summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
authorwdenk <wdenk>2003-03-26 06:55:25 +0000
committerwdenk <wdenk>2003-03-26 06:55:25 +0000
commitdc7c9a1a52403093b9e4aef14ac4c5c014386e57 (patch)
tree4ca643323e3e7c96efd12190ec9bf10142acb375 /common
parent10f670178cce29d7f078ca622f0eeafd6903748a (diff)
downloadu-boot-imx-dc7c9a1a52403093b9e4aef14ac4c5c014386e57.zip
u-boot-imx-dc7c9a1a52403093b9e4aef14ac4c5c014386e57.tar.gz
u-boot-imx-dc7c9a1a52403093b9e4aef14ac4c5c014386e57.tar.bz2
* Patch by Rick Bronson, 16 Mar 2003:
Add support for Atmel AT91RM9200DK w/NAND * Patches by Robert Schwebel, 19 Mar 2003: - use arm-linux-gcc as default compiler for ARM - fix i2c fixup code - fix missing baudrate setting - added $loadaddr / CFG_LOAD_ADDR support to loadb - moved "ignoring trailing characters" _before_ u-boot wants to print out diagnostics messages; removes bogus characters at the end of transmission * Patch by John Zhan, 18 Mar 2003: Add support for SinoVee Microsystems SC8xx boards * Patch by Rolf Offermanns, 21 Mar 2003: ported the dnp1110 related changes from the current armboot cvs to current u-boot cvs. smc91111 does not work. problem marked in smc91111.c, grep for "FIXME". * Patch by Brian Auld, 25 Mar 2003: Add support for STM flash chips on ebony board * Add PCI support for MPC8250 Boards (PM825 module) * Patch by Stefan Roese, 25 Mar 2003:
Diffstat (limited to 'common')
-rw-r--r--common/Makefile2
-rw-r--r--common/cmd_boot.c46
-rw-r--r--common/cmd_nand.c1545
-rw-r--r--common/cmd_pcmcia.c9
-rw-r--r--common/command.c3
5 files changed, 1578 insertions, 27 deletions
diff --git a/common/Makefile b/common/Makefile
index 67387ef..123871c 100644
--- a/common/Makefile
+++ b/common/Makefile
@@ -30,7 +30,7 @@ AOBJS =
COBJS = main.o altera.o bedbug.o \
cmd_autoscript.o cmd_bedbug.o cmd_boot.o \
cmd_bootm.o cmd_cache.o cmd_console.o cmd_date.o \
- cmd_dcr.o cmd_diag.o cmd_doc.o cmd_dtt.o \
+ cmd_dcr.o cmd_diag.o cmd_doc.o cmd_nand.o cmd_dtt.o \
cmd_eeprom.o cmd_elf.o cmd_fdc.o cmd_fdos.o cmd_flash.o \
cmd_fpga.o cmd_i2c.o cmd_ide.o cmd_immap.o \
cmd_jffs2.o cmd_log.o cmd_mem.o cmd_mii.o cmd_misc.o \
diff --git a/common/cmd_boot.c b/common/cmd_boot.c
index 2604e41..1c9a41d 100644
--- a/common/cmd_boot.c
+++ b/common/cmd_boot.c
@@ -153,10 +153,9 @@ int do_bdinfo ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
print_num ("boot_params", (ulong)bd->bi_boot_params);
for (i=0; i<CONFIG_NR_DRAM_BANKS; ++i) {
- printf ("DRAM:%02d.start = %08lX\n",
- i, bd->bi_dram[i].start);
- printf ("DRAM:%02d.size = %08lX\n",
- i, bd->bi_dram[i].size);
+ print_num("DRAM bank", i);
+ print_num("-> start", bd->bi_dram[i].start);
+ print_num("-> size", bd->bi_dram[i].size);
}
printf ("ethaddr =");
@@ -200,7 +199,7 @@ int do_go (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
addr = simple_strtoul(argv[1], NULL, 16);
- printf ("## Starting application at 0x%08lx ...\n", addr);
+ printf ("## Starting application at 0x%08lX ...\n", addr);
/*
* pass address parameter as argv[0] (aka command name),
@@ -209,7 +208,7 @@ int do_go (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
rc = ((ulong (*)(int, char *[]))addr) (--argc, &argv[1]);
if (rc != 0) rcode = 1;
- printf ("## Application terminated, rc = 0x%lx\n", rc);
+ printf ("## Application terminated, rc = 0x%lX\n", rc);
return rcode;
}
@@ -285,7 +284,7 @@ int do_load_serial (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
printf ("## S-Record download aborted\n");
rcode = 1;
} else {
- printf ("## Start Addr = 0x%08lx\n", addr);
+ printf ("## Start Addr = 0x%08lX\n", addr);
load_addr = addr;
}
@@ -345,9 +344,9 @@ load_serial (ulong offset)
memcpy ((char *)(store_addr), binbuf, binlen);
}
if ((store_addr) < start_addr)
- start_addr = store_addr;
+ start_addr = store_addr;
if ((store_addr + binlen - 1) > end_addr)
- end_addr = store_addr + binlen - 1;
+ end_addr = store_addr + binlen - 1;
break;
case SREC_END2:
case SREC_END3:
@@ -606,9 +605,17 @@ int do_load_serial_bin (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
ulong offset = 0;
ulong addr;
- int i;
int load_baudrate, current_baudrate;
int rcode = 0;
+ char *s;
+
+ /* pre-set offset from CFG_LOAD_ADDR */
+ offset = CFG_LOAD_ADDR;
+
+ /* pre-set offset from $loadaddr */
+ if ((s = getenv("loadaddr")) != NULL) {
+ offset = simple_strtoul(s, NULL, 16);
+ }
load_baudrate = current_baudrate = gd->baudrate;
@@ -635,28 +642,19 @@ int do_load_serial_bin (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
break;
}
}
- printf ("## Ready for binary (kermit) download ...\n");
+ printf ("## Ready for binary (kermit) download "
+ "to 0x%08lX at %d bps...\n",
+ offset,
+ current_baudrate);
addr = load_serial_bin (offset);
- /*
- * Gather any trailing characters (for instance, the ^D which
- * is sent by 'cu' after sending a file), and give the
- * box some time (100 * 1 ms)
- */
- for (i=0; i<100; ++i) {
- if (serial_tstc()) {
- (void) serial_getc();
- }
- udelay(1000);
- }
-
if (addr == ~0) {
load_addr = 0;
printf ("## Binary (kermit) download aborted\n");
rcode = 1;
} else {
- printf ("## Start Addr = 0x%08lx\n", addr);
+ printf ("## Start Addr = 0x%08lX\n", addr);
load_addr = addr;
}
diff --git a/common/cmd_nand.c b/common/cmd_nand.c
new file mode 100644
index 0000000..356b592
--- /dev/null
+++ b/common/cmd_nand.c
@@ -0,0 +1,1545 @@
+/*
+ * Driver for NAND support, Rick Bronson
+ * borrowed heavily from:
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ */
+
+#include <common.h>
+#include <config.h>
+#include <command.h>
+#include <malloc.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+# include <status_led.h>
+# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
+#else
+# define SHOW_BOOT_PROGRESS(arg)
+#endif
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <linux/mtd/nftl.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ids.h>
+
+/*
+ * Definition of the out of band configuration structure
+ */
+struct nand_oob_config {
+ int ecc_pos[6]; /* position of ECC bytes inside oob */
+ int badblock_pos; /* position of bad block flag inside oob -1 = inactive */
+ int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */
+} oob_config = { {0}, 0, 0};
+
+#define NAND_DEBUG
+#undef ECC_DEBUG
+#undef PSYCHO_DEBUG
+#undef NFTL_DEBUG
+
+#define CONFIG_MTD_NAND_ECC /* enable ECC */
+/* #define CONFIG_MTD_NAND_ECC_JFFS2 */
+
+/*
+ * Function Prototypes
+ */
+static void nand_print(struct nand_chip *nand);
+static int nand_rw (struct nand_chip* nand, int cmd,
+ size_t start, size_t len,
+ size_t * retlen, u_char * buf);
+static int nand_erase(struct nand_chip* nand, size_t ofs, size_t len);
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+ size_t * retlen, u_char *buf, u_char *ecc_code);
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * ecc_code);
+#ifdef CONFIG_MTD_NAND_ECC
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+#endif
+
+static struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+
+/* Current NAND Device */
+static int curr_device = -1;
+
+/* ------------------------------------------------------------------------- */
+
+int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ int rcode = 0;
+
+ switch (argc) {
+ case 0:
+ case 1:
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ case 2:
+ if (strcmp(argv[1],"info") == 0) {
+ int i;
+
+ putc ('\n');
+
+ for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
+ if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
+ continue; /* list only known devices */
+ printf ("Device %d: ", i);
+ nand_print(&nand_dev_desc[i]);
+ }
+ return 0;
+
+ } else if (strcmp(argv[1],"device") == 0) {
+ if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
+ puts ("\nno devices available\n");
+ return 1;
+ }
+ printf ("\nDevice %d: ", curr_device);
+ nand_print(&nand_dev_desc[curr_device]);
+ return 0;
+ }
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ case 3:
+ if (strcmp(argv[1],"device") == 0) {
+ int dev = (int)simple_strtoul(argv[2], NULL, 10);
+
+ printf ("\nDevice %d: ", dev);
+ if (dev >= CFG_MAX_NAND_DEVICE) {
+ puts ("unknown device\n");
+ return 1;
+ }
+ nand_print(&nand_dev_desc[dev]);
+ /*nand_print (dev);*/
+
+ if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
+ return 1;
+ }
+
+ curr_device = dev;
+
+ puts ("... is now current device\n");
+
+ return 0;
+ }
+
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ default:
+ /* at least 4 args */
+
+ if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
+ ulong addr = simple_strtoul(argv[2], NULL, 16);
+ ulong off = simple_strtoul(argv[3], NULL, 16);
+ ulong size = simple_strtoul(argv[4], NULL, 16);
+ int cmd = (strcmp(argv[1],"read") == 0);
+ int ret, total;
+
+ printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
+ cmd ? "read" : "write", curr_device, off, size);
+
+ ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
+ &total, (u_char*)addr);
+
+ printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
+ ret ? "ERROR" : "OK");
+
+ return ret;
+ } else if (strcmp(argv[1],"erase") == 0) {
+ ulong off = simple_strtoul(argv[2], NULL, 16);
+ ulong size = simple_strtoul(argv[3], NULL, 16);
+ int ret;
+
+ printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
+ curr_device, off, size);
+
+ ret = nand_erase (nand_dev_desc + curr_device, off, size);
+
+ printf("%s\n", ret ? "ERROR" : "OK");
+
+ return ret;
+ } else {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ rcode = 1;
+ }
+
+ return rcode;
+ }
+}
+
+int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ char *boot_device = NULL;
+ char *ep;
+ int dev;
+ ulong cnt;
+ ulong addr;
+ ulong offset = 0;
+ image_header_t *hdr;
+ int rcode = 0;
+ switch (argc) {
+ case 1:
+ addr = CFG_LOAD_ADDR;
+ boot_device = getenv ("bootdevice");
+ break;
+ case 2:
+ addr = simple_strtoul(argv[1], NULL, 16);
+ boot_device = getenv ("bootdevice");
+ break;
+ case 3:
+ addr = simple_strtoul(argv[1], NULL, 16);
+ boot_device = argv[2];
+ break;
+ case 4:
+ addr = simple_strtoul(argv[1], NULL, 16);
+ boot_device = argv[2];
+ offset = simple_strtoul(argv[3], NULL, 16);
+ break;
+ default:
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ SHOW_BOOT_PROGRESS (-1);
+ return 1;
+ }
+
+ if (!boot_device) {
+ puts ("\n** No boot device **\n");
+ SHOW_BOOT_PROGRESS (-1);
+ return 1;
+ }
+
+ dev = simple_strtoul(boot_device, &ep, 16);
+
+ if ((dev >= CFG_MAX_NAND_DEVICE) ||
+ (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
+ printf ("\n** Device %d not available\n", dev);
+ SHOW_BOOT_PROGRESS (-1);
+ return 1;
+ }
+
+ printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
+ dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
+ offset);
+
+ if (nand_rw (nand_dev_desc + dev, 1, offset,
+ SECTORSIZE, NULL, (u_char *)addr)) {
+ printf ("** Read error on %d\n", dev);
+ SHOW_BOOT_PROGRESS (-1);
+ return 1;
+ }
+
+ hdr = (image_header_t *)addr;
+
+ if (ntohl(hdr->ih_magic) == IH_MAGIC) {
+
+ print_image_hdr (hdr);
+
+ cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
+ cnt -= SECTORSIZE;
+ } else {
+ printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+ SHOW_BOOT_PROGRESS (-1);
+ return 1;
+ }
+
+ if (nand_rw (nand_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
+ NULL, (u_char *)(addr+SECTORSIZE))) {
+ printf ("** Read error on %d\n", dev);
+ SHOW_BOOT_PROGRESS (-1);
+ return 1;
+ }
+
+ /* Loading ok, update default load address */
+
+ load_addr = addr;
+
+ /* Check if we should attempt an auto-start */
+ if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
+ char *local_args[2];
+ extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
+
+ local_args[0] = argv[0];
+ local_args[1] = NULL;
+
+ printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
+
+ do_bootm (cmdtp, 0, 1, local_args);
+ rcode = 1;
+ }
+ return rcode;
+}
+
+static int nand_rw (struct nand_chip* nand, int cmd,
+ size_t start, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ int noecc, ret = 0, n, total = 0;
+ char eccbuf[6];
+
+ while(len) {
+ /* The ECC will not be calculated correctly if
+ less than 512 is written or read */
+ noecc = (start != (start | 0x1ff) + 1) || (len < 0x200);
+ if (cmd)
+ ret = nand_read_ecc(nand, start, len,
+ &n, (u_char*)buf,
+ noecc ? NULL : eccbuf);
+ else
+ ret = nand_write_ecc(nand, start, len,
+ &n, (u_char*)buf,
+ noecc ? NULL : eccbuf);
+
+ if (ret)
+ break;
+
+ start += n;
+ buf += n;
+ total += n;
+ len -= n;
+ }
+ if (retlen)
+ *retlen = total;
+
+ return ret;
+}
+
+static void nand_print(struct nand_chip *nand)
+ {
+ printf("%s at 0x%lX,\n"
+ "\t %d chip%s %s, size %d MB, \n"
+ "\t total size %ld MB, sector size %ld kB\n",
+ nand->name, nand->IO_ADDR, nand->numchips,
+ nand->numchips>1 ? "s" : "", nand->chips_name,
+ 1 << (nand->chipshift - 20),
+ nand->totlen >> 20, nand->erasesize >> 10);
+
+ if (nand->nftl_found) {
+ struct NFTLrecord *nftl = &nand->nftl;
+ unsigned long bin_size, flash_size;
+
+ bin_size = nftl->nb_boot_blocks * nand->erasesize;
+ flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * nand->erasesize;
+
+ printf("\t NFTL boot record:\n"
+ "\t Binary partition: size %ld%s\n"
+ "\t Flash disk partition: size %ld%s, offset 0x%lx\n",
+ bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
+ bin_size > (1 << 20) ? "MB" : "kB",
+ flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
+ flash_size > (1 << 20) ? "MB" : "kB", bin_size);
+ } else {
+ puts ("\t No NFTL boot record found.\n");
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+/* This function is needed to avoid calls of the __ashrdi3 function. */
+static int shr(int val, int shift)
+ {
+ return val >> shift;
+}
+
+static int NanD_WaitReady(struct nand_chip *nand)
+{
+ /* This is inline, to optimise the common case, where it's ready instantly */
+ int ret = 0;
+ NAND_WAIT_READY(nand);
+
+ return ret;
+}
+
+/* NanD_Command: Send a flash command to the flash chip */
+
+static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
+{
+ unsigned long nandptr = nand->IO_ADDR;
+
+ /* Assert the CLE (Command Latch Enable) line to the flash chip */
+ NAND_CTL_SETCLE(nandptr);
+
+ /* Send the command */
+ WRITE_NAND_COMMAND(command, nandptr);
+
+ /* Lower the CLE line */
+ NAND_CTL_CLRCLE(nandptr);
+
+ return NanD_WaitReady(nand);
+}
+
+/* NanD_Address: Set the current address for the flash chip */
+
+static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
+ {
+ unsigned long nandptr;
+ int i;
+
+ nandptr = nand->IO_ADDR;
+
+ /* Assert the ALE (Address Latch Enable) line to the flash chip */
+ NAND_CTL_SETALE(nandptr);
+
+ /* Send the address */
+ /* Devices with 256-byte page are addressed as:
+ Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
+ * there is no device on the market with page256
+ and more than 24 bits.
+ Devices with 512-byte page are addressed as:
+ Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
+ * 25-31 is sent only if the chip support it.
+ * bit 8 changes the read command to be sent
+ (NAND_CMD_READ0 or NAND_CMD_READ1).
+ */
+
+ if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
+ WRITE_NAND_ADDRESS(ofs, nandptr);
+
+ ofs = ofs >> nand->page_shift;
+
+ if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE)
+ for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8)
+ WRITE_NAND_ADDRESS(ofs, nandptr);
+
+ /* Lower the ALE line */
+ NAND_CTL_CLRALE(nandptr);
+
+ /* Wait for the chip to respond */
+ return NanD_WaitReady(nand);
+ }
+
+/* NanD_SelectChip: Select a given flash chip within the current floor */
+
+static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
+{
+ /* Wait for it to be ready */
+ return NanD_WaitReady(nand);
+}
+
+/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
+
+static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
+{
+ int mfr, id, i;
+
+ NAND_ENABLE_CE(nand); /* set pin low */
+ /* Reset the chip */
+ if (NanD_Command(nand, NAND_CMD_RESET)) {
+#ifdef NAND_DEBUG
+ printf("NanD_Command (reset) for %d,%d returned true\n",
+ floor, chip);
+#endif
+ NAND_DISABLE_CE(nand); /* set pin high */
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 1. Send ReadID command */
+ if (NanD_Command(nand, NAND_CMD_READID)) {
+#ifdef NAND_DEBUG
+ printf("NanD_Command (ReadID) for %d,%d returned true\n",
+ floor, chip);
+#endif
+ NAND_DISABLE_CE(nand); /* set pin high */
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 2. Send address byte zero */
+ NanD_Address(nand, ADDR_COLUMN, 0);
+
+ /* Read the manufacturer and device id codes from the device */
+
+ mfr = READ_NAND(nand->IO_ADDR);
+
+ id = READ_NAND(nand->IO_ADDR);
+
+ NAND_DISABLE_CE(nand); /* set pin high */
+ /* No response - return failure */
+ if (mfr == 0xff || mfr == 0)
+ {
+ printf("NanD_Command (ReadID) got %d %d\n", mfr, id);
+ return 0;
+ }
+
+ /* Check it's the same as the first chip we identified.
+ * M-Systems say that any given nand_chip device should only
+ * contain _one_ type of flash part, although that's not a
+ * hardware restriction. */
+ if (nand->mfr) {
+ if (nand->mfr == mfr && nand->id == id)
+ return 1; /* This is another the same the first */
+ else
+ printf("Flash chip at floor %d, chip %d is different:\n",
+ floor, chip);
+ }
+
+ /* Print and store the manufacturer and ID codes. */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (mfr == nand_flash_ids[i].manufacture_id &&
+ id == nand_flash_ids[i].model_id) {
+#ifdef NAND_DEBUG
+ printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
+ "Chip ID: 0x%2.2X (%s)\n", mfr, id,
+ nand_flash_ids[i].name);
+#endif
+ if (!nand->mfr) {
+ nand->mfr = mfr;
+ nand->id = id;
+ nand->chipshift =
+ nand_flash_ids[i].chipshift;
+ nand->page256 = nand_flash_ids[i].page256;
+ if (nand->page256) {
+ nand->oobblock = 256;
+ nand->oobsize = 8;
+ nand->page_shift = 8;
+ } else {
+ nand->oobblock = 512;
+ nand->oobsize = 16;
+ nand->page_shift = 9;
+ }
+ nand->pageadrlen =
+ nand_flash_ids[i].pageadrlen;
+ nand->erasesize =
+ nand_flash_ids[i].erasesize;
+ nand->chips_name =
+ nand_flash_ids[i].name;
+ return 1;
+ }
+ return 0;
+ }
+ }
+
+
+#ifdef NAND_DEBUG
+ /* We haven't fully identified the chip. Print as much as we know. */
+ printf("Unknown flash chip found: %2.2X %2.2X\n",
+ id, mfr);
+#endif
+
+ return 0;
+}
+
+/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
+
+static void NanD_ScanChips(struct nand_chip *nand)
+{
+ int floor, chip;
+ int numchips[NAND_MAX_FLOORS];
+ int maxchips = NAND_MAX_CHIPS;
+ int ret = 1;
+
+ nand->numchips = 0;
+ nand->mfr = 0;
+ nand->id = 0;
+
+
+ /* For each floor, find the number of valid chips it contains */
+ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+ ret = 1;
+ numchips[floor] = 0;
+ for (chip = 0; chip < maxchips && ret != 0; chip++) {
+
+ ret = NanD_IdentChip(nand, floor, chip);
+ if (ret) {
+ numchips[floor]++;
+ nand->numchips++;
+ }
+ }
+ }
+
+ /* If there are none at all that we recognise, bail */
+ if (!nand->numchips) {
+ puts ("No flash chips recognised.\n");
+ return;
+ }
+
+ /* Allocate an array to hold the information for each chip */
+ nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
+ if (!nand->chips) {
+ puts ("No memory for allocating chip info structures\n");
+ return;
+ }
+
+ ret = 0;
+
+ /* Fill out the chip array with {floor, chipno} for each
+ * detected chip in the device. */
+ for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+ for (chip = 0; chip < numchips[floor]; chip++) {
+ nand->chips[ret].floor = floor;
+ nand->chips[ret].chip = chip;
+ nand->chips[ret].curadr = 0;
+ nand->chips[ret].curmode = 0x50;
+ ret++;
+ }
+ }
+
+ /* Calculate and print the total size of the device */
+ nand->totlen = nand->numchips * (1 << nand->chipshift);
+
+#ifdef NAND_DEBUG
+ printf("%d flash chips found. Total nand_chip size: %ld MB\n",
+ nand->numchips, nand->totlen >> 20);
+#endif
+}
+#ifdef CONFIG_MTD_NAND_ECC
+/* we need to be fast here, 1 us per read translates to 1 second per meg */
+static void nand_fast_copy (unsigned char *source, unsigned char *dest, long cntr)
+ {
+ while (cntr > 16)
+ {
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ *dest++ = *source++;
+ cntr -= 16;
+ }
+ while (cntr > 0)
+ {
+ *dest++ = *source++;
+ cntr--;
+ }
+ }
+#endif
+/* we need to be fast here, 1 us per read translates to 1 second per meg */
+static void nand_fast_read(unsigned char *data_buf, int cntr, unsigned long nandptr)
+ {
+ while (cntr > 16)
+ {
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ *data_buf++ = READ_NAND(nandptr);
+ cntr -= 16;
+ }
+ while (cntr > 0)
+ {
+ *data_buf++ = READ_NAND(nandptr);
+ cntr--;
+ }
+ }
+
+/* This routine is made available to other mtd code via
+ * inter_module_register. It must only be accessed through
+ * inter_module_get which will bump the use count of this module. The
+ * addresses passed back in mtd are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+
+/*
+ * NAND read with ECC
+ */
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+ size_t * retlen, u_char *buf, u_char *ecc_code)
+{
+ int col, page;
+ int ecc_status = 0;
+#ifdef CONFIG_MTD_NAND_ECC
+ int j;
+ int ecc_failed = 0;
+ u_char *data_poi;
+ u_char ecc_calc[6];
+#endif
+ unsigned long nandptr = nand->IO_ADDR;
+
+ /* Do not allow reads past end of device */
+ if ((start + len) > nand->totlen) {
+ printf ("nand_read_ecc: Attempt read beyond end of device %x %x %x\n", (uint) start, (uint) len, (uint) nand->totlen);
+ *retlen = 0;
+ return -1;
+ }
+
+ /* First we calculate the starting page */
+ page = shr(start, nand->page_shift);
+
+ /* Get raw starting column */
+ col = start & (nand->oobblock - 1);
+
+ /* Initialize return value */
+ *retlen = 0;
+
+ /* Select the NAND device */
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Loop until all data read */
+ while (*retlen < len) {
+
+
+#ifdef CONFIG_MTD_NAND_ECC
+
+ /* Do we have this page in cache ? */
+ if (nand->cache_page == page)
+ goto readdata;
+ /* Send the read command */
+ NanD_Command(nand, NAND_CMD_READ0);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
+ /* Read in a page + oob data */
+ nand_fast_read(nand->data_buf, nand->oobblock + nand->oobsize, nandptr);
+
+ /* copy data into cache, for read out of cache and if ecc fails */
+ if (nand->data_cache)
+ memcpy (nand->data_cache, nand->data_buf, nand->oobblock + nand->oobsize);
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < 6; j++)
+ ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
+
+ /* Calculate the ECC and verify it */
+ /* If block was not written with ECC, skip ECC */
+ if (oob_config.eccvalid_pos != -1 &&
+ (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
+
+ nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
+ switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
+ case -1:
+ printf ("nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+ ecc_failed++;
+ break;
+ case 1:
+ case 2: /* transfer ECC corrected data to cache */
+ memcpy (nand->data_cache, nand->data_buf, 256);
+ break;
+ }
+ }
+
+ if (oob_config.eccvalid_pos != -1 &&
+ nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
+
+ nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
+ switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
+ case -1:
+ printf ("nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+ ecc_failed++;
+ break;
+ case 1:
+ case 2: /* transfer ECC corrected data to cache */
+ if (nand->data_cache)
+ memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
+ break;
+ }
+ }
+readdata:
+ /* Read the data from ECC data buffer into return buffer */
+ data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
+ data_poi += col;
+ if ((*retlen + (nand->oobblock - col)) >= len) {
+ nand_fast_copy (data_poi, buf + *retlen, len - *retlen);
+ *retlen = len;
+ } else {
+ nand_fast_copy (data_poi, buf + *retlen, nand->oobblock - col);
+ *retlen += nand->oobblock - col;
+ }
+ /* Set cache page address, invalidate, if ecc_failed */
+ nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
+
+ ecc_status += ecc_failed;
+ ecc_failed = 0;
+
+#else
+ /* Send the read command */
+ NanD_Command(nand, NAND_CMD_READ0);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
+ /* Read the data directly into the return buffer */
+ if ((*retlen + (nand->oobblock - col)) >= len) {
+ nand_fast_read(buf + *retlen, len - *retlen, nandptr);
+ *retlen = len;
+ /* We're done */
+ continue;
+ } else {
+ nand_fast_read(buf + *retlen, nand->oobblock - col, nandptr);
+ *retlen += nand->oobblock - col;
+ }
+#endif
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ page++;
+ }
+
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+ /*
+ * Return success, if no ECC failures, else -EIO
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EIO
+ */
+ return ecc_status ? -1 : 0;
+}
+
+
+/*
+ * Nand_page_program function is used for write and writev !
+ */
+static int nand_write_page (struct nand_chip *nand,
+ int page, int col, int last, u_char * ecc_code)
+{
+
+ int i;
+#ifdef CONFIG_MTD_NAND_ECC
+ unsigned long nandptr = nand->IO_ADDR;
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
+#endif
+#endif
+ /* pad oob area */
+ for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
+ nand->data_buf[i] = 0xff;
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /* Zero out the ECC array */
+ for (i = 0; i < 6; i++)
+ ecc_code[i] = 0x00;
+
+ /* Read back previous written data, if col > 0 */
+ if (col) {
+ NanD_Command(nand, NAND_CMD_READ0);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
+ for (i = 0; i < col; i++)
+ nand->data_buf[i] = READ_NAND (nandptr);
+ }
+
+ /* Calculate and write the ECC if we have enough data */
+ if ((col < nand->eccsize) && (last >= nand->eccsize)) {
+ nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
+ for (i = 0; i < 3; i++)
+ nand->data_buf[(nand->oobblock + oob_config.ecc_pos[i])] = ecc_code[i];
+ if (oob_config.eccvalid_pos != -1)
+ nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] = 0xf0;
+ }
+
+ /* Calculate and write the second ECC if we have enough data */
+ if ((nand->oobblock == 512) && (last == nand->oobblock)) {
+ nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
+ for (i = 3; i < 6; i++)
+ nand->data_buf[(nand->oobblock + oob_config.ecc_pos[i])] = ecc_code[i];
+ if (oob_config.eccvalid_pos != -1)
+ nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] &= 0x0f;
+ }
+#endif
+ /* Prepad for partial page programming !!! */
+ for (i = 0; i < col; i++)
+ nand->data_buf[i] = 0xff;
+
+ /* Postpad for partial page programming !!! oob is already padded */
+ for (i = last; i < nand->oobblock; i++)
+ nand->data_buf[i] = 0xff;
+
+ /* Send command to begin auto page programming */
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
+
+ /* Write out complete page of data */
+ for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
+ WRITE_NAND(nand->data_buf[i], nand->IO_ADDR);
+
+ /* Send command to actually program the data */
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+
+ /* See if device thinks it succeeded */
+ if (READ_NAND(nand->IO_ADDR) & 0x01) {
+ printf ("nand_write_ecc: " "Failed write, page 0x%08x, ", page);
+ return -1;
+ }
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /*
+ * The NAND device assumes that it is always writing to
+ * a cleanly erased page. Hence, it performs its internal
+ * write verification only on bits that transitioned from
+ * 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was
+ * not completely erased or the page is becoming unusable
+ * due to wear. The read with ECC would catch the error
+ * later when the ECC page check fails, but we would rather
+ * catch it early in the page write stage. Better to write
+ * no data than invalid data.
+ */
+
+ /* Send command to read back the page */
+ if (col < nand->eccsize)
+ NanD_Command(nand, NAND_CMD_READ0);
+ else
+ NanD_Command(nand, NAND_CMD_READ1);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
+
+ /* Loop through and verify the data */
+ for (i = col; i < last; i++) {
+ if (nand->data_buf[i] != readb (nand->IO_ADDR)) {
+ printf ("nand_write_ecc: " "Failed write verify, page 0x%08x ", page);
+ return -1;
+ }
+ }
+
+#ifdef CONFIG_MTD_NAND_ECC
+ /*
+ * We also want to check that the ECC bytes wrote
+ * correctly for the same reasons stated above.
+ */
+ NanD_Command(nand, NAND_CMD_READOOB);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
+ for (i = 0; i < nand->oobsize; i++)
+ nand->data_buf[i] = readb (nand->IO_ADDR);
+ for (i = 0; i < ecc_bytes; i++) {
+ if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
+ printf ("nand_write_ecc: Failed ECC write "
+ "verify, page 0x%08x, " "%6i bytes were succesful\n", page, i);
+ return -1;
+ }
+ }
+#endif
+#endif
+ return 0;
+}
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * ecc_code)
+{
+ int i, page, col, cnt, ret = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > nand->totlen) {
+ printf ("nand_write_oob: Attempt to write past end of page\n");
+ return -1;
+ }
+
+ /* Shift to get page */
+ page = ((int) to) >> nand->page_shift;
+
+ /* Get the starting column */
+ col = to & (nand->oobblock - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Select the NAND device */
+ NAND_ENABLE_CE(nand); /* set pin low */
+
+ /* Check the WP bit */
+ NanD_Command(nand, NAND_CMD_STATUS);
+ if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+ printf ("nand_write_ecc: Device is write protected!!!\n");
+ ret = -1;
+ goto out;
+ }
+
+ /* Loop until all data is written */
+ while (*retlen < len) {
+ /* Invalidate cache, if we write to this page */
+ if (nand->cache_page == page)
+ nand->cache_page = -1;
+
+ /* Write data into buffer */
+ if ((col + len) >= nand->oobblock)
+ for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++)
+ nand->data_buf[i] = buf[(*retlen + cnt)];
+ else
+ for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++)
+ nand->data_buf[i] = buf[(*retlen + cnt)];
+ /* We use the same function for write and writev !) */
+ ret = nand_write_page (nand, page, col, i, ecc_code);
+ if (ret)
+ goto out;
+
+ /* Next data start at page boundary */
+ col = 0;
+
+ /* Update written bytes count */
+ *retlen += cnt;
+
+ /* Increment page address */
+ page++;
+ }
+
+ /* Return happy */
+ *retlen = len;
+
+out:
+ /* De-select the NAND device */
+ NAND_DISABLE_CE(nand); /* set pin high */
+
+ return ret;
+}
+
+#if 0 /* not used */
+/* Read a buffer from NanD */
+static void NanD_ReadBuf(struct nand_chip *nand, u_char * buf, int len)
+{
+ unsigned long nandptr;
+
+ nandptr = nand->IO_ADDR;
+
+ for (; len > 0; len--)
+ *buf++ = READ_NAND(nandptr);
+
+}
+/* Write a buffer to NanD */
+static void NanD_WriteBuf(struct nand_chip *nand, const u_char * buf, int len)
+{
+ unsigned long nandptr;
+ int i;
+
+ nandptr = nand->IO_ADDR;
+
+ if (len <= 0)
+ return;
+
+ for (i = 0; i < len; i++)
+ WRITE_NAND(buf[i], nandptr);
+
+}
+
+/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
+ * various device information of the NFTL partition and Bad Unit Table. Update
+ * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
+ * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
+ */
+static int find_boot_record(struct NFTLrecord *nftl)
+{
+ struct nftl_uci1 h1;
+ struct nftl_oob oob;
+ unsigned int block, boot_record_count = 0;
+ int retlen;
+ u8 buf[SECTORSIZE];
+ struct NFTLMediaHeader *mh = &nftl->MediaHdr;
+ unsigned int i;
+
+ nftl->MediaUnit = BLOCK_NIL;
+ nftl->SpareMediaUnit = BLOCK_NIL;
+
+ /* search for a valid boot record */
+ for (block = 0; block < nftl->nb_blocks; block++) {
+ int ret;
+
+ /* Check for ANAND header first. Then can whinge if it's found but later
+ checks fail */
+ if ((ret = nand_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
+ &retlen, buf, NULL))) {
+ static int warncount = 5;
+
+ if (warncount) {
+ printf("Block read at 0x%x failed\n", block * nftl->EraseSize);
+ if (!--warncount)
+ puts ("Further failures for this block will not be printed\n");
+ }
+ continue;
+ }
+
+ if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
+ /* ANAND\0 not found. Continue */
+#ifdef PSYCHO_DEBUG
+ printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize);
+#endif
+ continue;
+ }
+
+#ifdef NFTL_DEBUG
+ printf("ANAND header found at 0x%x\n", block * nftl->EraseSize);
+#endif
+
+ /* To be safer with BIOS, also use erase mark as discriminant */
+ if ((ret = nand_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
+ 8, &retlen, (char *)&h1) < 0)) {
+#ifdef NFTL_DEBUG
+ printf("ANAND header found at 0x%x, but OOB data read failed\n",
+ block * nftl->EraseSize);
+#endif
+ continue;
+ }
+
+ /* OK, we like it. */
+
+ if (boot_record_count) {
+ /* We've already processed one. So we just check if
+ this one is the same as the first one we found */
+ if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
+#ifdef NFTL_DEBUG
+ printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n",
+ nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
+#endif
+ /* if (debug) Print both side by side */
+ return -1;
+ }
+ if (boot_record_count == 1)
+ nftl->SpareMediaUnit = block;
+
+ boot_record_count++;
+ continue;
+ }
+
+ /* This is the first we've seen. Copy the media header structure into place */
+ memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
+
+ /* Do some sanity checks on it */
+ if (mh->UnitSizeFactor != 0xff) {
+ puts ("Sorry, we don't support UnitSizeFactor "
+ "of != 1 yet.\n");
+ return -1;
+ }
+
+ nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
+ if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
+ printf ("NFTL Media Header sanity check failed:\n"
+ "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
+ nftl->nb_boot_blocks, nftl->nb_blocks);
+ return -1;
+ }
+
+ nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
+ if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
+ printf ("NFTL Media Header sanity check failed:\n"
+ "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
+ nftl->numvunits,
+ nftl->nb_blocks,
+ nftl->nb_boot_blocks);
+ return -1;
+ }
+
+ nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
+
+ /* If we're not using the last sectors in the device for some reason,
+ reduce nb_blocks accordingly so we forget they're there */
+ nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
+
+ /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
+ for (i = 0; i < nftl->nb_blocks; i++) {
+ if ((i & (SECTORSIZE - 1)) == 0) {
+ /* read one sector for every SECTORSIZE of blocks */
+ if ((ret = nand_read_ecc(nftl->mtd, block * nftl->EraseSize +
+ i + SECTORSIZE, SECTORSIZE,
+ &retlen, buf, (char *)&oob)) < 0) {
+ puts ("Read of bad sector table failed\n");
+ return -1;
+ }
+ }
+ /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
+ if (buf[i & (SECTORSIZE - 1)] != 0xff)
+ nftl->ReplUnitTable[i] = BLOCK_RESERVED;
+ }
+
+ nftl->MediaUnit = block;
+ boot_record_count++;
+
+ } /* foreach (block) */
+
+ return boot_record_count?0:-1;
+}
+static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ int len256 = 0, ret;
+ unsigned long nandptr;
+ struct Nand *mychip;
+
+ nandptr = nand->IO_ADDR;
+
+ mychip = &nand->chips[shr(ofs, nand->chipshift)];
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with nand_read_ecc. */
+ if (nand->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ NanD_Command(nand, NAND_CMD_READOOB);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ NanD_ReadBuf(nand, buf, len256);
+
+ NanD_Command(nand, NAND_CMD_READOOB);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+ }
+
+ NanD_ReadBuf(nand, &buf[len256], len - len256);
+
+ *retlen = len;
+ /* Reading the full OOB data drops us off of the end of the page,
+ * causing the flash device to go into busy mode, so we need
+ * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
+
+ ret = NanD_WaitReady(nand);
+
+ return ret;
+
+}
+static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ int len256 = 0;
+ unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef PSYCHO_DEBUG
+ printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
+ (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
+ buf[8], buf[9], buf[14],buf[15]);
+#endif
+
+ /* Reset the chip */
+ NanD_Command(nand, NAND_CMD_RESET);
+
+ /* issue the Read2 command to set the pointer to the Spare Data Area. */
+ NanD_Command(nand, NAND_CMD_READOOB);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with nand_read_ecc. */
+ if (nand->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ NanD_WriteBuf(nand, buf, len256);
+
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+ /* NanD_WaitReady() is implicit in NanD_Command */
+
+ if (READ_NAND(nandptr) & 1) {
+ puts ("Error programming oob data\n");
+ /* There was an error */
+ *retlen = 0;
+ return -1;
+ }
+ NanD_Command(nand, NAND_CMD_SEQIN);
+ NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+ }
+
+ NanD_WriteBuf(nand, &buf[len256], len - len256);
+
+ NanD_Command(nand, NAND_CMD_PAGEPROG);
+ NanD_Command(nand, NAND_CMD_STATUS);
+ /* NanD_WaitReady() is implicit in NanD_Command */
+
+ if (READ_NAND(nandptr) & 1) {
+ puts ("Error programming oob data\n");
+ /* There was an error */
+ *retlen = 0;
+ return -1;
+ }
+
+ *retlen = len;
+ return 0;
+
+}
+#endif
+
+static int nand_erase(struct nand_chip* nand, size_t ofs, size_t len)
+{
+ unsigned long nandptr;
+ struct Nand *mychip;
+
+ if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
+ printf ("Offset and size must be sector aligned, erasesize = %d\n",
+ (int) nand->erasesize);
+ return -1;
+ }
+
+ nandptr = nand->IO_ADDR;
+
+ /* FIXME: Do nand in the background. Use timers or schedule_task() */
+ while(len) {
+ mychip = &nand->chips[shr(ofs, nand->chipshift)];
+
+ NanD_Command(nand, NAND_CMD_ERASE1);
+ NanD_Address(nand, ADDR_PAGE, ofs);
+ NanD_Command(nand, NAND_CMD_ERASE2);
+
+ NanD_Command(nand, NAND_CMD_STATUS);
+
+ if (READ_NAND(nandptr) & 1) {
+ printf("Error erasing at 0x%lx\n", (long)ofs);
+ /* There was an error */
+ goto callback;
+ }
+ ofs += nand->erasesize;
+ len -= nand->erasesize;
+ }
+
+ callback:
+ return 0;
+}
+
+static inline int nandcheck(unsigned long potential, unsigned long physadr)
+{
+
+
+ return 0;
+}
+
+void nand_probe(unsigned long physadr)
+{
+ struct nand_chip *nand = NULL;
+ int i = 0, ChipID = 1;
+
+#ifdef CONFIG_MTD_NAND_ECC_JFFS2
+ oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
+ oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
+ oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
+ oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
+ oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
+ oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
+ oob_config.badblock_pos = 5;
+ oob_config.eccvalid_pos = 4;
+#else
+ oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
+ oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
+ oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
+ oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
+ oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
+ oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
+ oob_config.badblock_pos = NAND_NOOB_BADBPOS;
+ oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
+#endif
+
+ for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
+ if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
+ nand = nand_dev_desc + i;
+ break;
+ }
+ }
+
+ if (curr_device == -1)
+ curr_device = i;
+
+ memset((char *)nand, 0, sizeof(struct nand_chip));
+
+ nand->cache_page = -1; /* init the cache page */
+ nand->IO_ADDR = physadr;
+ nand->ChipID = ChipID;
+ NanD_ScanChips(nand);
+ nand->data_buf = malloc (nand->oobblock + nand->oobsize);
+ if (!nand->data_buf) {
+ puts ("Cannot allocate memory for data structures.\n");
+ return;
+ }
+}
+
+#ifdef CONFIG_MTD_NAND_ECC
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/*
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+ u_char *ecc_code)
+{
+ u_char a, b, i, tmp1, tmp2;
+
+ /* Initialize variables */
+ a = b = 0x80;
+ tmp1 = tmp2 = 0;
+
+ /* Calculate first ECC byte */
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Calculate second ECC byte */
+ b = 0x80;
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Store two of the ECC bytes */
+ ecc_code[0] = tmp1;
+ ecc_code[1] = tmp2;
+}
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
+{
+ u_char idx, reg1, reg2, reg3;
+ int j;
+
+ /* Initialize variables */
+ reg1 = reg2 = reg3 = 0;
+ ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+ /* Build up column parity */
+ for(j = 0; j < 256; j++) {
+
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[dat[j]];
+ reg1 ^= (idx & 0x3f);
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (u_char) j;
+ reg2 ^= ~((u_char) j);
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ nand_trans_result(reg2, reg3, ecc_code);
+
+ /* Calculate final ECC code */
+ ecc_code[0] = ~ecc_code[0];
+ ecc_code[1] = ~ecc_code[1];
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+}
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ u_char a, b, c, d1, d2, d3, add, bit, i;
+
+ /* Do error detection */
+ d1 = calc_ecc[0] ^ read_ecc[0];
+ d2 = calc_ecc[1] ^ read_ecc[1];
+ d3 = calc_ecc[2] ^ read_ecc[2];
+
+ if ((d1 | d2 | d3) == 0) {
+ /* No errors */
+ return 0;
+ }
+ else {
+ a = (d1 ^ (d1 >> 1)) & 0x55;
+ b = (d2 ^ (d2 >> 1)) & 0x55;
+ c = (d3 ^ (d3 >> 1)) & 0x54;
+
+ /* Found and will correct single bit error in the data */
+ if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+ c = 0x80;
+ add = 0;
+ a = 0x80;
+ for (i=0; i<4; i++) {
+ if (d1 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ c = 0x80;
+ for (i=0; i<4; i++) {
+ if (d2 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ bit = 0;
+ b = 0x04;
+ c = 0x80;
+ for (i=0; i<3; i++) {
+ if (d3 & c)
+ bit |= b;
+ c >>= 2;
+ b >>= 1;
+ }
+ b = 0x01;
+ a = dat[add];
+ a ^= (b << bit);
+ dat[add] = a;
+ return 1;
+ }
+ else {
+ i = 0;
+ while (d1) {
+ if (d1 & 0x01)
+ ++i;
+ d1 >>= 1;
+ }
+ while (d2) {
+ if (d2 & 0x01)
+ ++i;
+ d2 >>= 1;
+ }
+ while (d3) {
+ if (d3 & 0x01)
+ ++i;
+ d3 >>= 1;
+ }
+ if (i == 1) {
+ /* ECC Code Error Correction */
+ read_ecc[0] = calc_ecc[0];
+ read_ecc[1] = calc_ecc[1];
+ read_ecc[2] = calc_ecc[2];
+ return 2;
+ }
+ else {
+ /* Uncorrectable Error */
+ return -1;
+ }
+ }
+ }
+
+ /* Should never happen */
+ return -1;
+}
+#endif
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
diff --git a/common/cmd_pcmcia.c b/common/cmd_pcmcia.c
index 31abbaf..c009156 100644
--- a/common/cmd_pcmcia.c
+++ b/common/cmd_pcmcia.c
@@ -514,12 +514,17 @@ static int hardware_disable(int slot)
/* -------------------------------------------------------------------- */
/* TQM8xxL Boards by TQ Components */
+/* SC8xx Boards by SinoVee Microsystems */
/* -------------------------------------------------------------------- */
-#if defined(CONFIG_TQM8xxL)
+#if defined(CONFIG_TQM8xxL) || defined(CONFIG_SVM_SC8xx)
+#if defined(CONFIG_TQM8xxL)
#define PCMCIA_BOARD_MSG "TQM8xxL"
-
+#endif
+#if defined(CONFIG_SVM_SC8xx)
+#define PCMCIA_BOARD_MSG "SC8xx"
+#endif
static int hardware_enable(int slot)
{
diff --git a/common/command.c b/common/command.c
index 2304d7a..1008925 100644
--- a/common/command.c
+++ b/common/command.c
@@ -58,6 +58,7 @@
#include <cmd_mii.h>
#include <cmd_dcr.h> /* 4xx DCR register access */
#include <cmd_doc.h>
+#include <cmd_nand.h>
#include <cmd_jffs2.h>
#include <cmd_fpga.h>
@@ -307,6 +308,8 @@ cmd_tbl_t cmd_tbl[] = {
CMD_TBL_MTEST
CMD_TBL_MUXINFO
CMD_TBL_MW
+ CMD_TBL_NAND
+ CMD_TBL_NANDBOOT
CMD_TBL_NEXT
CMD_TBL_NM
CMD_TBL_PCI