl_num, int step)
+{
+ unsigned int i;
+ struct ccsr_ddr __iomem *ddr;
+
+ switch (ctrl_num) {
+ case 0:
+ ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+ break;
+ case 1:
+ ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
+ break;
+ default:
+ printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+ return;
+ }
+
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+ if (i == 0) {
+ out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs0_config, regs->cs[i].config);
+
+ } else if (i == 1) {
+ out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs1_config, regs->cs[i].config);
+
+ } else if (i == 2) {
+ out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs2_config, regs->cs[i].config);
+
+ } else if (i == 3) {
+ out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+ out_be32(&ddr->cs3_config, regs->cs[i].config);
+ }
+ }
+
+ out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+ out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+ out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+ out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+ out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+ out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+ out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+ out_be32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+ out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+ out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+ out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+ out_be32(&ddr->init_addr, regs->ddr_init_addr);
+ out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+ debug("before go\n");
+
+ /*
+ * 200 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ */
+ udelay(200);
+ asm volatile("sync;isync");
+
+ out_be32(&ddr->sdram_cfg, regs->ddr_sdram_cfg);
+
+ /*
+ * Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done
+ */
+ while (in_be32(&ddr->sdram_cfg_2) & 0x10) {
+ udelay(10000); /* throttle polling rate */
+ }
+}
diff --git a/drivers/ddr/fsl/options.c b/drivers/ddr/fsl/options.c
new file mode 100644
index 0000000..4aafcce
--- /dev/null
+++ b/drivers/ddr/fsl/options.c
@@ -0,0 +1,1147 @@
+/*
+ * Copyright 2008, 2010-2012 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <hwconfig.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+/*
+ * Use our own stack based buffer before relocation to allow accessing longer
+ * hwconfig strings that might be in the environment before we've relocated.
+ * This is pretty fragile on both the use of stack and if the buffer is big
+ * enough. However we will get a warning from getenv_f for the later.
+ */
+
+/* Board-specific functions defined in each board's ddr.c */
+extern void fsl_ddr_board_options(memctl_options_t *popts,
+ dimm_params_t *pdimm,
+ unsigned int ctrl_num);
+
+struct dynamic_odt {
+ unsigned int odt_rd_cfg;
+ unsigned int odt_wr_cfg;
+ unsigned int odt_rtt_norm;
+ unsigned int odt_rtt_wr;
+};
+
+#ifdef CONFIG_SYS_FSL_DDR3
+static const struct dynamic_odt single_Q[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER, /* tied high */
+ DDR3_RTT_OFF,
+ DDR3_RTT_120_OHM
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER, /* tied high */
+ DDR3_RTT_OFF,
+ DDR3_RTT_120_OHM
+ }
+};
+
+static const struct dynamic_odt single_D[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR3_RTT_OFF,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_DS[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0}
+};
+static const struct dynamic_odt dual_SD[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR3_RTT_20_OHM,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_SS[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_ALL,
+ DDR3_RTT_30_OHM,
+ DDR3_RTT_120_OHM
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR3_RTT_OFF,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_SAME_DIMM,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR3_RTT_OFF,
+ DDR3_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_S0[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_40_OHM,
+ DDR3_RTT_OFF
+ },
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR3_RTT_120_OHM,
+ DDR3_RTT_OFF
+ }
+};
+#else /* CONFIG_SYS_FSL_DDR3 */
+static const struct dynamic_odt single_Q[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_D[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_DS[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_SD[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_SS[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_OTHER_DIMM,
+ FSL_DDR_ODT_OTHER_DIMM,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_ALL,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+
+static const struct dynamic_odt dual_S0[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S[4] = {
+ {0, 0, 0, 0},
+ {0, 0, 0, 0},
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_150_OHM,
+ DDR2_RTT_OFF
+ },
+ {0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown[4] = {
+ { /* cs0 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs1 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ },
+ { /* cs2 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_CS,
+ DDR2_RTT_75_OHM,
+ DDR2_RTT_OFF
+ },
+ { /* cs3 */
+ FSL_DDR_ODT_NEVER,
+ FSL_DDR_ODT_NEVER,
+ DDR2_RTT_OFF,
+ DDR2_RTT_OFF
+ }
+};
+#endif
+
+/*
+ * Automatically seleect bank interleaving mode based on DIMMs
+ * in this order: cs0_cs1_cs2_cs3, cs0_cs1, null.
+ * This function only deal with one or two slots per controller.
+ */
+static inline unsigned int auto_bank_intlv(dimm_params_t *pdimm)
+{
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+ if (pdimm[0].n_ranks == 4)
+ return FSL_DDR_CS0_CS1_CS2_CS3;
+ else if (pdimm[0].n_ranks == 2)
+ return FSL_DDR_CS0_CS1;
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+ if (pdimm[0].n_ranks == 4)
+ return FSL_DDR_CS0_CS1_CS2_CS3;
+#endif
+ if (pdimm[0].n_ranks == 2) {
+ if (pdimm[1].n_ranks == 2)
+ return FSL_DDR_CS0_CS1_CS2_CS3;
+ else
+ return FSL_DDR_CS0_CS1;
+ }
+#endif
+ return 0;
+}
+
+unsigned int populate_memctl_options(int all_dimms_registered,
+ memctl_options_t *popts,
+ dimm_params_t *pdimm,
+ unsigned int ctrl_num)
+{
+ unsigned int i;
+ char buffer[HWCONFIG_BUFFER_SIZE];
+ char *buf = NULL;
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR2)
+ const struct dynamic_odt *pdodt = odt_unknown;
+#endif
+ ulong ddr_freq;
+
+ /*
+ * Extract hwconfig from environment since we have not properly setup
+ * the environment but need it for ddr config params
+ */
+ if (getenv_f("hwconfig", buffer, sizeof(buffer)) > 0)
+ buf = buffer;
+
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR2)
+ /* Chip select options. */
+ if (CONFIG_DIMM_SLOTS_PER_CTLR == 1) {
+ switch (pdimm[0].n_ranks) {
+ case 1:
+ pdodt = single_S;
+ break;
+ case 2:
+ pdodt = single_D;
+ break;
+ case 4:
+ pdodt = single_Q;
+ break;
+ }
+ } else if (CONFIG_DIMM_SLOTS_PER_CTLR == 2) {
+ switch (pdimm[0].n_ranks) {
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+ case 4:
+ pdodt = single_Q;
+ if (pdimm[1].n_ranks)
+ printf("Error: Quad- and Dual-rank DIMMs "
+ "cannot be used together\n");
+ break;
+#endif
+ case 2:
+ switch (pdimm[1].n_ranks) {
+ case 2:
+ pdodt = dual_DD;
+ break;
+ case 1:
+ pdodt = dual_DS;
+ break;
+ case 0:
+ pdodt = dual_D0;
+ break;
+ }
+ break;
+ case 1:
+ switch (pdimm[1].n_ranks) {
+ case 2:
+ pdodt = dual_SD;
+ break;
+ case 1:
+ pdodt = dual_SS;
+ break;
+ case 0:
+ pdodt = dual_S0;
+ break;
+ }
+ break;
+ case 0:
+ switch (pdimm[1].n_ranks) {
+ case 2:
+ pdodt = dual_0D;
+ break;
+ case 1:
+ pdodt = dual_0S;
+ break;
+ }
+ break;
+ }
+ }
+#endif
+
+ /* Pick chip-select local options. */
+ for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR2)
+ popts->cs_local_opts[i].odt_rd_cfg = pdodt[i].odt_rd_cfg;
+ popts->cs_local_opts[i].odt_wr_cfg = pdodt[i].odt_wr_cfg;
+ popts->cs_local_opts[i].odt_rtt_norm = pdodt[i].odt_rtt_norm;
+ popts->cs_local_opts[i].odt_rtt_wr = pdodt[i].odt_rtt_wr;
+#else
+ popts->cs_local_opts[i].odt_rd_cfg = FSL_DDR_ODT_NEVER;
+ popts->cs_local_opts[i].odt_wr_cfg = FSL_DDR_ODT_CS;
+#endif
+ popts->cs_local_opts[i].auto_precharge = 0;
+ }
+
+ /* Pick interleaving mode. */
+
+ /*
+ * 0 = no interleaving
+ * 1 = interleaving between 2 controllers
+ */
+ popts->memctl_interleaving = 0;
+
+ /*
+ * 0 = cacheline
+ * 1 = page
+ * 2 = (logical) bank
+ * 3 = superbank (only if CS interleaving is enabled)
+ */
+ popts->memctl_interleaving_mode = 0;
+
+ /*
+ * 0: cacheline: bit 30 of the 36-bit physical addr selects the memctl
+ * 1: page: bit to the left of the column bits selects the memctl
+ * 2: bank: bit to the left of the bank bits selects the memctl
+ * 3: superbank: bit to the left of the chip select selects the memctl
+ *
+ * NOTE: ba_intlv (rank interleaving) is independent of memory
+ * controller interleaving; it is only within a memory controller.
+ * Must use superbank interleaving if rank interleaving is used and
+ * memory controller interleaving is enabled.
+ */
+
+ /*
+ * 0 = no
+ * 0x40 = CS0,CS1
+ * 0x20 = CS2,CS3
+ * 0x60 = CS0,CS1 + CS2,CS3
+ * 0x04 = CS0,CS1,CS2,CS3
+ */
+ popts->ba_intlv_ctl = 0;
+
+ /* Memory Organization Parameters */
+ popts->registered_dimm_en = all_dimms_registered;
+
+ /* Operational Mode Paramters */
+
+ /* Pick ECC modes */
+ popts->ecc_mode = 0; /* 0 = disabled, 1 = enabled */
+#ifdef CONFIG_DDR_ECC
+ if (hwconfig_sub_f("fsl_ddr", "ecc", buf)) {
+ if (hwconfig_subarg_cmp_f("fsl_ddr", "ecc", "on", buf))
+ popts->ecc_mode = 1;
+ } else
+ popts->ecc_mode = 1;
+#endif
+ popts->ecc_init_using_memctl = 1; /* 0 = use DMA, 1 = use memctl */
+
+ /*
+ * Choose DQS config
+ * 0 for DDR1
+ * 1 for DDR2
+ */
+#if defined(CONFIG_SYS_FSL_DDR1)
+ popts->dqs_config = 0;
+#elif defined(CONFIG_SYS_FSL_DDR2) || defined(CONFIG_SYS_FSL_DDR3)
+ popts->dqs_config = 1;
+#endif
+
+ /* Choose self-refresh during sleep. */
+ popts->self_refresh_in_sleep = 1;
+
+ /* Choose dynamic power management mode. */
+ popts->dynamic_power = 0;
+
+ /*
+ * check first dimm for primary sdram width
+ * presuming all dimms are similar
+ * 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
+ */
+#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
+ if (pdimm[0].n_ranks != 0) {
+ if ((pdimm[0].data_width >= 64) && \
+ (pdimm[0].data_width <= 72))
+ popts->data_bus_width = 0;
+ else if ((pdimm[0].data_width >= 32) || \
+ (pdimm[0].data_width <= 40))
+ popts->data_bus_width = 1;
+ else {
+ panic("Error: data width %u is invalid!\n",
+ pdimm[0].data_width);
+ }
+ }
+#else
+ if (pdimm[0].n_ranks != 0) {
+ if (pdimm[0].primary_sdram_width == 64)
+ popts->data_bus_width = 0;
+ else if (pdimm[0].primary_sdram_width == 32)
+ popts->data_bus_width = 1;
+ else if (pdimm[0].primary_sdram_width == 16)
+ popts->data_bus_width = 2;
+ else {
+ panic("Error: primary sdram width %u is invalid!\n",
+ pdimm[0].primary_sdram_width);
+ }
+ }
+#endif
+
+ popts->x4_en = (pdimm[0].device_width == 4) ? 1 : 0;
+
+ /* Choose burst length. */
+#if defined(CONFIG_SYS_FSL_DDR3)
+#if defined(CONFIG_E500MC)
+ popts->otf_burst_chop_en = 0; /* on-the-fly burst chop disable */
+ popts->burst_length = DDR_BL8; /* Fixed 8-beat burst len */
+#else
+ if ((popts->data_bus_width == 1) || (popts->data_bus_width == 2)) {
+ /* 32-bit or 16-bit bus */
+ popts->otf_burst_chop_en = 0;
+ popts->burst_length = DDR_BL8;
+ } else {
+ popts->otf_burst_chop_en = 1; /* on-the-fly burst chop */
+ popts->burst_length = DDR_OTF; /* on-the-fly BC4 and BL8 */
+ }
+#endif
+#else
+ popts->burst_length = DDR_BL4; /* has to be 4 for DDR2 */
+#endif
+
+ /* Choose ddr controller address mirror mode */
+#if defined(CONFIG_SYS_FSL_DDR3)
+ popts->mirrored_dimm = pdimm[0].mirrored_dimm;
+#endif
+
+ /* Global Timing Parameters. */
+ debug("mclk_ps = %u ps\n", get_memory_clk_period_ps());
+
+ /* Pick a caslat override. */
+ popts->cas_latency_override = 0;
+ popts->cas_latency_override_value = 3;
+ if (popts->cas_latency_override) {
+ debug("using caslat override value = %u\n",
+ popts->cas_latency_override_value);
+ }
+
+ /* Decide whether to use the computed derated latency */
+ popts->use_derated_caslat = 0;
+
+ /* Choose an additive latency. */
+ popts->additive_latency_override = 0;
+ popts->additive_latency_override_value = 3;
+ if (popts->additive_latency_override) {
+ debug("using additive latency override value = %u\n",
+ popts->additive_latency_override_value);
+ }
+
+ /*
+ * 2T_EN setting
+ *
+ * Factors to consider for 2T_EN:
+ * - number of DIMMs installed
+ * - number of components, number of active ranks
+ * - how much time you want to spend playing around
+ */
+ popts->twot_en = 0;
+ popts->threet_en = 0;
+
+ /* for RDIMM, address parity enable */
+ popts->ap_en = 1;
+
+ /*
+ * BSTTOPRE precharge interval
+ *
+ * Set this to 0 for global auto precharge
+ *
+ * FIXME: Should this be configured in picoseconds?
+ * Why it should be in ps: better understanding of this
+ * relative to actual DRAM timing parameters such as tRAS.
+ * e.g. tRAS(min) = 40 ns
+ */
+ popts->bstopre = 0x100;
+
+ /* Minimum CKE pulse width -- tCKE(MIN) */
+ popts->tcke_clock_pulse_width_ps
+ = mclk_to_picos(FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR);
+
+ /*
+ * Window for four activates -- tFAW
+ *
+ * FIXME: UM: applies only to DDR2/DDR3 with eight logical banks only
+ * FIXME: varies depending upon number of column addresses or data
+ * FIXME: width, was considering looking at pdimm->primary_sdram_width
+ */
+#if defined(CONFIG_SYS_FSL_DDR1)
+ popts->tfaw_window_four_activates_ps = mclk_to_picos(1);
+
+#elif defined(CONFIG_SYS_FSL_DDR2)
+ /*
+ * x4/x8; some datasheets have 35000
+ * x16 wide columns only? Use 50000?
+ */
+ popts->tfaw_window_four_activates_ps = 37500;
+
+#elif defined(CONFIG_SYS_FSL_DDR3)
+ popts->tfaw_window_four_activates_ps = pdimm[0].tfaw_ps;
+#endif
+ popts->zq_en = 0;
+ popts->wrlvl_en = 0;
+#if defined(CONFIG_SYS_FSL_DDR3)
+ /*
+ * due to ddr3 dimm is fly-by topology
+ * we suggest to enable write leveling to
+ * meet the tQDSS under different loading.
+ */
+ popts->wrlvl_en = 1;
+ popts->zq_en = 1;
+ popts->wrlvl_override = 0;
+#endif
+
+ /*
+ * Check interleaving configuration from environment.
+ * Please refer to doc/README.fsl-ddr for the detail.
+ *
+ * If memory controller interleaving is enabled, then the data
+ * bus widths must be programmed identically for all memory controllers.
+ *
+ * XXX: Attempt to set all controllers to the same chip select
+ * interleaving mode. It will do a best effort to get the
+ * requested ranks interleaved together such that the result
+ * should be a subset of the requested configuration.
+ */
+#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
+ if (!hwconfig_sub_f("fsl_ddr", "ctlr_intlv", buf))
+ goto done;
+
+ if (pdimm[0].n_ranks == 0) {
+ printf("There is no rank on CS0 for controller %d.\n", ctrl_num);
+ popts->memctl_interleaving = 0;
+ goto done;
+ }
+ popts->memctl_interleaving = 1;
+ /*
+ * test null first. if CONFIG_HWCONFIG is not defined
+ * hwconfig_arg_cmp returns non-zero
+ */
+ if (hwconfig_subarg_cmp_f("fsl_ddr", "ctlr_intlv",
+ "null", buf)) {
+ popts->memctl_interleaving = 0;
+ debug("memory controller interleaving disabled.\n");
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "cacheline", buf)) {
+ popts->memctl_interleaving_mode =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : FSL_DDR_CACHE_LINE_INTERLEAVING;
+ popts->memctl_interleaving =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : 1;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "page", buf)) {
+ popts->memctl_interleaving_mode =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : FSL_DDR_PAGE_INTERLEAVING;
+ popts->memctl_interleaving =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : 1;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "bank", buf)) {
+ popts->memctl_interleaving_mode =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : FSL_DDR_BANK_INTERLEAVING;
+ popts->memctl_interleaving =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : 1;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "superbank", buf)) {
+ popts->memctl_interleaving_mode =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : FSL_DDR_SUPERBANK_INTERLEAVING;
+ popts->memctl_interleaving =
+ ((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+ 0 : 1;
+#if (CONFIG_NUM_DDR_CONTROLLERS == 3)
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "3way_1KB", buf)) {
+ popts->memctl_interleaving_mode =
+ FSL_DDR_3WAY_1KB_INTERLEAVING;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "3way_4KB", buf)) {
+ popts->memctl_interleaving_mode =
+ FSL_DDR_3WAY_4KB_INTERLEAVING;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "3way_8KB", buf)) {
+ popts->memctl_interleaving_mode =
+ FSL_DDR_3WAY_8KB_INTERLEAVING;
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 4)
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "4way_1KB", buf)) {
+ popts->memctl_interleaving_mode =
+ FSL_DDR_4WAY_1KB_INTERLEAVING;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "4way_4KB", buf)) {
+ popts->memctl_interleaving_mode =
+ FSL_DDR_4WAY_4KB_INTERLEAVING;
+ } else if (hwconfig_subarg_cmp_f("fsl_ddr",
+ "ctlr_intlv",
+ "4way_8KB", buf)) {
+ popts->memctl_interleaving_mode =
+ FSL_DDR_4WAY_8KB_INTERLEAVING;
+#endif
+ } else {
+ popts->memctl_interleaving = 0;
+ printf("hwconfig has unrecognized parameter for ctlr_intlv.\n");
+ }
+done:
+#endif
+ if ((hwconfig_sub_f("fsl_ddr", "bank_intlv", buf)) &&
+ (CONFIG_CHIP_SELECTS_PER_CTRL > 1)) {
+ /* test null first. if CONFIG_HWCONFIG is not defined,
+ * hwconfig_subarg_cmp_f returns non-zero */
+ if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+ "null", buf))
+ debug("bank interleaving disabled.\n");
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+ "cs0_cs1", buf))
+ popts->ba_intlv_ctl = FSL_DDR_CS0_CS1;
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+ "cs2_cs3", buf))
+ popts->ba_intlv_ctl = FSL_DDR_CS2_CS3;
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+ "cs0_cs1_and_cs2_cs3", buf))
+ popts->ba_intlv_ctl = FSL_DDR_CS0_CS1_AND_CS2_CS3;
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+ "cs0_cs1_cs2_cs3", buf))
+ popts->ba_intlv_ctl = FSL_DDR_CS0_CS1_CS2_CS3;
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+ "auto", buf))
+ popts->ba_intlv_ctl = auto_bank_intlv(pdimm);
+ else
+ printf("hwconfig has unrecognized parameter for bank_intlv.\n");
+ switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+ if (pdimm[0].n_ranks < 4) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(chip-select) for "
+ "CS0+CS1+CS2+CS3 on controller %d, "
+ "interleaving disabled!\n", ctrl_num);
+ }
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+ if (pdimm[0].n_ranks == 4)
+ break;
+#endif
+ if ((pdimm[0].n_ranks < 2) && (pdimm[1].n_ranks < 2)) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(chip-select) for "
+ "CS0+CS1+CS2+CS3 on controller %d, "
+ "interleaving disabled!\n", ctrl_num);
+ }
+ if (pdimm[0].capacity != pdimm[1].capacity) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not identical DIMM size for "
+ "CS0+CS1+CS2+CS3 on controller %d, "
+ "interleaving disabled!\n", ctrl_num);
+ }
+#endif
+ break;
+ case FSL_DDR_CS0_CS1:
+ if (pdimm[0].n_ranks < 2) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(chip-select) for "
+ "CS0+CS1 on controller %d, "
+ "interleaving disabled!\n", ctrl_num);
+ }
+ break;
+ case FSL_DDR_CS2_CS3:
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+ if (pdimm[0].n_ranks < 4) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(chip-select) for CS2+CS3 "
+ "on controller %d, interleaving disabled!\n", ctrl_num);
+ }
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+ if (pdimm[1].n_ranks < 2) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(chip-select) for CS2+CS3 "
+ "on controller %d, interleaving disabled!\n", ctrl_num);
+ }
+#endif
+ break;
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+ if (pdimm[0].n_ranks < 4) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(CS) for CS0+CS1 and "
+ "CS2+CS3 on controller %d, "
+ "interleaving disabled!\n", ctrl_num);
+ }
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+ if ((pdimm[0].n_ranks < 2) || (pdimm[1].n_ranks < 2)) {
+ popts->ba_intlv_ctl = 0;
+ printf("Not enough bank(CS) for CS0+CS1 and "
+ "CS2+CS3 on controller %d, "
+ "interleaving disabled!\n", ctrl_num);
+ }
+#endif
+ break;
+ default:
+ popts->ba_intlv_ctl = 0;
+ break;
+ }
+ }
+
+ if (hwconfig_sub_f("fsl_ddr", "addr_hash", buf)) {
+ if (hwconfig_subarg_cmp_f("fsl_ddr", "addr_hash", "null", buf))
+ popts->addr_hash = 0;
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "addr_hash",
+ "true", buf))
+ popts->addr_hash = 1;
+ }
+
+ if (pdimm[0].n_ranks == 4)
+ popts->quad_rank_present = 1;
+
+ ddr_freq = get_ddr_freq(0) / 1000000;
+ if (popts->registered_dimm_en) {
+ popts->rcw_override = 1;
+ popts->rcw_1 = 0x000a5a00;
+ if (ddr_freq <= 800)
+ popts->rcw_2 = 0x00000000;
+ else if (ddr_freq <= 1066)
+ popts->rcw_2 = 0x00100000;
+ else if (ddr_freq <= 1333)
+ popts->rcw_2 = 0x00200000;
+ else
+ popts->rcw_2 = 0x00300000;
+ }
+
+ fsl_ddr_board_options(popts, pdimm, ctrl_num);
+
+ return 0;
+}
+
+void check_interleaving_options(fsl_ddr_info_t *pinfo)
+{
+ int i, j, k, check_n_ranks, intlv_invalid = 0;
+ unsigned int check_intlv, check_n_row_addr, check_n_col_addr;
+ unsigned long long check_rank_density;
+ struct dimm_params_s *dimm;
+ /*
+ * Check if all controllers are configured for memory
+ * controller interleaving. Identical dimms are recommended. At least
+ * the size, row and col address should be checked.
+ */
+ j = 0;
+ check_n_ranks = pinfo->dimm_params[0][0].n_ranks;
+ check_rank_density = pinfo->dimm_params[0][0].rank_density;
+ check_n_row_addr = pinfo->dimm_params[0][0].n_row_addr;
+ check_n_col_addr = pinfo->dimm_params[0][0].n_col_addr;
+ check_intlv = pinfo->memctl_opts[0].memctl_interleaving_mode;
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+ dimm = &pinfo->dimm_params[i][0];
+ if (!pinfo->memctl_opts[i].memctl_interleaving) {
+ continue;
+ } else if (((check_rank_density != dimm->rank_density) ||
+ (check_n_ranks != dimm->n_ranks) ||
+ (check_n_row_addr != dimm->n_row_addr) ||
+ (check_n_col_addr != dimm->n_col_addr) ||
+ (check_intlv !=
+ pinfo->memctl_opts[i].memctl_interleaving_mode))){
+ intlv_invalid = 1;
+ break;
+ } else {
+ j++;
+ }
+
+ }
+ if (intlv_invalid) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
+ pinfo->memctl_opts[i].memctl_interleaving = 0;
+ printf("Not all DIMMs are identical. "
+ "Memory controller interleaving disabled.\n");
+ } else {
+ switch (check_intlv) {
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ case FSL_DDR_PAGE_INTERLEAVING:
+ case FSL_DDR_BANK_INTERLEAVING:
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ if (3 == CONFIG_NUM_DDR_CONTROLLERS)
+ k = 2;
+ else
+ k = CONFIG_NUM_DDR_CONTROLLERS;
+ break;
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ case FSL_DDR_4WAY_1KB_INTERLEAVING:
+ case FSL_DDR_4WAY_4KB_INTERLEAVING:
+ case FSL_DDR_4WAY_8KB_INTERLEAVING:
+ default:
+ k = CONFIG_NUM_DDR_CONTROLLERS;
+ break;
+ }
+ debug("%d of %d controllers are interleaving.\n", j, k);
+ if (j && (j != k)) {
+ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
+ pinfo->memctl_opts[i].memctl_interleaving = 0;
+ printf("Not all controllers have compatible "
+ "interleaving mode. All disabled.\n");
+ }
+ }
+ debug("Checking interleaving options completed\n");
+}
+
+int fsl_use_spd(void)
+{
+ int use_spd = 0;
+
+#ifdef CONFIG_DDR_SPD
+ char buffer[HWCONFIG_BUFFER_SIZE];
+ char *buf = NULL;
+
+ /*
+ * Extract hwconfig from environment since we have not properly setup
+ * the environment but need it for ddr config params
+ */
+ if (getenv_f("hwconfig", buffer, sizeof(buffer)) > 0)
+ buf = buffer;
+
+ /* if hwconfig is not enabled, or "sdram" is not defined, use spd */
+ if (hwconfig_sub_f("fsl_ddr", "sdram", buf)) {
+ if (hwconfig_subarg_cmp_f("fsl_ddr", "sdram", "spd", buf))
+ use_spd = 1;
+ else if (hwconfig_subarg_cmp_f("fsl_ddr", "sdram",
+ "fixed", buf))
+ use_spd = 0;
+ else
+ use_spd = 1;
+ } else
+ use_spd = 1;
+#endif
+
+ return use_spd;
+}
diff --git a/drivers/ddr/fsl/util.c b/drivers/ddr/fsl/util.c
new file mode 100644
index 0000000..0658261
--- /dev/null
+++ b/drivers/ddr/fsl/util.c
@@ -0,0 +1,271 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#ifdef CONFIG_PPC
+#include <asm/fsl_law.h>
+#endif
+#include <div64.h>
+
+#include <fsl_ddr.h>
+#include <fsl_immap.h>
+#include <asm/io.h>
+
+/* To avoid 64-bit full-divides, we factor this here */
+#define ULL_2E12 2000000000000ULL
+#define UL_5POW12 244140625UL
+#define UL_2POW13 (1UL << 13)
+
+#define ULL_8FS 0xFFFFFFFFULL
+
+/*
+ * Round up mclk_ps to nearest 1 ps in memory controller code
+ * if the error is 0.5ps or more.
+ *
+ * If an imprecise data rate is too high due to rounding error
+ * propagation, compute a suitably rounded mclk_ps to compute
+ * a working memory controller configuration.
+ */
+unsigned int get_memory_clk_period_ps(void)
+{
+ unsigned int data_rate = get_ddr_freq(0);
+ unsigned int result;
+
+ /* Round to nearest 10ps, being careful about 64-bit multiply/divide */
+ unsigned long long rem, mclk_ps = ULL_2E12;
+
+ /* Now perform the big divide, the result fits in 32-bits */
+ rem = do_div(mclk_ps, data_rate);
+ result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
+
+ return result;
+}
+
+/* Convert picoseconds into DRAM clock cycles (rounding up if needed). */
+unsigned int picos_to_mclk(unsigned int picos)
+{
+ unsigned long long clks, clks_rem;
+ unsigned long data_rate = get_ddr_freq(0);
+
+ /* Short circuit for zero picos */
+ if (!picos)
+ return 0;
+
+ /* First multiply the time by the data rate (32x32 => 64) */
+ clks = picos * (unsigned long long)data_rate;
+ /*
+ * Now divide by 5^12 and track the 32-bit remainder, then divide
+ * by 2*(2^12) using shifts (and updating the remainder).
+ */
+ clks_rem = do_div(clks, UL_5POW12);
+ clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
+ clks >>= 13;
+
+ /* If we had a remainder greater than the 1ps error, then round up */
+ if (clks_rem > data_rate)
+ clks++;
+
+ /* Clamp to the maximum representable value */
+ if (clks > ULL_8FS)
+ clks = ULL_8FS;
+ return (unsigned int) clks;
+}
+
+unsigned int mclk_to_picos(unsigned int mclk)
+{
+ return get_memory_clk_period_ps() * mclk;
+}
+
+#ifdef CONFIG_PPC
+void
+__fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
+ unsigned int law_memctl,
+ unsigned int ctrl_num)
+{
+ unsigned long long base = memctl_common_params->base_address;
+ unsigned long long size = memctl_common_params->total_mem;
+
+ /*
+ * If no DIMMs on this controller, do not proceed any further.
+ */
+ if (!memctl_common_params->ndimms_present) {
+ return;
+ }
+
+#if !defined(CONFIG_PHYS_64BIT)
+ if (base >= CONFIG_MAX_MEM_MAPPED)
+ return;
+ if ((base + size) >= CONFIG_MAX_MEM_MAPPED)
+ size = CONFIG_MAX_MEM_MAPPED - base;
+#endif
+ if (set_ddr_laws(base, size, law_memctl) < 0) {
+ printf("%s: ERROR (ctrl #%d, TRGT ID=%x)\n", __func__, ctrl_num,
+ law_memctl);
+ return ;
+ }
+ debug("setup ddr law base = 0x%llx, size 0x%llx, TRGT_ID 0x%x\n",
+ base, size, law_memctl);
+}
+
+__attribute__((weak, alias("__fsl_ddr_set_lawbar"))) void
+fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
+ unsigned int memctl_interleaved,
+ unsigned int ctrl_num);
+#endif
+
+void fsl_ddr_set_intl3r(const unsigned int granule_size)
+{
+#ifdef CONFIG_E6500
+ u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
+ *mcintl3r = 0x80000000 | (granule_size & 0x1f);
+ debug("Enable MCINTL3R with granule size 0x%x\n", granule_size);
+#endif
+}
+
+u32 fsl_ddr_get_intl3r(void)
+{
+ u32 val = 0;
+#ifdef CONFIG_E6500
+ u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
+ val = *mcintl3r;
+#endif
+ return val;
+}
+
+void board_add_ram_info(int use_default)
+{
+ struct ccsr_ddr __iomem *ddr =
+ (struct ccsr_ddr __iomem *)(CONFIG_SYS_FSL_DDR_ADDR);
+
+#if defined(CONFIG_E6500) && (CONFIG_NUM_DDR_CONTROLLERS == 3)
+ u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
+#endif
+#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
+ uint32_t cs0_config = in_be32(&ddr->cs0_config);
+#endif
+ uint32_t sdram_cfg = in_be32(&ddr->sdram_cfg);
+ int cas_lat;
+
+#if CONFIG_NUM_DDR_CONTROLLERS >= 2
+ if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
+ ddr = (void __iomem *)CONFIG_SYS_FSL_DDR2_ADDR;
+ sdram_cfg = in_be32(&ddr->sdram_cfg);
+ }
+#endif
+#if CONFIG_NUM_DDR_CONTROLLERS >= 3
+ if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
+ ddr = (void __iomem *)CONFIG_SYS_FSL_DDR3_ADDR;
+ sdram_cfg = in_be32(&ddr->sdram_cfg);
+ }
+#endif
+ puts(" (DDR");
+ switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
+ SDRAM_CFG_SDRAM_TYPE_SHIFT) {
+ case SDRAM_TYPE_DDR1:
+ puts("1");
+ break;
+ case SDRAM_TYPE_DDR2:
+ puts("2");
+ break;
+ case SDRAM_TYPE_DDR3:
+ puts("3");
+ break;
+ default:
+ puts("?");
+ break;
+ }
+
+ if (sdram_cfg & SDRAM_CFG_32_BE)
+ puts(", 32-bit");
+ else if (sdram_cfg & SDRAM_CFG_16_BE)
+ puts(", 16-bit");
+ else
+ puts(", 64-bit");
+
+ /* Calculate CAS latency based on timing cfg values */
+ cas_lat = ((in_be32(&ddr->timing_cfg_1) >> 16) & 0xf) + 1;
+ if ((in_be32(&ddr->timing_cfg_3) >> 12) & 1)
+ cas_lat += (8 << 1);
+ printf(", CL=%d", cas_lat >> 1);
+ if (cas_lat & 0x1)
+ puts(".5");
+
+ if (sdram_cfg & SDRAM_CFG_ECC_EN)
+ puts(", ECC on)");
+ else
+ puts(", ECC off)");
+
+#if (CONFIG_NUM_DDR_CONTROLLERS == 3)
+#ifdef CONFIG_E6500
+ if (*mcintl3r & 0x80000000) {
+ puts("\n");
+ puts(" DDR Controller Interleaving Mode: ");
+ switch (*mcintl3r & 0x1f) {
+ case FSL_DDR_3WAY_1KB_INTERLEAVING:
+ puts("3-way 1KB");
+ break;
+ case FSL_DDR_3WAY_4KB_INTERLEAVING:
+ puts("3-way 4KB");
+ break;
+ case FSL_DDR_3WAY_8KB_INTERLEAVING:
+ puts("3-way 8KB");
+ break;
+ default:
+ puts("3-way UNKNOWN");
+ break;
+ }
+ }
+#endif
+#endif
+#if (CONFIG_NUM_DDR_CONTROLLERS >= 2)
+ if (cs0_config & 0x20000000) {
+ puts("\n");
+ puts(" DDR Controller Interleaving Mode: ");
+
+ switch ((cs0_config >> 24) & 0xf) {
+ case FSL_DDR_CACHE_LINE_INTERLEAVING:
+ puts("cache line");
+ break;
+ case FSL_DDR_PAGE_INTERLEAVING:
+ puts("page");
+ break;
+ case FSL_DDR_BANK_INTERLEAVING:
+ puts("bank");
+ break;
+ case FSL_DDR_SUPERBANK_INTERLEAVING:
+ puts("super-bank");
+ break;
+ default:
+ puts("invalid");
+ break;
+ }
+ }
+#endif
+
+ if ((sdram_cfg >> 8) & 0x7f) {
+ puts("\n");
+ puts(" DDR Chip-Select Interleaving Mode: ");
+ switch(sdram_cfg >> 8 & 0x7f) {
+ case FSL_DDR_CS0_CS1_CS2_CS3:
+ puts("CS0+CS1+CS2+CS3");
+ break;
+ case FSL_DDR_CS0_CS1:
+ puts("CS0+CS1");
+ break;
+ case FSL_DDR_CS2_CS3:
+ puts("CS2+CS3");
+ break;
+ case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+ puts("CS0+CS1 and CS2+CS3");
+ break;
+ default:
+ puts("invalid");
+ break;
+ }
+ }
+}