Freescale u-boot repository
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

3430 lines
86 KiB

/*
* (C) Copyright 2008 - 2009
* Windriver, <www.windriver.com>
* Tom Rix <Tom.Rix@windriver.com>
*
* Copyright 2011 Sebastian Andrzej Siewior <bigeasy@linutronix.de>
*
* Copyright 2014 Linaro, Ltd.
* Rob Herring <robh@kernel.org>
*
* Copyright (C) 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <errno.h>
#include <stdlib.h>
#include <fastboot.h>
#include <malloc.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/composite.h>
#include <linux/compiler.h>
#include <version.h>
#include <g_dnl.h>
#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
#include <fb_mmc.h>
#endif
#ifdef CONFIG_FASTBOOT_FLASH_NAND_DEV
#include <fb_nand.h>
#endif
#ifdef CONFIG_FSL_FASTBOOT
#include <fsl_fastboot.h>
#include <mmc.h>
#include <android_image.h>
#include <asm/bootm.h>
#include <nand.h>
#include <part.h>
#include <sparse_format.h>
#include <image-sparse.h>
#include <image.h>
#include <asm/imx-common/boot_mode.h>
#ifdef CONFIG_ANDROID_RECOVERY
#include <recovery.h>
#endif
#endif
#ifdef CONFIG_FSL_BOOTCTL
#include "bootctrl.h"
#endif
#ifdef CONFIG_BCB_SUPPORT
#include "bcb.h"
#endif
#ifdef CONFIG_AVB_SUPPORT
#include <fsl_avb.h>
#endif
#define FASTBOOT_VERSION "0.4"
#ifdef CONFIG_FASTBOOT_LOCK
#include "fastboot_lock_unlock.h"
#endif
#define FASTBOOT_VAR_YES "yes"
#define FASTBOOT_VAR_NO "no"
#define ANDROID_GPT_OFFSET 0
#define ANDROID_GPT_SIZE 0x100000
#define FASTBOOT_INTERFACE_CLASS 0xff
#define FASTBOOT_INTERFACE_SUB_CLASS 0x42
#define FASTBOOT_INTERFACE_PROTOCOL 0x03
#define RX_ENDPOINT_MAXIMUM_PACKET_SIZE_2_0 (0x0200)
#define RX_ENDPOINT_MAXIMUM_PACKET_SIZE_1_1 (0x0040)
#define TX_ENDPOINT_MAXIMUM_PACKET_SIZE (0x0040)
#define EP_BUFFER_SIZE 4096
/*
* EP_BUFFER_SIZE must always be an integral multiple of maxpacket size
* (64 or 512 or 1024), else we break on certain controllers like DWC3
* that expect bulk OUT requests to be divisible by maxpacket size.
*/
struct f_fastboot {
struct usb_function usb_function;
/* IN/OUT EP's and corresponding requests */
struct usb_ep *in_ep, *out_ep;
struct usb_request *in_req, *out_req;
};
static inline struct f_fastboot *func_to_fastboot(struct usb_function *f)
{
return container_of(f, struct f_fastboot, usb_function);
}
static struct f_fastboot *fastboot_func;
static unsigned int download_size;
static unsigned int download_bytes;
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
static bool is_recovery_mode;
#endif
static int strcmp_l1(const char *s1, const char *s2);
static struct usb_endpoint_descriptor fs_ep_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(64),
};
static struct usb_endpoint_descriptor fs_ep_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(64),
};
static struct usb_endpoint_descriptor hs_ep_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor hs_ep_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_interface_descriptor interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0x00,
.bAlternateSetting = 0x00,
.bNumEndpoints = 0x02,
.bInterfaceClass = FASTBOOT_INTERFACE_CLASS,
.bInterfaceSubClass = FASTBOOT_INTERFACE_SUB_CLASS,
.bInterfaceProtocol = FASTBOOT_INTERFACE_PROTOCOL,
};
static struct usb_descriptor_header *fb_fs_function[] = {
(struct usb_descriptor_header *)&interface_desc,
(struct usb_descriptor_header *)&fs_ep_in,
(struct usb_descriptor_header *)&fs_ep_out,
};
static struct usb_descriptor_header *fb_hs_function[] = {
(struct usb_descriptor_header *)&interface_desc,
(struct usb_descriptor_header *)&hs_ep_in,
(struct usb_descriptor_header *)&hs_ep_out,
NULL,
};
static struct usb_endpoint_descriptor *
fb_ep_desc(struct usb_gadget *g, struct usb_endpoint_descriptor *fs,
struct usb_endpoint_descriptor *hs)
{
if (gadget_is_dualspeed(g) && g->speed == USB_SPEED_HIGH)
return hs;
return fs;
}
/*
* static strings, in UTF-8
*/
static const char fastboot_name[] = "Android Fastboot";
static struct usb_string fastboot_string_defs[] = {
[0].s = fastboot_name,
{ } /* end of list */
};
static struct usb_gadget_strings stringtab_fastboot = {
.language = 0x0409, /* en-us */
.strings = fastboot_string_defs,
};
static struct usb_gadget_strings *fastboot_strings[] = {
&stringtab_fastboot,
NULL,
};
#ifdef CONFIG_FSL_FASTBOOT
#define ANDROID_MBR_OFFSET 0
#define ANDROID_MBR_SIZE 0x200
#ifdef CONFIG_BOOTLOADER_OFFSET_33K
#define ANDROID_BOOTLOADER_OFFSET 0x8400
#else
#define ANDROID_BOOTLOADER_OFFSET 0x400
#endif
#define ANDROID_BOOTLOADER_SIZE 0xFFC00
#define ANDROID_KERNEL_OFFSET 0x100000
#define ANDROID_KERNEL_SIZE 0x500000
#define ANDROID_URAMDISK_OFFSET 0x600000
#define ANDROID_URAMDISK_SIZE 0x100000
#define MMC_SATA_BLOCK_SIZE 512
#define FASTBOOT_FBPARTS_ENV_MAX_LEN 1024
/* To support the Android-style naming of flash */
#define MAX_PTN 32
enum {
PTN_GPT_INDEX = 0,
PTN_BOOTLOADER_INDEX
};
static unsigned int download_bytes_unpadded;
static struct cmd_fastboot_interface interface = {
.rx_handler = NULL,
.reset_handler = NULL,
.product_name = NULL,
.serial_no = NULL,
.nand_block_size = 0,
.transfer_buffer = (unsigned char *)0xffffffff,
.transfer_buffer_size = 0,
};
#ifdef CONFIG_FASTBOOT_STORAGE_NAND
static void save_env(struct fastboot_ptentry *ptn,
char *var, char *val)
{
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
char lock[128], unlock[128];
#endif
setenv(var, val);
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
sprintf(lock, "nand lock 0x%x 0x%x", ptn->start, ptn->length);
sprintf(unlock, "nand unlock 0x%x 0x%x", ptn->start, ptn->length);
/* This could be a problem is there is an outstanding lock */
run_command(unlock, 0);
#endif
saveenv();
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
run_command(lock, 0);
#endif
}
void save_parts_values(struct fastboot_ptentry *ptn,
unsigned int offset,
unsigned int size)
{
char var[64], val[32];
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
char lock[128], unlock[128];
struct fastboot_ptentry *env_ptn;
#endif
printf("saving it..\n");
sprintf(var, "%s_nand_offset", ptn->name);
sprintf(val, "0x%x", offset);
printf("setenv %s %s\n", var, val);
setenv(var, val);
sprintf(var, "%s_nand_size", ptn->name);
sprintf(val, "0x%x", size);
printf("setenv %s %s\n", var, val);
setenv(var, val);
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
/* Warning :
The environment is assumed to be in a partition named 'enviroment'.
It is very possible that your board stores the enviroment
someplace else. */
env_ptn = fastboot_flash_find_ptn("environment");
if (env_ptn) {
sprintf(lock, "nand lock 0x%x 0x%x",
env_ptn->start, env_ptn->length);
sprintf(unlock, "nand unlock 0x%x 0x%x",
env_ptn->start, env_ptn->length);
run_command(unlock, 0);
}
#endif
saveenv();
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
if (env_ptn)
run_command(lock, 0);
#endif
}
int check_parts_values(struct fastboot_ptentry *ptn)
{
char var[64];
sprintf(var, "%s_nand_offset", ptn->name);
if (!getenv(var))
return 1;
sprintf(var, "%s_nand_size", ptn->name);
if (!getenv(var))
return 1;
return 0;
}
static int write_to_ptn(struct fastboot_ptentry *ptn)
{
int ret = 1;
char length[32];
char write_type[32];
int repeat, repeat_max;
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
char lock[128];
char unlock[128];
#endif
char write[128];
char erase[128];
printf("flashing '%s'\n", ptn->name);
/* Which flavor of write to use */
if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_I)
sprintf(write_type, "write.i");
#ifdef CONFIG_CMD_NAND_TRIMFFS
else if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_TRIMFFS)
sprintf(write_type, "write.trimffs");
#endif
else
sprintf(write_type, "write");
/* Some flashing requires writing the same data in multiple,
consecutive flash partitions */
repeat_max = 1;
if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_REPEAT_MASK) {
if (ptn->flags &
FASTBOOT_PTENTRY_FLAGS_WRITE_CONTIGUOUS_BLOCK) {
printf("Warning can not do both 'contiguous block' "
"and 'repeat' writes for for partition '%s'\n", ptn->name);
printf("Ignoring repeat flag\n");
} else {
repeat_max = ptn->flags &
FASTBOOT_PTENTRY_FLAGS_REPEAT_MASK;
}
}
/* Unlock the whole partition instead of trying to
manage special cases */
sprintf(length, "0x%x", ptn->length * repeat_max);
for (repeat = 0; repeat < repeat_max; repeat++) {
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
sprintf(lock, "nand lock 0x%x %s",
ptn->start + (repeat * ptn->length), length);
sprintf(unlock, "nand unlock 0x%x %s",
ptn->start + (repeat * ptn->length), length);
#endif
sprintf(erase, "nand erase 0x%x %s",
ptn->start + (repeat * ptn->length), length);
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
run_command(unlock, 0);
#endif
run_command(erase, 0);
if ((ptn->flags &
FASTBOOT_PTENTRY_FLAGS_WRITE_NEXT_GOOD_BLOCK) &&
(ptn->flags &
FASTBOOT_PTENTRY_FLAGS_WRITE_CONTIGUOUS_BLOCK)) {
/* Both can not be true */
printf("Warning can not do 'next good block' and \
'contiguous block' for partition '%s'\n",
ptn->name);
printf("Ignoring these flags\n");
} else if (ptn->flags &
FASTBOOT_PTENTRY_FLAGS_WRITE_NEXT_GOOD_BLOCK) {
/* Keep writing until you get a good block
transfer_buffer should already be aligned */
if (interface.nand_block_size) {
unsigned int blocks = download_bytes /
interface.nand_block_size;
unsigned int i = 0;
unsigned int offset = 0;
while (i < blocks) {
/* Check for overflow */
if (offset >= ptn->length)
break;
/* download's address only advance
if last write was successful */
/* nand's address always advances */
sprintf(write, "nand %s 0x%p 0x%x 0x%x", write_type,
interface.transfer_buffer +
(i * interface.nand_block_size),
ptn->start + (repeat * ptn->length) + offset,
interface.nand_block_size);
ret = run_command(write, 0);
if (ret)
break;
else
i++;
/* Go to next nand block */
offset += interface.nand_block_size;
}
} else {
printf("Warning nand block size can not be 0 \
when using 'next good block' for \
partition '%s'\n", ptn->name);
printf("Ignoring write request\n");
}
} else if (ptn->flags &
FASTBOOT_PTENTRY_FLAGS_WRITE_CONTIGUOUS_BLOCK) {
/* Keep writing until you get a good block
transfer_buffer should already be aligned */
if (interface.nand_block_size) {
if (0 == nand_curr_device) {
struct mtd_info *nand;
unsigned long off;
unsigned int ok_start;
nand = &nand_info[nand_curr_device];
printf("\nDevice %d bad blocks:\n",
nand_curr_device);
/* Initialize the ok_start to the
start of the partition
Then try to find a block large
enough for the download */
ok_start = ptn->start;
/* It is assumed that the start and
length are multiples of block size */
for (off = ptn->start;
off < ptn->start + ptn->length;
off += nand->erasesize) {
if (nand_block_isbad(nand, off)) {
/* Reset the ok_start
to the next block */
ok_start = off +
nand->erasesize;
}
/* Check if we have enough
blocks */
if ((ok_start - off) >=
download_bytes)
break;
}
/* Check if there is enough space */
if (ok_start + download_bytes <=
ptn->start + ptn->length) {
sprintf(write, "nand %s 0x%p 0x%x 0x%x", write_type,
interface.transfer_buffer,
ok_start,
download_bytes);
ret = run_command(write, 0);
/* Save the results into an
environment variable on the
format
ptn_name + 'offset'
ptn_name + 'size' */
if (ret) {
/* failed */
save_parts_values(ptn, ptn->start, 0);
} else {
/* success */
save_parts_values(ptn, ok_start, download_bytes);
}
} else {
printf("Error could not find enough contiguous space "
"in partition '%s'\n", ptn->name);
printf("Ignoring write request\n");
}
} else {
/* TBD : Generalize flash handling */
printf("Error only handling 1 NAND per board");
printf("Ignoring write request\n");
}
} else {
printf("Warning nand block size can not be 0 \
when using 'continuous block' for \
partition '%s'\n", ptn->name);
printf("Ignoring write request\n");
}
} else {
/* Normal case */
sprintf(write, "nand %s 0x%p 0x%x 0x%x", write_type,
interface.transfer_buffer,
ptn->start + (repeat * ptn->length),
download_bytes);
#ifdef CONFIG_CMD_NAND_TRIMFFS
if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_TRIMFFS) {
sprintf(write, "nand %s 0x%p 0x%x 0x%x", write_type,
interface.transfer_buffer,
ptn->start + (repeat * ptn->length),
download_bytes_unpadded);
}
#endif
ret = run_command(write, 0);
if (0 == repeat) {
if (ret) /* failed */
save_parts_values(ptn, ptn->start, 0);
else /* success */
save_parts_values(ptn, ptn->start,
download_bytes);
}
}
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
run_command(lock, 0);
#endif
if (ret)
break;
}
return ret;
}
#else
static void save_env(struct fastboot_ptentry *ptn,
char *var, char *val)
{
setenv(var, val);
saveenv();
}
#endif
/* When save = 0, just parse. The input is unchanged
When save = 1, parse and do the save. The input is changed */
static int parse_env(void *ptn, char *err_string, int save, int debug)
{
int ret = 1;
unsigned int sets = 0;
unsigned int comment_start = 0;
char *var = NULL;
char *var_end = NULL;
char *val = NULL;
char *val_end = NULL;
unsigned int i;
char *buff = (char *)interface.transfer_buffer;
unsigned int size = download_bytes_unpadded;
/* The input does not have to be null terminated.
This will cause a problem in the corner case
where the last line does not have a new line.
Put a null after the end of the input.
WARNING : Input buffer is assumed to be bigger
than the size of the input */
if (save)
buff[size] = 0;
for (i = 0; i < size; i++) {
if (NULL == var) {
/*
* Check for comments, comment ok only on
* mostly empty lines
*/
if (buff[i] == '#')
comment_start = 1;
if (comment_start) {
if ((buff[i] == '\r') ||
(buff[i] == '\n')) {
comment_start = 0;
}
} else {
if (!((buff[i] == ' ') ||
(buff[i] == '\t') ||
(buff[i] == '\r') ||
(buff[i] == '\n'))) {
/*
* Normal whitespace before the
* variable
*/
var = &buff[i];
}
}
} else if (((NULL == var_end) || (NULL == val)) &&
((buff[i] == '\r') || (buff[i] == '\n'))) {
/* This is the case when a variable
is unset. */
if (save) {
/* Set the var end to null so the
normal string routines will work
WARNING : This changes the input */
buff[i] = '\0';
save_env(ptn, var, val);
if (debug)
printf("Unsetting %s\n", var);
}
/* Clear the variable so state is parse is back
to initial. */
var = NULL;
var_end = NULL;
sets++;
} else if (NULL == var_end) {
if ((buff[i] == ' ') ||
(buff[i] == '\t'))
var_end = &buff[i];
} else if (NULL == val) {
if (!((buff[i] == ' ') ||
(buff[i] == '\t')))
val = &buff[i];
} else if (NULL == val_end) {
if ((buff[i] == '\r') ||
(buff[i] == '\n')) {
/* look for escaped cr or ln */
if ('\\' == buff[i - 1]) {
/* check for dos */
if ((buff[i] == '\r') &&
(buff[i+1] == '\n'))
buff[i + 1] = ' ';
buff[i - 1] = buff[i] = ' ';
} else {
val_end = &buff[i];
}
}
} else {
sprintf(err_string, "Internal Error");
if (debug)
printf("Internal error at %s %d\n",
__FILE__, __LINE__);
return 1;
}
/* Check if a var / val pair is ready */
if (NULL != val_end) {
if (save) {
/* Set the end's with nulls so
normal string routines will
work.
WARNING : This changes the input */
*var_end = '\0';
*val_end = '\0';
save_env(ptn, var, val);
if (debug)
printf("Setting %s %s\n", var, val);
}
/* Clear the variable so state is parse is back
to initial. */
var = NULL;
var_end = NULL;
val = NULL;
val_end = NULL;
sets++;
}
}
/* Corner case
Check for the case that no newline at end of the input */
if ((NULL != var) &&
(NULL == val_end)) {
if (save) {
/* case of val / val pair */
if (var_end)
*var_end = '\0';
/* else case handled by setting 0 past
the end of buffer.
Similar for val_end being null */
save_env(ptn, var, val);
if (debug) {
if (var_end)
printf("Trailing Setting %s %s\n", var, val);
else
printf("Trailing Unsetting %s\n", var);
}
}
sets++;
}
/* Did we set anything ? */
if (0 == sets)
sprintf(err_string, "No variables set");
else
ret = 0;
return ret;
}
static int saveenv_to_ptn(struct fastboot_ptentry *ptn, char *err_string)
{
int ret = 1;
int save = 0;
int debug = 0;
/* err_string is only 32 bytes
Initialize with a generic error message. */
sprintf(err_string, "%s", "Unknown Error");
/* Parse the input twice.
Only save to the enviroment if the entire input if correct */
save = 0;
if (0 == parse_env(ptn, err_string, save, debug)) {
save = 1;
ret = parse_env(ptn, err_string, save, debug);
}
return ret;
}
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
static void process_flash_nand(const char *cmdbuf)
{
if (download_bytes) {
struct fastboot_ptentry *ptn;
ptn = fastboot_flash_find_ptn(cmdbuf);
if (ptn == 0) {
fastboot_fail("partition does not exist");
} else if ((download_bytes > ptn->length) &&
!(ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_ENV)) {
fastboot_fail("image too large for partition");
/* TODO : Improve check for yaffs write */
} else {
/* Check if this is not really a flash write
but rather a saveenv */
if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_ENV) {
/* Since the response can only be 64 bytes,
there is no point in having a large error message. */
char err_string[32];
if (saveenv_to_ptn(ptn, &err_string[0])) {
printf("savenv '%s' failed : %s\n",
ptn->name, err_string);
fastboot_fail(err_string);
} else {
printf("partition '%s' saveenv-ed\n", ptn->name);
fastboot_okay("");
}
} else {
/* Normal case */
if (write_to_ptn(ptn)) {
printf("flashing '%s' failed\n", ptn->name);
fastboot_fail("failed to flash partition");
} else {
printf("partition '%s' flashed\n", ptn->name);
fastboot_okay("");
}
}
}
} else {
fastboot_fail("no image downloaded");
}
}
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_SATA)
static void process_flash_sata(const char *cmdbuf)
{
if (download_bytes) {
struct fastboot_ptentry *ptn;
/* Next is the partition name */
ptn = fastboot_flash_find_ptn(cmdbuf);
if (ptn == NULL) {
fastboot_fail("partition does not exist");
} else if ((download_bytes >
ptn->length * MMC_SATA_BLOCK_SIZE) &&
!(ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_ENV)) {
printf("Image too large for the partition\n");
fastboot_fail("image too large for partition");
} else if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_ENV) {
/* Since the response can only be 64 bytes,
there is no point in having a large error message. */
char err_string[32];
if (saveenv_to_ptn(ptn, &err_string[0])) {
printf("savenv '%s' failed : %s\n", ptn->name, err_string);
fastboot_fail(err_string);
} else {
printf("partition '%s' saveenv-ed\n", ptn->name);
fastboot_okay("");
}
} else {
unsigned int temp;
char sata_write[128];
/* block count */
temp = (download_bytes +
MMC_SATA_BLOCK_SIZE - 1) /
MMC_SATA_BLOCK_SIZE;
sprintf(sata_write, "sata write 0x%x 0x%x 0x%x",
(unsigned int)interface.transfer_buffer,
ptn->start,
temp);
if (run_command(sata_write, 0)) {
printf("Writing '%s' FAILED!\n",
ptn->name);
fastboot_fail("Write partition failed");
} else {
printf("Writing '%s' DONE!\n",
ptn->name);
fastboot_okay("");
}
}
} else {
fastboot_fail("no image downloaded");
}
}
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
static int is_raw_partition(struct fastboot_ptentry *ptn)
{
#ifdef CONFIG_ANDROID_AB_SUPPORT
if (ptn && (!strncmp(ptn->name, FASTBOOT_PARTITION_BOOTLOADER,
strlen(FASTBOOT_PARTITION_BOOTLOADER)) ||
!strncmp(ptn->name, FASTBOOT_PARTITION_GPT,
strlen(FASTBOOT_PARTITION_GPT)) ||
!strncmp(ptn->name, FASTBOOT_PARTITION_BOOT_A,
strlen(FASTBOOT_PARTITION_BOOT_A)) ||
!strncmp(ptn->name, FASTBOOT_PARTITION_BOOT_B,
strlen(FASTBOOT_PARTITION_BOOT_B)) ||
#ifdef CONFIG_FASTBOOT_LOCK
!strncmp(ptn->name, FASTBOOT_PARTITION_FBMISC,
strlen(FASTBOOT_PARTITION_FBMISC)) ||
#endif
!strncmp(ptn->name, FASTBOOT_PARTITION_MISC,
strlen(FASTBOOT_PARTITION_MISC)))) {
#else
if (ptn && (!strncmp(ptn->name, FASTBOOT_PARTITION_BOOTLOADER,
strlen(FASTBOOT_PARTITION_BOOTLOADER)) ||
!strncmp(ptn->name, FASTBOOT_PARTITION_BOOT,
strlen(FASTBOOT_PARTITION_BOOT)) ||
#ifdef CONFIG_FASTBOOT_LOCK
!strncmp(ptn->name, FASTBOOT_PARTITION_FBMISC,
strlen(FASTBOOT_PARTITION_FBMISC)) ||
#endif
!strncmp(ptn->name, FASTBOOT_PARTITION_MISC,
strlen(FASTBOOT_PARTITION_MISC)))) {
#endif
printf("support sparse flash partition for %s\n", ptn->name);
return 1;
} else
return 0;
}
static lbaint_t mmc_sparse_write(struct sparse_storage *info,
lbaint_t blk, lbaint_t blkcnt, const void *buffer)
{
#define SPARSE_FILL_BUF_SIZE (2 * 1024 * 1024)
struct blk_desc *dev_desc = (struct blk_desc *)info->priv;
ulong ret = 0;
void *data;
int fill_buf_num_blks, cnt;
if ((unsigned long)buffer & (CONFIG_SYS_CACHELINE_SIZE - 1)) {
fill_buf_num_blks = SPARSE_FILL_BUF_SIZE / info->blksz;
data = memalign(CONFIG_SYS_CACHELINE_SIZE, fill_buf_num_blks * info->blksz);
while (blkcnt) {
if (blkcnt > fill_buf_num_blks)
cnt = fill_buf_num_blks;
else
cnt = blkcnt;
memcpy(data, buffer, cnt * info->blksz);
ret += blk_dwrite(dev_desc, blk, cnt, data);
blk += cnt;
blkcnt -= cnt;
buffer = (void *)((unsigned long)buffer + cnt * info->blksz);
}
free(data);
} else {
ret = blk_dwrite(dev_desc, blk, blkcnt, buffer);
}
return ret;
}
static lbaint_t mmc_sparse_reserve(struct sparse_storage *info,
lbaint_t blk, lbaint_t blkcnt)
{
return blkcnt;
}
static void process_flash_mmc(const char *cmdbuf)
{
if (download_bytes) {
struct fastboot_ptentry *ptn;
#ifdef CONFIG_AVB_SUPPORT
if (!strcmp_l1(FASTBOOT_PARTITION_AVBKEY, cmdbuf)) {
printf("pubkey len %d\n", download_bytes);
if (avbkey_init(interface.transfer_buffer, download_bytes) != 0) {
fastboot_fail("fail to Write partition");
} else {
printf("init 'avbkey' DONE!\n");
fastboot_okay("OKAY");
}
return;
}
#endif
/* Next is the partition name */
ptn = fastboot_flash_find_ptn(cmdbuf);
if (ptn == NULL) {
fastboot_fail("partition does not exist");
} else if ((download_bytes >
ptn->length * MMC_SATA_BLOCK_SIZE) &&
!(ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_ENV)) {
printf("Image too large for the partition\n");
fastboot_fail("image too large for partition");
} else if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_WRITE_ENV) {
/* Since the response can only be 64 bytes,
there is no point in having a large error message. */
char err_string[32];
if (saveenv_to_ptn(ptn, &err_string[0])) {
printf("savenv '%s' failed : %s\n", ptn->name, err_string);
fastboot_fail(err_string);
} else {
printf("partition '%s' saveenv-ed\n", ptn->name);
fastboot_okay("");
}
} else {
unsigned int temp;
char mmc_dev[128];
char mmc_write[128];
int mmcret;
printf("writing to partition '%s'\n", ptn->name);
if (ptn->partition_id != FASTBOOT_MMC_NONE_PARTITION_ID)
sprintf(mmc_dev, "mmc dev %x %x",
fastboot_devinfo.dev_id, /*slot no*/
ptn->partition_id /*part no*/);
else
sprintf(mmc_dev, "mmc dev %x",
fastboot_devinfo.dev_id /*slot no*/);
if (!is_raw_partition(ptn) &&
is_sparse_image(interface.transfer_buffer)) {
int mmc_no = 0;
struct mmc *mmc;
struct blk_desc *dev_desc;
disk_partition_t info;
struct sparse_storage sparse;
mmc_no = fastboot_devinfo.dev_id;
printf("sparse flash target is MMC:%d\n", mmc_no);
mmc = find_mmc_device(mmc_no);
if (mmc && mmc_init(mmc))
printf("MMC card init failed!\n");
dev_desc = blk_get_dev("mmc", mmc_no);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
printf("** Block device MMC %d not supported\n",
mmc_no);
return;
}
if (part_get_info(dev_desc,
ptn->partition_index, &info)) {
printf("Bad partition index:%d for partition:%s\n",
ptn->partition_index, ptn->name);
return;
}
printf("writing to partition '%s' for sparse, buffer size %d\n",
ptn->name, download_bytes);
sparse.blksz = info.blksz;
sparse.start = info.start;
sparse.size = info.size;
sparse.write = mmc_sparse_write;
sparse.reserve = mmc_sparse_reserve;
printf("Flashing sparse image at offset " LBAFU "\n",
sparse.start);
sparse.priv = dev_desc;
write_sparse_image(&sparse, ptn->name, interface.transfer_buffer,
download_bytes);
} else {
/* block count */
temp = (download_bytes +
MMC_SATA_BLOCK_SIZE - 1) /
MMC_SATA_BLOCK_SIZE;
sprintf(mmc_write, "mmc write 0x%x 0x%x 0x%x",
(unsigned int)interface.transfer_buffer, /*source*/
ptn->start, /*dest*/
temp /*length*/);
printf("Initializing '%s'\n", ptn->name);
mmcret = run_command(mmc_dev, 0);
if (mmcret)
fastboot_fail("Init of MMC card failed");
else
fastboot_okay("");
printf("Writing '%s'\n", ptn->name);
if (run_command(mmc_write, 0)) {
printf("Writing '%s' FAILED!\n", ptn->name);
fastboot_fail("Write partition failed");
} else {
printf("Writing '%s' DONE!\n", ptn->name);
fastboot_okay("");
}
if (strncmp(ptn->name, "gpt", 3) == 0) {
/* will force scan the device,
so dev_desc can be re-inited
with the latest data */
run_command(mmc_dev, 0);
}
}
}
} else {
fastboot_fail("no image downloaded");
}
}
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
static void process_erase_mmc(const char *cmdbuf, char *response)
{
int mmc_no = 0;
lbaint_t blks, blks_start, blks_size, grp_size;
struct mmc *mmc;
struct blk_desc *dev_desc;
struct fastboot_ptentry *ptn;
disk_partition_t info;
ptn = fastboot_flash_find_ptn(cmdbuf);
if ((ptn == NULL) || (ptn->flags & FASTBOOT_PTENTRY_FLAGS_UNERASEABLE)) {
sprintf(response, "FAILpartition does not exist or uneraseable");
return;
}
mmc_no = fastboot_devinfo.dev_id;
printf("erase target is MMC:%d\n", mmc_no);
mmc = find_mmc_device(mmc_no);
if ((mmc == NULL) || mmc_init(mmc)) {
printf("MMC card init failed!\n");
return;
}
dev_desc = blk_get_dev("mmc", mmc_no);
if (NULL == dev_desc) {
printf("Block device MMC %d not supported\n",
mmc_no);
sprintf(response, "FAILnot valid MMC card");
return;
}
if (part_get_info(dev_desc,
ptn->partition_index, &info)) {
printf("Bad partition index:%d for partition:%s\n",
ptn->partition_index, ptn->name);
sprintf(response, "FAILerasing of MMC card");
return;
}
/* Align blocks to erase group size to avoid erasing other partitions */
grp_size = mmc->erase_grp_size;
blks_start = (info.start + grp_size - 1) & ~(grp_size - 1);
if (info.size >= grp_size)
blks_size = (info.size - (blks_start - info.start)) &
(~(grp_size - 1));
else
blks_size = 0;
printf("Erasing blocks " LBAFU " to " LBAFU " due to alignment\n",
blks_start, blks_start + blks_size);
blks = dev_desc->block_erase(dev_desc, blks_start, blks_size);
if (blks != blks_size) {
printf("failed erasing from device %d", dev_desc->devnum);
sprintf(response, "FAILerasing of MMC card");
return;
}
printf("........ erased " LBAFU " bytes from '%s'\n",
blks_size * info.blksz, cmdbuf);
sprintf(response, "OKAY");
return;
}
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_SATA)
static void process_erase_sata(const char *cmdbuf, char *response)
{
return;
}
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
static int process_erase_nand(const char *cmdbuf, char *response)
{
struct fastboot_ptentry *ptn;
ptn = fastboot_flash_find_ptn(cmdbuf);
if (ptn == NULL || (ptn->flags & FASTBOOT_PTENTRY_FLAGS_UNERASEABLE)) {
fastboot_fail("partition does not exist");
} else {
int status, repeat, repeat_max;
printf("erasing '%s'\n", ptn->name);
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
char lock[128];
char unlock[128];
#endif
char erase[128];
repeat_max = 1;
if (ptn->flags & FASTBOOT_PTENTRY_FLAGS_REPEAT_MASK)
repeat_max = ptn->flags & FASTBOOT_PTENTRY_FLAGS_REPEAT_MASK;
for (repeat = 0; repeat < repeat_max;
repeat++) {
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
sprintf(lock, "nand lock 0x%x 0x%x",
ptn->start + (repeat * ptn->length),
ptn->length);
sprintf(unlock, "nand unlock 0x%x 0x%x",
ptn->start + (repeat * ptn->length),
ptn->length);
#endif
sprintf(erase, "nand erase 0x%x 0x%x",
ptn->start + (repeat * ptn->length),
ptn->length);
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
run_command(unlock, 0);
#endif
status = run_command(erase, 0);
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
run_command(lock, 0);
#endif
if (status)
break;
}
if (status) {
fastboot_fail("failed to erase partition");
} else {
printf("partition '%s' erased\n", ptn->name);
fastboot_okay("");
}
}
return;
}
#endif
static void rx_process_erase(const char *cmdbuf, char *response)
{
switch (fastboot_devinfo.type) {
#if defined(CONFIG_FASTBOOT_STORAGE_SATA)
case DEV_SATA:
process_erase_sata(cmdbuf, response);
break;
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
case DEV_MMC:
process_erase_mmc(cmdbuf, response);
break;
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
case DEV_NAND:
process_erase_nand(cmdbuf, response);
break;
#endif
default:
printf("Not support flash command for current device %d\n",
fastboot_devinfo.type);
sprintf(response,
"FAILfailed to flash device");
break;
}
}
static void rx_process_flash(const char *cmdbuf)
{
switch (fastboot_devinfo.type) {
#if defined(CONFIG_FASTBOOT_STORAGE_SATA)
case DEV_SATA:
process_flash_sata(cmdbuf);
break;
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
case DEV_MMC:
process_flash_mmc(cmdbuf);
break;
#endif
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
case DEV_NAND:
process_flash_nand(cmdbuf);
break;
#endif
default:
printf("Not support flash command for current device %d\n",
fastboot_devinfo.type);
fastboot_fail("failed to flash device");
break;
}
}
static void parameters_setup(void)
{
interface.nand_block_size = 0;
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
struct mtd_info *nand = &nand_info[0];
if (nand)
interface.nand_block_size = nand->writesize;
#endif
interface.transfer_buffer =
(unsigned char *)CONFIG_FASTBOOT_BUF_ADDR;
interface.transfer_buffer_size =
CONFIG_FASTBOOT_BUF_SIZE;
}
static struct fastboot_ptentry g_ptable[MAX_PTN];
static unsigned int g_pcount;
struct fastboot_device_info fastboot_devinfo;
static int _fastboot_setup_dev(void)
{
char *fastboot_env;
fastboot_env = getenv("fastboot_dev");
if (fastboot_env) {
if (!strcmp(fastboot_env, "sata")) {
fastboot_devinfo.type = DEV_SATA;
fastboot_devinfo.dev_id = 0;
} else if (!strcmp(fastboot_env, "nand")) {
fastboot_devinfo.type = DEV_NAND;
fastboot_devinfo.dev_id = 0;
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
} else if (!strncmp(fastboot_env, "mmc", 3)) {
fastboot_devinfo.type = DEV_MMC;
fastboot_devinfo.dev_id = mmc_get_env_dev();
#endif
}
} else {
return 1;
}
return 0;
}
#if defined(CONFIG_FASTBOOT_STORAGE_SATA) \
|| defined(CONFIG_FASTBOOT_STORAGE_MMC)
/**
@mmc_dos_partition_index: the partition index in mbr.
@mmc_partition_index: the boot partition or user partition index,
not related to the partition table.
*/
static int _fastboot_parts_add_ptable_entry(int ptable_index,
int mmc_dos_partition_index,
int mmc_partition_index,
const char *name,
const char *fstype,
struct blk_desc *dev_desc,
struct fastboot_ptentry *ptable)
{
disk_partition_t info;
if (part_get_info(dev_desc,
mmc_dos_partition_index, &info)) {
debug("Bad partition index:%d for partition:%s\n",
mmc_dos_partition_index, name);
return -1;
}
ptable[ptable_index].start = info.start;
ptable[ptable_index].length = info.size;
ptable[ptable_index].partition_id = mmc_partition_index;
ptable[ptable_index].partition_index = mmc_dos_partition_index;
strcpy(ptable[ptable_index].name, (const char *)info.name);
#ifdef CONFIG_PARTITION_UUIDS
strcpy(ptable[ptable_index].uuid, (const char *)info.uuid);
#endif
#ifdef CONFIG_ANDROID_AB_SUPPORT
if (!strcmp((const char *)info.name, FASTBOOT_PARTITION_SYSTEM_A) ||
!strcmp((const char *)info.name, FASTBOOT_PARTITION_SYSTEM_B) ||
!strcmp((const char *)info.name, FASTBOOT_PARTITION_DATA))
#else
if (!strcmp((const char *)info.name, FASTBOOT_PARTITION_SYSTEM) ||
!strcmp((const char *)info.name, FASTBOOT_PARTITION_DATA) ||
!strcmp((const char *)info.name, FASTBOOT_PARTITION_DEVICE) ||
!strcmp((const char *)info.name, FASTBOOT_PARTITION_CACHE))
#endif
strcpy(ptable[ptable_index].fstype, "ext4");
else
strcpy(ptable[ptable_index].fstype, "emmc");
return 0;
}
static int _fastboot_parts_load_from_ptable(void)
{
int i;
#ifdef CONFIG_CMD_SATA
int sata_device_no;
#endif
/* mmc boot partition: -1 means no partition, 0 user part., 1 boot part.
* default is no partition, for emmc default user part, except emmc*/
int boot_partition = FASTBOOT_MMC_NONE_PARTITION_ID;
int user_partition = FASTBOOT_MMC_NONE_PARTITION_ID;
struct mmc *mmc;
struct blk_desc *dev_desc;
struct fastboot_ptentry ptable[MAX_PTN];
/* sata case in env */
if (fastboot_devinfo.type == DEV_SATA) {
#ifdef CONFIG_CMD_SATA
puts("flash target is SATA\n");
if (sata_initialize())
return -1;
sata_device_no = CONFIG_FASTBOOT_SATA_NO;
if (sata_device_no >= CONFIG_SYS_SATA_MAX_DEVICE) {
printf("Unknown SATA(%d) device for fastboot\n",
sata_device_no);
return -1;
}
dev_desc = sata_get_dev(sata_device_no);
#else /*! CONFIG_CMD_SATA*/
puts("SATA isn't buildin\n");
return -1;
#endif /*! CONFIG_CMD_SATA*/
} else if (fastboot_devinfo.type == DEV_MMC) {
int mmc_no = 0;
mmc_no = fastboot_devinfo.dev_id;
printf("flash target is MMC:%d\n", mmc_no);
mmc = find_mmc_device(mmc_no);
if (mmc && mmc_init(mmc))
printf("MMC card init failed!\n");
dev_desc = blk_get_dev("mmc", mmc_no);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
printf("** Block device MMC %d not supported\n",
mmc_no);
return -1;
}
/* multiple boot paritions for eMMC 4.3 later */
if (mmc->part_config != MMCPART_NOAVAILABLE) {
boot_partition = FASTBOOT_MMC_BOOT_PARTITION_ID;
user_partition = FASTBOOT_MMC_USER_PARTITION_ID;
}
} else {
printf("Can't setup partition table on this device %d\n",
fastboot_devinfo.type);
return -1;
}
memset((char *)ptable, 0,
sizeof(struct fastboot_ptentry) * (MAX_PTN));
/* GPT */
strcpy(ptable[PTN_GPT_INDEX].name, FASTBOOT_PARTITION_GPT);
ptable[PTN_GPT_INDEX].start = ANDROID_GPT_OFFSET / dev_desc->blksz;
ptable[PTN_GPT_INDEX].length = ANDROID_GPT_SIZE / dev_desc->blksz;
ptable[PTN_GPT_INDEX].partition_id = user_partition;
ptable[PTN_GPT_INDEX].flags = FASTBOOT_PTENTRY_FLAGS_UNERASEABLE;
/* Bootloader */
strcpy(ptable[PTN_BOOTLOADER_INDEX].name, FASTBOOT_PARTITION_BOOTLOADER);
ptable[PTN_BOOTLOADER_INDEX].start =
ANDROID_BOOTLOADER_OFFSET / dev_desc->blksz;
ptable[PTN_BOOTLOADER_INDEX].length =
ANDROID_BOOTLOADER_SIZE / dev_desc->blksz;
ptable[PTN_BOOTLOADER_INDEX].partition_id = boot_partition;
ptable[PTN_BOOTLOADER_INDEX].flags = FASTBOOT_PTENTRY_FLAGS_UNERASEABLE;
int tbl_idx;
int part_idx = 1;
int ret;
for (tbl_idx = 2; tbl_idx < MAX_PTN; tbl_idx++) {
ret = _fastboot_parts_add_ptable_entry(tbl_idx,
part_idx++,
user_partition,
NULL,
NULL,
dev_desc, ptable);
if (ret)
break;
}
for (i = 0; i <= part_idx; i++)
fastboot_flash_add_ptn(&ptable[i]);
return 0;
}
#endif /*CONFIG_FASTBOOT_STORAGE_SATA || CONFIG_FASTBOOT_STORAGE_MMC*/
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
static unsigned long long _memparse(char *ptr, char **retptr)
{
char *endptr; /* local pointer to end of parsed string */
unsigned long ret = simple_strtoul(ptr, &endptr, 0);
switch (*endptr) {
case 'M':
case 'm':
ret <<= 10;
case 'K':
case 'k':
ret <<= 10;
endptr++;
default:
break;
}
if (retptr)
*retptr = endptr;
return ret;
}
static int _fastboot_parts_add_env_entry(char *s, char **retptr)
{
unsigned long size;
unsigned long offset = 0;
char *name;
int name_len;
int delim;
unsigned int flags;
struct fastboot_ptentry part;
size = _memparse(s, &s);
if (0 == size) {
printf("Error:FASTBOOT size of parition is 0\n");
return 1;
}
/* fetch partition name and flags */
flags = 0; /* this is going to be a regular partition */
delim = 0;
/* check for offset */
if (*s == '@') {
s++;
offset = _memparse(s, &s);
} else {
printf("Error:FASTBOOT offset of parition is not given\n");
return 1;
}
/* now look for name */
if (*s == '(')
delim = ')';
if (delim) {
char *p;
name = ++s;
p = strchr((const char *)name, delim);
if (!p) {
printf("Error:FASTBOOT no closing %c found in partition name\n",
delim);
return 1;
}
name_len = p - name;
s = p + 1;
} else {
printf("Error:FASTBOOT no partition name for \'%s\'\n", s);
return 1;
}
/* check for options */
while (1) {
if (strncmp(s, "i", 1) == 0) {
flags |= FASTBOOT_PTENTRY_FLAGS_WRITE_I;
s += 1;
} else if (strncmp(s, "ubifs", 5) == 0) {
/* ubifs */
flags |= FASTBOOT_PTENTRY_FLAGS_WRITE_TRIMFFS;
s += 5;
} else {
break;
}
if (strncmp(s, "|", 1) == 0)
s += 1;
}
/* enter this partition (offset will be calculated later if it is zero at this point) */
part.length = size;
part.start = offset;
part.flags = flags;
if (name) {
if (name_len >= sizeof(part.name)) {
printf("Error:FASTBOOT partition name is too long\n");
return 1;
}
strncpy(&part.name[0], name, name_len);
/* name is not null terminated */
part.name[name_len] = '\0';
} else {
printf("Error:FASTBOOT no name\n");
return 1;
}
fastboot_flash_add_ptn(&part);
/*if the nand partitions envs are not initialized, try to init them*/
if (check_parts_values(&part))
save_parts_values(&part, part.start, part.length);
/* return (updated) pointer command line string */
*retptr = s;
/* return partition table */
return 0;
}
static int _fastboot_parts_load_from_env(void)
{
char fbparts[FASTBOOT_FBPARTS_ENV_MAX_LEN], *env;
env = getenv("fbparts");
if (env) {
unsigned int len;
len = strlen(env);
if (len && len < FASTBOOT_FBPARTS_ENV_MAX_LEN) {
char *s, *e;
memcpy(&fbparts[0], env, len + 1);
printf("Fastboot: Adding partitions from environment\n");
s = &fbparts[0];
e = s + len;
while (s < e) {
if (_fastboot_parts_add_env_entry(s, &s)) {
printf("Error:Fastboot: Abort adding partitions\n");
g_pcount = 0;
return 1;
}
/* Skip a bunch of delimiters */
while (s < e) {
if ((' ' == *s) ||
('\t' == *s) ||
('\n' == *s) ||
('\r' == *s) ||
(',' == *s)) {
s++;
} else {
break;
}
}
}
}
}
return 0;
}
#endif /*CONFIG_FASTBOOT_STORAGE_NAND*/
static void _fastboot_load_partitions(void)
{
g_pcount = 0;
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
_fastboot_parts_load_from_env();
#elif defined(CONFIG_FASTBOOT_STORAGE_SATA) \
|| defined(CONFIG_FASTBOOT_STORAGE_MMC)
_fastboot_parts_load_from_ptable();
#endif
}
/*
* Android style flash utilties */
void fastboot_flash_add_ptn(struct fastboot_ptentry *ptn)
{
if (g_pcount < MAX_PTN) {
memcpy(g_ptable + g_pcount, ptn, sizeof(struct fastboot_ptentry));
g_pcount++;
}
}
void fastboot_flash_dump_ptn(void)
{
unsigned int n;
for (n = 0; n < g_pcount; n++) {
struct fastboot_ptentry *ptn = g_ptable + n;
printf("idx %d, ptn %d name='%s' start=%d len=%d\n",
n, ptn->partition_index, ptn->name, ptn->start, ptn->length);
}
}
struct fastboot_ptentry *fastboot_flash_find_ptn(const char *name)
{
unsigned int n;
for (n = 0; n < g_pcount; n++) {
/* Make sure a substring is not accepted */
if (strlen(name) == strlen(g_ptable[n].name)) {
if (0 == strcmp(g_ptable[n].name, name))
return g_ptable + n;
}
}
printf("can't find partition: %s, dump the partition table\n", name);
fastboot_flash_dump_ptn();
return 0;
}
int fastboot_flash_find_index(const char *name)
{
struct fastboot_ptentry *ptentry = fastboot_flash_find_ptn(name);
if (ptentry == NULL) {
printf("cannot get the partion info for %s\n",name);
return -1;
}
return ptentry->partition_index;
}
struct fastboot_ptentry *fastboot_flash_get_ptn(unsigned int n)
{
if (n < g_pcount)
return g_ptable + n;
else
return 0;
}
unsigned int fastboot_flash_get_ptn_count(void)
{
return g_pcount;
}
#ifdef CONFIG_FSL_FASTBOOT
void board_fastboot_setup(void)
{
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
static char boot_dev_part[32];
u32 dev_no;
#endif
switch (get_boot_device()) {
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
case SD1_BOOT:
case SD2_BOOT:
case SD3_BOOT:
case SD4_BOOT:
case MMC1_BOOT:
case MMC2_BOOT:
case MMC3_BOOT:
case MMC4_BOOT:
dev_no = mmc_get_env_dev();
sprintf(boot_dev_part,"mmc%d",dev_no);
if (!getenv("fastboot_dev"))
setenv("fastboot_dev", boot_dev_part);
sprintf(boot_dev_part, "boota mmc%d", dev_no);
if (!getenv("bootcmd"))
setenv("bootcmd", boot_dev_part);
break;
#endif /*CONFIG_FASTBOOT_STORAGE_MMC*/
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
case NAND_BOOT:
if (!getenv("fastboot_dev"))
setenv("fastboot_dev", "nand");
if (!getenv("fbparts"))
setenv("fbparts", ANDROID_FASTBOOT_NAND_PARTS);
if (!getenv("bootcmd"))
setenv("bootcmd",
"nand read ${loadaddr} ${boot_nand_offset} "
"${boot_nand_size};boota ${loadaddr}");
break;
#endif /*CONFIG_FASTBOOT_STORAGE_NAND*/
default:
printf("unsupported boot devices\n");
break;
}
}
#ifdef CONFIG_ANDROID_RECOVERY
void board_recovery_setup(void)
{
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
static char boot_dev_part[32];
u32 dev_no;
#endif
int bootdev = get_boot_device();
switch (bootdev) {
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
case SD1_BOOT:
case SD2_BOOT:
case SD3_BOOT:
case SD4_BOOT:
case MMC1_BOOT:
case MMC2_BOOT:
case MMC3_BOOT:
case MMC4_BOOT:
dev_no = mmc_get_env_dev();
sprintf(boot_dev_part,"boota mmc%d recovery",dev_no);
if (!getenv("bootcmd_android_recovery"))
setenv("bootcmd_android_recovery", boot_dev_part);
break;
#endif /*CONFIG_FASTBOOT_STORAGE_MMC*/
#if defined(CONFIG_FASTBOOT_STORAGE_NAND)
case NAND_BOOT:
if (!getenv("bootcmd_android_recovery"))
setenv("bootcmd_android_recovery",
"nand read ${loadaddr} ${recovery_nand_offset} "
"${recovery_nand_size};boota ${loadaddr}");
break;
#endif /*CONFIG_FASTBOOT_STORAGE_NAND*/
default:
printf("Unsupported bootup device for recovery: dev: %d\n",
bootdev);
return;
}
printf("setup env for recovery..\n");
setenv("bootcmd", "run bootcmd_android_recovery");
}
#endif /*CONFIG_ANDROID_RECOVERY*/
#endif /*CONFIG_FSL_FASTBOOT*/
#if defined(CONFIG_AVB_SUPPORT) && defined(CONFIG_MMC)
static AvbABOps fsl_avb_ab_ops = {
.read_ab_metadata = fsl_read_ab_metadata,
.write_ab_metadata = fsl_write_ab_metadata,
.ops = NULL
};
static AvbOps fsl_avb_ops = {
.ab_ops = &fsl_avb_ab_ops,
.read_from_partition = fsl_read_from_partition_multi,
.write_to_partition = fsl_write_to_partition,
.validate_vbmeta_public_key = fsl_validate_vbmeta_public_key_rpmb,
.read_rollback_index = fsl_read_rollback_index_rpmb,
.write_rollback_index = fsl_write_rollback_index_rpmb,
.read_is_device_unlocked = fsl_read_is_device_unlocked,
.get_unique_guid_for_partition = fsl_get_unique_guid_for_partition
};
#endif
void fastboot_setup(void)
{
struct tag_serialnr serialnr;
char serial[17];
get_board_serial(&serialnr);
sprintf(serial, "%08x%08x", serialnr.high, serialnr.low);
g_dnl_set_serialnumber(serial);
/*execute board relevant initilizations for preparing fastboot */
board_fastboot_setup();
/*get the fastboot dev*/
_fastboot_setup_dev();
/*load partitions information for the fastboot dev*/
_fastboot_load_partitions();
parameters_setup();
#ifdef CONFIG_AVB_SUPPORT
fsl_avb_ab_ops.ops = &fsl_avb_ops;
#endif
}
/* Write the bcb with fastboot bootloader commands */
static void enable_fastboot_command(void)
{
char fastboot_command[32] = {0};
strncpy(fastboot_command, FASTBOOT_BCB_CMD, 31);
bcb_write_command(fastboot_command);
}
/* Get the Boot mode from BCB cmd or Key pressed */
static FbBootMode fastboot_get_bootmode(void)
{
int ret = 0;
int boot_mode = BOOTMODE_NORMAL;
char command[32];
#ifdef CONFIG_ANDROID_RECOVERY
if(is_recovery_key_pressing()) {
boot_mode = BOOTMODE_RECOVERY_KEY_PRESSED;
return boot_mode;
}
#endif
ret = bcb_read_command(command);
if (ret < 0) {
printf("read command failed\n");
return boot_mode;
}
if (!strcmp(command, FASTBOOT_BCB_CMD)) {
memset(command, 0, 32);
bcb_write_command(command);
boot_mode = BOOTMODE_FASTBOOT_BCB_CMD;
}
#ifdef CONFIG_ANDROID_RECOVERY
else if (!strcmp(command, RECOVERY_BCB_CMD)) {
memset(command, 0, 32);
bcb_write_command(command);
boot_mode = BOOTMODE_RECOVERY_BCB_CMD;
}
#endif
return boot_mode;
}
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
/* Setup booargs for taking the system parition as ramdisk */
static void fastboot_setup_system_boot_args(const char *slot)
{
const char *system_part_name = NULL;
if(slot == NULL)
return;
if(!strncmp(slot, "_a", strlen("_a")) || !strncmp(slot, "boot_a", strlen("boot_a"))) {
system_part_name = FASTBOOT_PARTITION_SYSTEM_A;
}
else if(!strncmp(slot, "_b", strlen("_b")) || !strncmp(slot, "boot_b", strlen("boot_b"))) {
system_part_name = FASTBOOT_PARTITION_SYSTEM_B;
}
struct fastboot_ptentry *ptentry = fastboot_flash_find_ptn(system_part_name);
if(ptentry != NULL) {
char bootargs_3rd[ANDR_BOOT_ARGS_SIZE];
#if defined(CONFIG_FASTBOOT_STORAGE_MMC)
u32 dev_no = mmc_map_to_kernel_blk(mmc_get_env_dev());
sprintf(bootargs_3rd, "skip_initramfs root=/dev/mmcblk%dp%d",
dev_no,
ptentry->partition_index);
setenv("bootargs_3rd", bootargs_3rd);
#endif
//TBD to support NAND ubifs system parition boot directly
}
}
#endif
/* export to lib_arm/board.c */
void fastboot_run_bootmode(void)
{
FbBootMode boot_mode = fastboot_get_bootmode();
switch(boot_mode){
case BOOTMODE_FASTBOOT_BCB_CMD:
/* Make the boot into fastboot mode*/
puts("Fastboot: Got bootloader commands!\n");
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
is_recovery_mode = false;
#endif
run_command("fastboot 0", 0);
break;
#ifdef CONFIG_ANDROID_RECOVERY
case BOOTMODE_RECOVERY_BCB_CMD:
case BOOTMODE_RECOVERY_KEY_PRESSED:
/* Make the boot into recovery mode */
puts("Fastboot: Got Recovery key pressing or recovery commands!\n");
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
is_recovery_mode = true;
#else
board_recovery_setup();
#endif
break;
#endif
default:
/* skip special mode boot*/
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
is_recovery_mode = false;
#endif
puts("Fastboot: Normal\n");
break;
}
}
#ifdef CONFIG_CMD_BOOTA
/* Section for Android bootimage format support
* Refer:
* http://android.git.kernel.org/?p=platform/system/core.git;a=blob;
* f=mkbootimg/bootimg.h
*/
void
bootimg_print_image_hdr(struct andr_img_hdr *hdr)
{
#ifdef DEBUG
int i;
printf(" Image magic: %s\n", hdr->magic);
printf(" kernel_size: 0x%x\n", hdr->kernel_size);
printf(" kernel_addr: 0x%x\n", hdr->kernel_addr);
printf(" rdisk_size: 0x%x\n", hdr->ramdisk_size);
printf(" rdisk_addr: 0x%x\n", hdr->ramdisk_addr);
printf(" second_size: 0x%x\n", hdr->second_size);
printf(" second_addr: 0x%x\n", hdr->second_addr);
printf(" tags_addr: 0x%x\n", hdr->tags_addr);
printf(" page_size: 0x%x\n", hdr->page_size);
printf(" name: %s\n", hdr->name);
printf(" cmdline: %s\n", hdr->cmdline);
for (i = 0; i < 8; i++)
printf(" id[%d]: 0x%x\n", i, hdr->id[i]);
#endif
}
static struct andr_img_hdr boothdr __aligned(ARCH_DMA_MINALIGN);
#if defined(CONFIG_AVB_SUPPORT) && defined(CONFIG_MMC)
/* we can use avb to verify Trusty if we want */
const char *requested_partitions[] = {"boot", 0};
int do_boota(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) {
ulong addr = 0;
struct andr_img_hdr *hdr = NULL;
struct andr_img_hdr *hdrload;
ulong image_size;
AvbABFlowResult avb_result;
AvbSlotVerifyData *avb_out_data;
AvbPartitionData *avb_loadpart;
#ifdef CONFIG_FASTBOOT_LOCK
/* check lock state */
FbLockState lock_status = fastboot_get_lock_stat();
if (lock_status == FASTBOOT_LOCK_ERROR) {
printf("In boota get fastboot lock status error. Set lock status\n");
fastboot_set_lock_stat(FASTBOOT_LOCK);
lock_status = FASTBOOT_LOCK;
}
bool allow_fail = (lock_status == FASTBOOT_UNLOCK ? true : false);
/* if in lock state, do avb verify */
avb_result = avb_ab_flow(&fsl_avb_ab_ops, requested_partitions, allow_fail, &avb_out_data);
if (avb_result == AVB_AB_FLOW_RESULT_OK) {
assert(avb_out_data != NULL);
/* load the first partition */
avb_loadpart = avb_out_data->loaded_partitions;
assert(avb_loadpart != NULL);
/* we should use avb_part_data->data as boot image */
/* boot image is already read by avb */
hdr = (struct andr_img_hdr *)avb_loadpart->data;
if (android_image_check_header(hdr)) {
printf("boota: bad boot image magic\n");
goto fail;
}
printf(" verify OK, boot '%s%s'\n", avb_loadpart->partition_name, avb_out_data->ab_suffix);
char bootargs_sec[2048];
sprintf(bootargs_sec, "androidboot.slot_suffix=%s %s", avb_out_data->ab_suffix, avb_out_data->cmdline);
setenv("bootargs_sec", bootargs_sec);
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
if(!is_recovery_mode)
fastboot_setup_system_boot_args(avb_out_data->ab_suffix);
#endif
image_size = avb_loadpart->data_size;
memcpy((void *)load_addr, (void *)hdr, image_size);
} else if (lock_status == FASTBOOT_LOCK) { /* && verify fail */
/* if in lock state, verify enforce fail */
printf(" verify FAIL, state: LOCK\n");
goto fail;
} else { /* lock_status == FASTBOOT_UNLOCK && verify fail */
/* if in unlock state, log the verify state */
printf(" verify FAIL, state: UNLOCK\n");
#endif
/* if lock/unlock not enabled or verify fail
* in unlock state, will try boot */
size_t num_read;
hdr = &boothdr;
char bootimg[8];
char *slot = select_slot(&fsl_avb_ab_ops);
if (slot == NULL) {
printf("boota: no bootable slot\n");
goto fail;
}
sprintf(bootimg, "boot%s", slot);
printf(" boot '%s' still\n", bootimg);
/* maybe we should use bootctl to select a/b
* but libavb doesn't export a/b select */
if (fsl_avb_ops.read_from_partition(&fsl_avb_ops, bootimg,
0, sizeof(boothdr), hdr, &num_read) != AVB_IO_RESULT_OK &&
num_read != sizeof(boothdr)) {
printf("boota: read bootimage head error\n");
goto fail;
}
if (android_image_check_header(hdr)) {
printf("boota: bad boot image magic\n");
goto fail;
}
image_size = android_image_get_end(hdr) - (ulong)hdr;
if (fsl_avb_ops.read_from_partition(&fsl_avb_ops, bootimg,
0, image_size, (void *)load_addr, &num_read) != AVB_IO_RESULT_OK &&
num_read != image_size) {
printf("boota: read boot image error\n");
goto fail;
}
char bootargs_sec[ANDR_BOOT_ARGS_SIZE];
sprintf(bootargs_sec, "androidboot.slot_suffix=%s", slot);
setenv("bootargs_sec", bootargs_sec);
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
if(!is_recovery_mode)
fastboot_setup_system_boot_args(slot);
#endif
#ifdef CONFIG_FASTBOOT_LOCK
}
#endif
flush_cache((ulong)load_addr, image_size);
addr = load_addr;
hdrload = (struct andr_img_hdr *)load_addr;
ulong img_ramdisk, img_ramdisk_len;
if(android_image_get_ramdisk(hdrload, &img_ramdisk, &img_ramdisk_len) != 0) {
printf("boota: mmc failed to read ramdisk\n");
goto fail;
}
memcpy((void *)hdrload->ramdisk_addr, (void *)img_ramdisk, img_ramdisk_len);
/* flush cache after read */
flush_cache((ulong)hdrload->ramdisk_addr, img_ramdisk_len); /* FIXME */
#ifdef CONFIG_OF_LIBFDT
/* load the dtb file */
if (hdrload->second_size && hdrload->second_addr) {
ulong img_fdt, img_fdt_len;
if (android_image_get_fdt(hdrload, &img_fdt, &img_fdt_len) != 0) {
printf("boota: mmc failed to dtb\n");
goto fail;
}
memcpy((void *)hdrload->second_addr, (void *)img_fdt, img_fdt_len);
/* flush cache after read */
flush_cache((ulong)hdrload->second_addr, img_fdt_len); /* FIXME */
}
#endif /*CONFIG_OF_LIBFDT*/
printf("kernel @ %08x (%d)\n", hdrload->kernel_addr, hdrload->kernel_size);
printf("ramdisk @ %08x (%d)\n", hdrload->ramdisk_addr, hdrload->ramdisk_size);
#ifdef CONFIG_OF_LIBFDT
if (hdrload->second_size)
printf("fdt @ %08x (%d)\n", hdrload->second_addr, hdrload->second_size);
#endif /*CONFIG_OF_LIBFDT*/
char boot_addr_start[12];
char ramdisk_addr[25];
char fdt_addr[12];
char *bootm_args[] = { "bootm", boot_addr_start, ramdisk_addr, fdt_addr};
sprintf(boot_addr_start, "0x%lx", addr);
sprintf(ramdisk_addr, "0x%x:0x%x", hdrload->ramdisk_addr, hdrload->ramdisk_size);
sprintf(fdt_addr, "0x%x", hdrload->second_addr);
if (avb_out_data != NULL)
avb_slot_verify_data_free(avb_out_data);
do_bootm(NULL, 0, 4, bootm_args);
/* This only happens if image is somehow faulty so we start over */
do_reset(NULL, 0, 0, NULL);
return 1;
fail:
/* avb has no recovery */
if (avb_out_data != NULL)
avb_slot_verify_data_free(avb_out_data);
return run_command("fastboot 0", 0);
}
U_BOOT_CMD(
boota, 2, 1, do_boota,
"boota - boot android bootimg \n",
"boot from current mmc with avb verify\n"
);
#else /* CONFIG_AVB_SUPPORT */
/* boota <addr> [ mmc0 | mmc1 [ <partition> ] ] */
int do_boota(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
ulong addr = 0;
char *ptn = "boot";
int mmcc = -1;
struct andr_img_hdr *hdr = &boothdr;
ulong image_size;
bool check_image_arm64 = false;
#ifdef CONFIG_SECURE_BOOT
#define IVT_SIZE 0x20
#define CSF_PAD_SIZE CONFIG_CSF_SIZE
/* Max of bootimage size to be 16MB */
#define MAX_ANDROID_BOOT_AUTH_SIZE 0x1000000
/* Size appended to boot.img with boot_signer */
#define BOOTIMAGE_SIGNATURE_SIZE 0x100
#endif
int i = 0;
for (i = 0; i < argc; i++)
printf("%s ", argv[i]);
printf("\n");
if (argc < 2)
return -1;
if (!strncmp(argv[1], "mmc", 3))
mmcc = simple_strtoul(argv[1]+3, NULL, 10);
else
addr = simple_strtoul(argv[1], NULL, 16);
if (argc > 2)
ptn = argv[2];
#ifdef CONFIG_FSL_BOOTCTL
else {
slot_select:
ptn = select_slot();
if (ptn == NULL) {
printf("no valid slot found, enter to recovery\n");
ptn = "recovery";
}
#ifdef CONFIG_SYSTEM_RAMDISK_SUPPORT
else {
fastboot_setup_system_boot_args(ptn);
}
#endif
use_given_ptn:
printf("use slot %s\n", ptn);
}
#endif
if (mmcc != -1) {
#ifdef CONFIG_MMC
struct fastboot_ptentry *pte;
struct mmc *mmc;
disk_partition_t info;
struct blk_desc *dev_desc = NULL;
unsigned sector;
unsigned bootimg_sectors;
memset((void *)&info, 0 , sizeof(disk_partition_t));
/* i.MX use MBR as partition table, so this will have
to find the start block and length for the
partition name and register the fastboot pte we
define the partition number of each partition in
config file
*/
mmc = find_mmc_device(mmcc);
if (!mmc) {
printf("boota: cannot find '%d' mmc device\n", mmcc);
goto fail;
}
dev_desc = blk_get_dev("mmc", mmcc);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
printf("** Block device MMC %d not supported\n", mmcc);
goto fail;
}
/* below was i.MX mmc operation code */
if (mmc_init(mmc)) {
printf("mmc%d init failed\n", mmcc);
goto fail;
}
pte = fastboot_flash_find_ptn(ptn);
if (!pte) {
printf("boota: cannot find '%s' partition\n", ptn);
goto fail;
}
if (mmc->block_dev.block_read(dev_desc, pte->start,
1, (void *)hdr) < 0) {
printf("boota: mmc failed to read bootimg header\n");
goto fail;
}
if (android_image_check_header(hdr)) {
printf("boota: bad boot image magic\n");
goto fail;
}
image_size = android_image_get_end(hdr) - (ulong)hdr;
bootimg_sectors = image_size/512;
#ifdef CONFIG_SECURE_BOOT
/* Default boot.img should be padded to 0x1000
before appended with IVT&CSF data. Set the threshold of
boot image for athendication as 16MB
*/
image_size += BOOTIMAGE_SIGNATURE_SIZE;
image_size = ALIGN(image_size, 0x1000);
if (image_size > MAX_ANDROID_BOOT_AUTH_SIZE) {
printf("The image size is too large for athenticated boot!\n");
return 1;
}
/* Make sure all data boot.img + IVT + CSF been read to memory */
bootimg_sectors = image_size/512 +
ALIGN(IVT_SIZE + CSF_PAD_SIZE, 512)/512;
#endif
if (mmc->block_dev.block_read(dev_desc, pte->start,
bootimg_sectors,
(void *)load_addr) < 0) {
printf("boota: mmc failed to read kernel\n");
goto fail;
}
/* flush cache after read */
flush_cache((ulong)load_addr, bootimg_sectors * 512); /* FIXME */
check_image_arm64 = image_arm64((void *)(load_addr + hdr->page_size));
addr = load_addr;
#ifdef CONFIG_FASTBOOT_LOCK
int verifyresult = -1;
#endif
#ifdef CONFIG_SECURE_BOOT
extern uint32_t authenticate_image(uint32_t ddr_start,
uint32_t image_size);
if (authenticate_image(load_addr, image_size)) {
printf("Authenticate OK\n");
#ifdef CONFIG_FASTBOOT_LOCK
verifyresult = 0;
#endif
} else {
printf("Authenticate image Fail, Please check\n\n");
/* For Android if the verify not passed we continue the boot process */
#ifdef CONFIG_FASTBOOT_LOCK
#ifndef CONFIG_ANDROID_SUPPORT
return 1;
#endif
verifyresult = 1;
#endif
}
#endif /*CONFIG_SECURE_BOOT*/
#ifdef CONFIG_FASTBOOT_LOCK
int lock_status = fastboot_get_lock_stat();
if (lock_status == FASTBOOT_LOCK_ERROR) {
printf("In boota get fastboot lock status error. Set lock status\n");
fastboot_set_lock_stat(FASTBOOT_LOCK);
}
display_lock(fastboot_get_lock_stat(), verifyresult);
#endif
sector = pte->start + (hdr->page_size / 512);
if (check_image_arm64) {
if (mmc->block_dev.block_read(dev_desc, sector,
(hdr->kernel_size / 512) + 1,
(void *)hdr->kernel_addr) < 0) {
printf("boota: mmc failed to read kernel\n");
goto fail;
}
flush_cache((ulong)hdr->kernel_addr, hdr->kernel_size);
android_image_get_kernel(hdr, 0, NULL, NULL);
addr = hdr->kernel_addr;
}
sector += ALIGN(hdr->kernel_size, hdr->page_size) / 512;
if (mmc->block_dev.block_read(dev_desc, sector,
(hdr->ramdisk_size / 512) + 1,
(void *)hdr->ramdisk_addr) < 0) {
printf("boota: mmc failed to read ramdisk\n");
goto fail;
}
/* flush cache after read */
flush_cache((ulong)hdr->ramdisk_addr, ((hdr->ramdisk_size / 512) + 1) * 512); /* FIXME */
#ifdef CONFIG_OF_LIBFDT
/* load the dtb file */
if (hdr->second_size && hdr->second_addr) {
sector += ALIGN(hdr->ramdisk_size, hdr->page_size) / 512;
if (mmc->block_dev.block_read(dev_desc, sector,
(hdr->second_size / 512) + 1,
(void *)hdr->second_addr) < 0) {
printf("boota: mmc failed to dtb\n");
goto fail;
}
/* flush cache after read */
flush_cache((ulong)hdr->second_addr, ((hdr->second_size / 512) + 1) * 512); /* FIXME */
}
#endif /*CONFIG_OF_LIBFDT*/
#else /*! CONFIG_MMC*/
return -1;
#endif /*! CONFIG_MMC*/
} else {
unsigned raddr, end;
#ifdef CONFIG_OF_LIBFDT
unsigned fdtaddr = 0;
#endif
/* set this aside somewhere safe */
memcpy(hdr, (void *)addr, sizeof(*hdr));
if (android_image_check_header(hdr)) {
printf("boota: bad boot image magic\n");
return 1;
}
bootimg_print_image_hdr(hdr);
image_size = hdr->page_size +
ALIGN(hdr->kernel_size, hdr->page_size) +
ALIGN(hdr->ramdisk_size, hdr->page_size) +
ALIGN(hdr->second_size, hdr->page_size);
#ifdef CONFIG_SECURE_BOOT
image_size = image_size + BOOTIMAGE_SIGNATURE_SIZE;
if (image_size > MAX_ANDROID_BOOT_AUTH_SIZE) {
printf("The image size is too large for athenticated boot!\n");
return 1;
}
#endif /*CONFIG_SECURE_BOOT*/
#ifdef CONFIG_SECURE_BOOT
extern uint32_t authenticate_image(uint32_t ddr_start,
uint32_t image_size);
if (authenticate_image(addr, image_size)) {
printf("Authenticate OK\n");
} else {
printf("Authenticate image Fail, Please check\n\n");
return 1;
}
#endif
raddr = addr + hdr->page_size;
raddr += ALIGN(hdr->kernel_size, hdr->page_size);
end = raddr + hdr->ramdisk_size;
#ifdef CONFIG_OF_LIBFDT
if (hdr->second_size) {
fdtaddr = raddr + ALIGN(hdr->ramdisk_size, hdr->page_size);
end = fdtaddr + hdr->second_size;
}
#endif /*CONFIG_OF_LIBFDT*/
if (raddr != hdr->ramdisk_addr) {
/*check overlap*/
if (((hdr->ramdisk_addr >= addr) &&
(hdr->ramdisk_addr <= end)) ||
((addr >= hdr->ramdisk_addr) &&
(addr <= hdr->ramdisk_addr + hdr->ramdisk_size))) {
printf("Fail: boota address overlap with ramdisk address\n");
return 1;
}
memmove((void *) hdr->ramdisk_addr,
(void *)raddr, hdr->ramdisk_size);
}
#ifdef CONFIG_OF_LIBFDT
if (hdr->second_size && fdtaddr != hdr->second_addr) {
/*check overlap*/
if (((hdr->second_addr >= addr) &&
(hdr->second_addr <= end)) ||
((addr >= hdr->second_addr) &&
(addr <= hdr->second_addr + hdr->second_size))) {
printf("Fail: boota address overlap with FDT address\n");
return 1;
}
memmove((void *) hdr->second_addr,
(void *)fdtaddr, hdr->second_size);
}
#endif /*CONFIG_OF_LIBFDT*/
}
printf("kernel @ %08x (%d)\n", hdr->kernel_addr, hdr->kernel_size);
printf("ramdisk @ %08x (%d)\n", hdr->ramdisk_addr, hdr->ramdisk_size);
#ifdef CONFIG_OF_LIBFDT
if (hdr->second_size)
printf("fdt @ %08x (%d)\n", hdr->second_addr, hdr->second_size);
#endif /*CONFIG_OF_LIBFDT*/
char boot_addr_start[12];
char ramdisk_addr[25];
char fdt_addr[12];
char *boot_args[] = { NULL, boot_addr_start, ramdisk_addr, fdt_addr};
if (check_image_arm64)
boot_args[0] = "booti";
else
boot_args[0] = "bootm";
sprintf(boot_addr_start, "0x%lx", addr);
sprintf(ramdisk_addr, "0x%x:0x%x", hdr->ramdisk_addr, hdr->ramdisk_size);
sprintf(fdt_addr, "0x%x", hdr->second_addr);
if (check_image_arm64) {
#ifdef CONFIG_CMD_BOOTI
do_booti(NULL, 0, 4, boot_args);
#else
debug("please enable CONFIG_CMD_BOOTI when kernel are Image");
#endif
} else {
do_bootm(NULL, 0, 4, boot_args);
}
/* This only happens if image is somehow faulty so we start over */
do_reset(NULL, 0, 0, NULL);
return 1;
fail:
#if defined(CONFIG_FSL_BOOTCTL)
if (argc > 2)
return -1;
if (0 == strcmp(ptn, "recovery")) {
printf("boot recovery partition failed\n");
return -1;
}
printf("invalid slot %s\n", ptn);
int ret = 0;
ret = invalid_curslot();
if (ret == 0) {
goto slot_select;
} else {
ptn = "recovery";
goto use_given_ptn;
}
#elif defined(CONFIG_FSL_FASTBOOT)
return run_command("fastboot 0", 0);
#else /*! CONFIG_FSL_FASTBOOT*/
return -1;
#endif /*! CONFIG_FSL_FASTBOOT*/
}
U_BOOT_CMD(
boota, 3, 1, do_boota,
"boota - boot android bootimg from memory\n",
"[<addr> | mmc0 | mmc1 | mmc2 | mmcX] [<partition>]\n "
"- boot application image stored in memory or mmc\n"
"\t'addr' should be the address of boot image "
"which is zImage+ramdisk.img\n"
"\t'mmcX' is the mmc device you store your boot.img, "
"which will read the boot.img from 1M offset('/boot' partition)\n"
"\t 'partition' (optional) is the partition id of your device, "
"if no partition give, will going to 'boot' partition\n"
);
#endif /* CONFIG_AVB_SUPPORT */
#endif /* CONFIG_CMD_BOOTA */
#endif
static void rx_handler_command(struct usb_ep *ep, struct usb_request *req);
static char *fb_response_str;
void fastboot_fail(const char *reason)
{
strncpy(fb_response_str, "FAIL\0", 5);
strncat(fb_response_str, reason, FASTBOOT_RESPONSE_LEN - 4 - 1);
}
void fastboot_okay(const char *reason)
{
strncpy(fb_response_str, "OKAY\0", 5);
strncat(fb_response_str, reason, FASTBOOT_RESPONSE_LEN - 4 - 1);
}
static void fastboot_complete(struct usb_ep *ep, struct usb_request *req)
{
int status = req->status;
if (!status)
return;
printf("status: %d ep '%s' trans: %d\n", status, ep->name, req->actual);
}
static int fastboot_bind(struct usb_configuration *c, struct usb_function *f)
{
int id;
struct usb_gadget *gadget = c->cdev->gadget;
struct f_fastboot *f_fb = func_to_fastboot(f);
const char *s;
/* DYNAMIC interface numbers assignments */
id = usb_interface_id(c, f);
if (id < 0)
return id;
interface_desc.bInterfaceNumber = id;
id = usb_string_id(c->cdev);
if (id < 0)
return id;
fastboot_string_defs[0].id = id;
interface_desc.iInterface = id;
f_fb->in_ep = usb_ep_autoconfig(gadget, &fs_ep_in);
if (!f_fb->in_ep)
return -ENODEV;
f_fb->in_ep->driver_data = c->cdev;
f_fb->out_ep = usb_ep_autoconfig(gadget, &fs_ep_out);
if (!f_fb->out_ep)
return -ENODEV;
f_fb->out_ep->driver_data = c->cdev;
f->descriptors = fb_fs_function;
if (gadget_is_dualspeed(gadget)) {
/* Assume endpoint addresses are the same for both speeds */
hs_ep_in.bEndpointAddress = fs_ep_in.bEndpointAddress;
hs_ep_out.bEndpointAddress = fs_ep_out.bEndpointAddress;
/* copy HS descriptors */
f->hs_descriptors = fb_hs_function;
}
s = getenv("serial#");
if (s)
g_dnl_set_serialnumber((char *)s);
return 0;
}
static void fastboot_unbind(struct usb_configuration *c, struct usb_function *f)
{
memset(fastboot_func, 0, sizeof(*fastboot_func));
}
static void fastboot_disable(struct usb_function *f)
{
struct f_fastboot *f_fb = func_to_fastboot(f);
usb_ep_disable(f_fb->out_ep);
usb_ep_disable(f_fb->in_ep);
if (f_fb->out_req) {
free(f_fb->out_req->buf);
usb_ep_free_request(f_fb->out_ep, f_fb->out_req);
f_fb->out_req = NULL;
}
if (f_fb->in_req) {
free(f_fb->in_req->buf);
usb_ep_free_request(f_fb->in_ep, f_fb->in_req);
f_fb->in_req = NULL;
}
}
static struct usb_request *fastboot_start_ep(struct usb_ep *ep)
{
struct usb_request *req;
req = usb_ep_alloc_request(ep, 0);
if (!req)
return NULL;
req->length = EP_BUFFER_SIZE;
req->buf = memalign(CONFIG_SYS_CACHELINE_SIZE, EP_BUFFER_SIZE);
if (!req->buf) {
usb_ep_free_request(ep, req);
return NULL;
}
memset(req->buf, 0, req->length);
return req;
}
static int fastboot_set_alt(struct usb_function *f,
unsigned interface, unsigned alt)
{
int ret;
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_gadget *gadget = cdev->gadget;
struct f_fastboot *f_fb = func_to_fastboot(f);
const struct usb_endpoint_descriptor *d;
debug("%s: func: %s intf: %d alt: %d\n",
__func__, f->name, interface, alt);
d = fb_ep_desc(gadget, &fs_ep_out, &hs_ep_out);
ret = usb_ep_enable(f_fb->out_ep, d);
if (ret) {
puts("failed to enable out ep\n");
return ret;
}
f_fb->out_req = fastboot_start_ep(f_fb->out_ep);
if (!f_fb->out_req) {
puts("failed to alloc out req\n");
ret = -EINVAL;
goto err;
}
f_fb->out_req->complete = rx_handler_command;
d = fb_ep_desc(gadget, &fs_ep_in, &hs_ep_in);
ret = usb_ep_enable(f_fb->in_ep, d);
if (ret) {
puts("failed to enable in ep\n");
goto err;
}
f_fb->in_req = fastboot_start_ep(f_fb->in_ep);
if (!f_fb->in_req) {
puts("failed alloc req in\n");
ret = -EINVAL;
goto err;
}
f_fb->in_req->complete = fastboot_complete;
ret = usb_ep_queue(f_fb->out_ep, f_fb->out_req, 0);
if (ret)
goto err;
return 0;
err:
fastboot_disable(f);
return ret;
}
static int fastboot_add(struct usb_configuration *c)
{
struct f_fastboot *f_fb = fastboot_func;
int status;
debug("%s: cdev: 0x%p\n", __func__, c->cdev);
if (!f_fb) {
f_fb = memalign(CONFIG_SYS_CACHELINE_SIZE, sizeof(*f_fb));
if (!f_fb)
return -ENOMEM;
fastboot_func = f_fb;
memset(f_fb, 0, sizeof(*f_fb));
}
f_fb->usb_function.name = "f_fastboot";
f_fb->usb_function.bind = fastboot_bind;
f_fb->usb_function.unbind = fastboot_unbind;
f_fb->usb_function.set_alt = fastboot_set_alt;